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Event-based visual guidance inspired by honeybees in a 3D tapered
tunnel

J. Serres1, T. Raharijaona1, E. Vanhoutte1 and F. Ruffier1

Abstract— In view of neuro-ethological findings on honeybees
and our previously developed vision-based autopilot, in-silico
experiments were performed in which a “simulated bee” was
make to travel along a doubly tapering tunnel including for
the first time event-based controllers. The “simulated bee” was
equipped with:

• a minimalistic compound eye comprising 10 local motion
sensors measuring the optic flow magnitude,

• two optic flow regulators updating the control signals
whenever specific optic flow criteria changed,

• and three event-based controllers taking into account the
error signals, each one in charge of its own translational
dynamics.

A MORSE/Blender based simulator-engine delivered what each
of 20 “simulated photoreceptors” saw in the tunnel lined
with high resolution natural 2D images. The “simulated bee”
managed to travel safely along the doubly tapering tunnel
without requiring any speed or distance measurements, using
only a Gibsonian point of view, by:

• concomitantly adjusting the side thrust, vertical lift and
forward thrust whenever a change was detected on the
optic flow-based signal errors,

• avoiding collisions with the surface of the doubly tapering
tunnel and decreasing or increasing its speed, depending
on the clutter rate perceived by motion sensors.

I. INTRODUCTION

Winged insects are able to navigate through unfamiliar
environments without any need for sensory systems such
as Global Positioning Systems (GPS) or Inertial Measure-
ment Units (IMUs), or emissive proximity sensors such as
ultrasonic or laser range finders, radar, or scanning LIght
Detecting And Ranging (LIDAR) sensors, using only the
Optic Flow (OF) ([1]; [2]; [3]). Flying insects make use
of the OF to jointly avoid lateral obstacles and control
their speed ([4]; [5]), and to cruise and land ([6]; [4]; [7]).
Electrophysiological studies on flies motion sensitive neurons
have shown that OF detection is texture- and contrast-
independent [8], and can be explained by a “time-of-travel”
scheme ([9]; [10]; [11]; Fig. 6 in [12]), which differs from the
Hassenstein-Reichardt model originally developed in 1956
[13]. The output of “time-of-travel”-based OF sensors can be
only updated when a change in the optical contrast with time
is detected. An asynchronous signal is therefore generated
in the output of a “time-of-travel”-based OF sensor, which
can be conveniently used in event-based control systems
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[14]. Because of the slight delay in the camera read-out,
event-based collision avoidance algorithms have been only
developed so far under open loop conditions in slightly
cluttered corridors, but they were expected to be ready for use
in the near future in closed loop on-board robotic platforms
([15]; [16]). Event-based control systems have also been used
for visual odometric purposes in the field of robotics [17].

In the present paper, we present for the first time an
event-based version of the ALIS autopilot (ALIS stands for
“AutopiLot using an Insect-based vision System”), which
was originally designed with fixed-step digital controllers
to perform tunnel-following tasks [18]. The ALIS autopilot
is based on the principle of dual OF regulators ([18], [5],
[7]) using ventral, dorsal, and lateral OFs. In section 2, the
set-up of the simulation and the simulated agent mimicking
a honeybee equipped with a minimalistic visual system
including only 10 local OF measurements are described.
In section 3, we describe the trajectories of the simulated
agent fitted with the event-based ALIS autopilot in a doubly
tapering tunnel (with a tapering angle of 7◦ in both planes).
The results of the simulations performed show that the
event-based ALIS autopilot generates a small number of
events making the “simulated bee” travel along the tapered
tunnel, thus greatly decreasing the number of control signal
computations required.

II. SIMULATION SET-UP

In-silico experiments were carried out on two stan-
dard computers running: (i) a first one equipped with the
MATLAB/Simulink c© software program at a sampling rate
of 1kHz for OF sensing purposes and feeding the event-
based control systems, and (ii) a second one equipped with
the MORSE software program (MORSE stands for “Modular
OpenRobots Simulation Engine” [19], [20]) to simulate the
visual interactions with the virtual 3D environment. The
two computers were linked together by a TCP/IP protocol
in which the maximum delay was limited to 3ms. The
virtual 3D environment was built with the Blender software
program [21]. The four surfaces of the tunnel were lined
with high resolution photographs of natural panoramic scenes
[22]. The 20 scalar photoreceptor signals were transmitted
via TCP/IP to a second computer processing the 10 local
optic flow computations, the 3 event-based controllers and
the 3 translational dynamics of the “simulated bee” using
the Matlab/Simulink software program. The Matlab/Simulink
program then sent the 3D position (X, Y, Z) of the “simulated
bee” back to the MORSE simulator.
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Fig. 1. (A) Perspective view of the doubly tapering tunnel, (B) Simulated
bees 3D trajectories starting at the initial coordinates x0 = 0.1m; y0 =
0.5m; z0 = 0.5m (in black), x0 = 0.1m; y0 = 0.4m; z0 = 0.5m (in blue)
and x0 = 0.1m; y0 = 0.5m; z0 = 0.3m (in red) plotted every 300ms, (C)
Trajectories in the vertical plane (x,z), and in (D) in the horizontal plane
(x,y), plotted every 300ms. (E) Forward speed Vx profiles.

A. Optic flow

The OF vector field perceived by a simulated agent de-
pends in particular on the structure of the 3D environment
([1]; [2]; [3]). The OF can be defined by a vector field of the
apparent motion of objects, surfaces, and edges in a visual
scene generated by the relative motion between an agent and
the scene. The OF field ~ω (1) is a combination between two
components: a translational ~ωT and a rotational OF ~ωR [3].

~ω = ~ωT + ~ωR (1)

It has been established that hymenopterans stabilize their
gaze by compensating for any body rotations [23]. Since the
simulated bee’s head is assumed to be stabilized along the
tunnel axis, each OF sensor will receive a purely translational
OF ( ~ωR = ~0). The translational OF (expressed in rad/s) can
be defined as follows:

~ωT = −
~V − (~V · ~d) · ~d

D
(2)

where ~d is a unit vector describing the viewing direction,
~V is the translational velocity vector, and D is the distance
from the object seen by an OF sensor.

B. Simulated flying agent

The behaviour of the “simulated bee” introduced into
the in-silico experiments was based on findings which may
explain how a flying honeybee controls its speed and avoids

obstacles ([6]; [4]; [5]); [7]). Each translational axis of
the bee’s dynamic model was uncoupled, as occurs in a
quadrotor. Each of the bee’s translational dynamics can be
defined by a first order transfer function (see [18] for details)
with a time constant of 0.22s [6]. Pitch angle, roll angle, and
wing stroke amplitude were bounded on the basis of data
previously published on bees [18]. In this indoor study, the
simulated agent was not subjected to any wind. In addition,
the agent’s rotational dynamics and the various mechanical
couplings have been not considered in this work-in-progress
paper yet.

The present agent was equipped with a set of 10 OF
sensors: each of these sensors consisted of just two pho-
toreceptors driving an Local Motion Sensor (LMS) based
on a “time-of-travel” scheme [8]. The visual axes of the two
adjacent photoreceptors were assumed to be separated by the
angle ∆φ, and each photoreceptor’s angular sensitivity was
assumed to be a Gaussoid function with an angular width at
half height of ∆ρ = ∆φ = 4.2◦. 6 OF sensors were located
in the horizontal plane oriented at azimuthal angles ϕ of
±45◦, ±90◦, and ±135◦, and the other 4 were oriented in
the vertical plane at elevation angles θ of +45◦, ±90◦ and
-135◦.

III. EVENT-BASED DISCRETE TIME CONTROLLERS

In this section, we describe how we tuned the event-
based control approach introduced in [14] for OF regula-
tion purposes. Three control input signals were computed,
corresponding to the three uncoupled translational degrees
of freedom on the surge (x), sway (y) and heave axes
(z). We consider in this work as an “event”, an event-
related condition based on the error signals. Lead controllers
are introduced into the heave and sway control systems to
improve their stability. The natural integrator that relates the
simulated agent’s position to its speed makes both the heave
and sway control systems reach a zero steady state error.
However, a PI controller is introduced into the surge control
system because OF is proportional to speed, but inversely
proportional to distance (2). Consequently, we have to add
an integral action to cancel the steady state error.

A. Event-based PI controller on the surge axis

A discrete time PI controller was designed. The modelling
of the proportional part was quite straightforward, and the
backward difference approximation method was used to
model the integral part. The resulting code is:
\% Inputs
ysp = u(1);\% Optic flow SetPoint = 540 [deg/s]
y = u(2);\% Optic flow Measurement
e = ysp - y;
\% Update control signal
hact = hact + Ts;\% Ts=1e-3s
if (abs(e-e_old)>elim) \% elim = 1
\% Calculate control signal
up = Kp*e;
ui = ui + Ki*hact*e

end
u = up + ui;
\% Update
e_old=e;
y_old=y;
hact=0;



The event-based controller is tuned with the values Kp =
20.10−3, Ki = 6.10−2 and Ts = 1ms.

B. Event-based PD controllers on the sway and the heave
axes

Two discrete time PD controllers were also designed to
deal with the sway (y) and heave axes (z). Modelling the
proportional part was quite straightforward, and the back-
ward difference approximation method was used to model
the derivative part. The following code was thus obtained
for each controller:
\% Inputs
ysp = u(1); \% Optic flow SetPoint = 315 [deg/s]
y = u(2); \% Optic flow Measurement
sign = u(3);
e = ysp - y;
\% Update control signal
hact = hact + Ts; \% Ts=1e-3s
if (abs(e-e_old)>elim) \% elim = 1 \% N=100
\% Calculate control signal

up= sign*Kp*e;
ud= Td/(N*hact + Td)*ud - Kp*Td*N/(N*hact + Td)*(y - y_old);
end
u = up + sign*ud;
\% Update
e_old=e;
y_old=y;
hact=0;

The event-based controllers on the sway axis were tuned
with the values Kp = 20.10−4, Td = 0.1s, and on the
heave axis, they were tuned with the values Kp = 20.10−3,
Td = 0.1s. The input sign was defined on the basis of Fig.2
adapted from [18]. The parameter elim was chosen in order
to significantly reduce the control updates, while making it
possible to perform reference tracking of the OF set-points.
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Fig. 2. The control direction selector automatically selects the tunnel
surface to be followed (wall, ground or roof) by multiplying the control
signal (the output from the Positioning controller) by a direction factor
u(3) that depends on the direction of the largest OF signal. Note that the
sway and heave dynamics can be driven alternately, depending on which
OF (side or vertical) is the largest at any given time. Adapted from [18].

IV. RESULTS

In Fig.1, the simulated environment was a doubly tapering
tunnel 6m long, 1m wide, 1m high with a slope angle
of 7◦. Fig.1A gives a perspective view of the tunnel. The
simulated bee entered the tunnel at zero speed, with the initial
coordinates x0 = 0.1m and various couples/pairs of y0 and
z0 (Fig.1B). Within the first 800ms, the simulated bee was
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Fig. 3. Simulated control signals and control updates during a 3D trajectory
starting at the initial coordinates x0 = 0.1m; y0 = 0.5m; z0 = 0.3m

controlled in the open loop mode to enable all the sensors
measure the OFs. From the time 800ms onwards, the OF
was regulated in the closed loop mode via the event-based
controllers. Fig.1C shows three trajectories in the vertical
plane (x, z) and Fig.1D shows these trajectories in the
horizontal plane (x, y), plotted every 300ms. The simulated
bee can be seen to have gradually increased both its ground
clearance (Fig.1C) and its right and left clearance (Fig.1D),
while the forward speed (Fig.1E) increased automatically up
to 1.5m/s.

Fig.3A gives the control input signal and the control
updates on the surge axis with x0 = 0.1m, y0 = 0.5m
and z0 = 0.3m. The control input signals are also plotted
on the sway and heave axes in Fig.3A and 3B. It can be
seen that the number of control updates is greatly reduced in
comparison with fixed-step digital controllers. Fig.4A plots
the OF with respect to the set-point of 540◦/s driving the
surge dynamics. In Fig.4B, the OF is plotted with respect the
set-point of 315◦/s driving the sway and heave dynamics.
Both systems of OF regulation gave satisfactory results.

V. CONCLUSIONS

In this paper, we present results of work-in-progress on an
event-based autopilot mimicking the direct Optic Flow (OF)
feedback control loops which may occur in honeybees. Like-
wise, honeybees tiny brains contain smart OF sensors, called
Velocity-Tuned motion-sensitive descending neurons (or VT
neurons): these are spiking neurons which are sensitive to the
OF [24]. Flies are also equipped with a sensory system based
on Lobula Plate Tangential Cells (LPTC), which are also
spiking neurons coding the local motion detection signals
triggered inside the insects brain [25]: each spike can be
taken to constitute an event occurring in the insects neuronal
system. Our proposed event-based control system is currently
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Fig. 4. Simulated systems of OF regulation in the case of a 3D trajectory
starting at the initial coordinates x0 = 0.1m; y0 = 0.5m; z0 = 0.3m
(A) Forward feedback signal determined by taking the largest sum of
two diametrically opposed OF sensors (horizontal OF sensors, vertical OF
sensors) (B) Positioning feedback signal determined by taking the largest
output from the OF sensors (right OF sensors; left OF sensors, ventral OF
sensors, dorsal OF sensors).

based on error signals, but in a near future it will be likely
to become a major tool which can be used to understand
more clearly how insects process the event-based visual
information they receive in order to react appropriately: this
information ranges from optical contrasts and local motion
detection to self-induced wing movements generating the
insects 3D movements in any tunnel configuration.

The results of the present in-silico experiments show that
the OF-based regulatory strategy consisting in updating the
control signals solely when visual contrasts are detected
provides a suitable basis for traveling along an unknown
tapered tunnel. It is now proposed to perform further studies
involving a more sophisticated OF-based autopilot traveling
along more complex tunnels, as well as to implement the
event-based ALIS autopilot in the near future on-board a
380-g X4 MaG quadrotor [26].
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