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Homogenization of a discrete model for a bifurcation and
application to traffic flow

N. Forcadel1, W. Salazar1

September 5, 2018

Abstract
The goal of this paper is to derive rigorously a macroscopic traffic flow model, for a simple

bifurcation, from a microscopic model. At the microscopic scale, we consider a first order
model of the form "follow the leader" i.e. the velocity of each vehicle depends on the distance
to the vehicle in front of it. We consider the case of a very simple bifurcation in which one
road separates into two and one vehicle over two goes to the right and the other goes to the
left. At the bifurcation, we then have to add a phase of transition because the vehicle in
front will change. Moreover, we assume that the velocity on each roads can be different. At
the macroscopic scale, we obtain an explicit Hamilton-Jacobi equation on each road and a
junction condition (in the sense of [22]) located at the bifurcation. From this case of a simple
bifurcation, we then extend to more general scenarios. For instance, the case of a different
distribution of the vehicles at the bifurcation or even to consider more than two outgoing
roads. For these extensions we only present the results and explain how to adapt the proofs
from the case of a simple bifurcation.

AMS Classification: 35D40, 90B20, 35B27, 35F20, 45K05.

Keywords: specified homogenization, Hamilton-Jacobi equations, integro-differential operators,
Slepčev formulation, viscosity solutions, traffic flow, microscopic models, macroscopic models.

1 Introduction
Traffic flow can be characterized at different scales. The first one is the microscopic scale in which
we describe the dynamics of each vehicles individually. Another one is the macroscopic scale that
describes the collective dynamics of the vehicles with macroscopic quantities such as the density of
vehicles and the average speed. The link between microscopic and macroscopic models has been
extensively studied specially in the case of a single road. However, there are not many results
concerning the homogenization of microscopic traffic flow models in networks.

In the case of a single road, we refer to [5, 13, 20, 28] where the authors rescaled the empirical
measure in order to obtain a Lighthill-Whitham-Richards (LWR) model (see [30, 33]) at the
macroscopic scale. Other works have been done by rescaling the primitive of the empirical measure
in order to obtain a Hamilton-Jacobi equation (which is the primitive of a LWR model) at the
macroscopic scale. Among those works we refer the readers to the papers [14, 15, 16, 17], the last
one being directly applied to traffic flow.

Moreover, the recent works [1, 19], and the ideas in the lectures of Lions at the "College de
France" [31], concerning specified homogenization enabled us to consider a traffic flow model with
a local perturbation and to deduce a macroscopic model with a junction condition (see [18]). We
would also like to refer to the paper of Colombo and Goatin [4], where the authors present an
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homogenization result from a LWR model with a discontinuous flow in space to a LWR model
with a flow limiting condition at a single point.

Concerning homogenization results on networks, we would like to mention the recent work of
Cristiani and Sahu [10] where the authors present a first order microscopic model on a network
and show the link to a multi-path model (see [7, 8]). In fact they consider for each possible path
a different population of vehicles. Their homogenization result is set in a very general network,
however, they assume the convergence of the empirical measure (of each population) and they
prove that the limit satisfies a multi-path model.

The present work focuses on obtaining a macroscopic model from a microscopic model for
traffic flow in the case of a simple bifurcation. The schematic representation of the microscopic
model is given in Figure 1.

Transition zone

O

R1

R2

R0

U̇i = V0(Ui+1 − Ui)

U̇i = V1(Ui+2 − Ui)

U̇i = V2(Ui+2 − Ui)

Figure 1: Simplified schematic representation of the microscopic model.

More precisely, we consider one incoming road R0 which separates into two outgoing roads R1
and R2. We denote by Ui(t) the position of the i th vehicle, and we assume that the vehicles with
an odd index go to R1 while the ones with an even index go to R2. Finally, we assume that on
each road Ri the velocity of each vehicle is given by a function Vi. In order to obtain our result we
will rescale the microscopic model which describes the dynamics of each vehicle, in order to get
a macroscopic model that describes the dynamics of the density of vehicles. At the macroscopic
scale we will obtain an Hamilton-Jacobi equation on each branch and a junction condition at the
origin (see Figure 2, where u0

x is related to the density of vehicles and the effective Hamiltonians
Hi are defined in the next section). At the intersection, the junction condition can be seen as a
flux limiting condition (see [22]).

Junction condition

R0 O

R1

u0
t +H2(u

0
x) = 0

u0
t +H1(u

0
x) = 0

u0
t +H0(u

0
x) = 0

R2

Figure 2: Schematic representation of the macroscopic (homogenized) model.

Finally, we give some extensions from the case of a simple bifurcation. We present the results
in the case of more than two outgoing roads, and in the case we have a more general (but still
periodic) distribution of the vehicles on each road. For the extensions, we do not give the details
of the proofs, we only give some tips on how to adapt the proofs already presented in this paper.

In this paper we will use the recent developments on Hamilton-Jacobi equations on networks,
particularly the paper of Imbert and Monneau [22] which gives a suitable definition of viscosity
solutions at the junction (see also the work of Lions and Souganidis [32]).
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1.1 General first order microscopic model for a junction
In this paper we are interested in a first order microscopic model for a simple bifurcation located
at the origin, where we consider that the vehicles with odd indexes go to the left and vehicles with
even indexes go to the right. We denote by Ui the position of the i th vehicle and U̇i its velocity.
For i = 0, 1, 2 we call Vi an optimal velocity function. Before the bifurcation (i.e for Ui(t) << 0)
we assume that the velocity of each vehicle is given by

U̇i(t) = V0 (Ui+1(t)− Ui(t)) ,

while after the bifurcation (i.e for Ui(t) >> 0) we assume that

U̇i(t) =
{
V1 (Ui+2(t)− Ui(t)) if i is odd
V2 (Ui+2(t)− Ui(t)) if i is even.

In order to pass from the velocity V0 to Vi, i = 1 or 2, we introduce a transition function φ and
we consider the following system for all t > 0:

U̇i(t) =

 φ
(
Ui(t), V0 (Ui+1(t)− Ui(t)) , V1 (Ui+2(t)− Ui(t))

)
if i is odd

φ
(
Ui(t), V0 (Ui+1(t)− Ui(t)) , V2 (Ui+2(t)− Ui(t))

)
if i is even.

(1.1)

The function φ allows a transition near the junction, and is defined by

φ(x, a, b) =



a if x < −h0 − hmax − 1,
(h0 + hmax − |x|)(min(a, b)− a) + min(a, b) if − 1 ≤ x+ h0 + hmax < 0,
min(a, b) if − h0 − hmax ≤ x < −h0,
|x|
h0

min(a, b) +
(

1− |x|
h0

)
b if − h0 ≤ x ≤ 0,

b if x > 0,

(1.2)

with hmax > h0 > 0. Figure 3 represents model (1.1).

Transition zones

O
−h0−h0 − hmax

U̇i = V1(Ui+2 − Ui)

U̇i = V0(Ui+1 − Ui)

U̇i = min(V0(Ui+1 − Ui), V1,2(Ui+2 − Ui))

U̇i = V2(Ui+2 − Ui)

−h0 − hmax − 1

U̇i = φ(Ui, V0(Ui+1 − Ui), V1,2(Ui+2 − Ui))

R0

R1

R2

Figure 3: Schematic representation of the microscopic model.

In model (1.1), the vehicles with an odd index go to the road R1 and the others go to the road
R2. Since we work with a first order model, on R0 the velocity of each vehicle depends on the
distance Ui+1 − Ui, but on R1 and R2 it depends on Ui+2 − Ui.

We will call the transition zone, the interval [−h0−hmax−1, 0], where the vehicles will change
from one model to the other. Concerning the optimal velocity functions Vi, for i = 0, 1, 2, and φ,
we do the following assumptions.
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Assumption (A)

• (A1) Vi : R→ R+ is Lipschitz continuous, non-negative.

• (A2) Vi is non-decreasing on R.

• (A3) There exists h0 ∈ (0,+∞) such that for all h ≤ h0, Vi(h) = 0.

• (A4) There exists hmax ∈ (h0,+∞) such that for all h ≥ hmax, Vi(h) = Vi(hmax) =: V imax.

• (A5) There exists a unique p0 (resp. p1 and p2) such that the function p 7→ pV0(−1/p) (resp.
p 7→ pVj(−2/p), for j=1,2) is decreasing in [−1/h0, p0] (resp.[−2/h0, pi]) and increasing in
[p0, 0] (resp. [pi, 0]).

• (A6) The function φ : R3 → R is Lipschitz continuous with respect to each variable. For all
(x, a, b) ∈ R, the functions φ(x, ·, b) and φ(x, a, ·) are non-decreasing. We denote by ||φ′||∞,
the smallest constant such that for all (x, a, b), (x′, a′, b′) ∈ R3, we have

|φ(x, a, b)− φ(x′, a′, b′)| ≤ ||φ′||∞ (|x− x′|+ |a− a′|+ |b− b′|) .

Remark 1.1 (An extra perturbation). In order to make the microscopic model more realistic, it
is possible to modify it and add a local perturbation around the junction point (by multiplying the
velocity with a certain function like in [18]), that would decrease the speed of the vehicles near the
origin. However, in the rest of the paper the function φ is already treated like a local perturbation;
adding an extra one would just complicate the notations without adding a mathematical interest
(see [18] for how to treat a local perturbation in a microscopic model).

Remark 1.2 (The transition zone). The optimal velocity functions Vi describe the dynamics of the
vehicles on each branch. The role of the transition zone is to do a continuous transition from one
dynamic to the next one. Notice that given the form of the transition (1.2), if initially the vehicles
have enough space between them, there will always be at least a distance h0 between two vehicles.
Meaning that in model (1.1) there is always a safety distance h0 that avoids any collisions.

2 Main results
Like in [15, 18], we inject the system of ODE into a system of PDE. To do this, we separate the
vehicles into two groups, those going into R1 and those going into R2.

2.1 Injecting the system of ODEs into a system of PDEs
We introduce two functions, the first one is the rescaled "cumulative distribution function" of
vehicles with an odd index

ρε1(t, x) = −2ε ·

 ∑
i[2]=1, i≥0

H(x− εUi(t/ε)) +
∑

i[2]=1, i<0

(−1 +H(x− εUi(t/ε)))

 (2.1)

and the second one is the rescaled "cumulative distribution function" of vehicles with an even index

ρε2(t, x) = −2ε ·

 ∑
i[2]=0, i≥0

H(x− εUi(t/ε)) +
∑

i[2]=0, i<0

(−1 +H(x− εUi(t/ε)))

− ε, (2.2)

with

H(x) =
{

1 if x ≥ 0,
0 if x < 0. (2.3)
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Here and in the rest of this paper, i[2] denotes the rest of the euclidean division of i by 2 (either
0 or 1). Under assumption (A), the function (ρε1, ρε2) is a (discontinuous viscosity) solution (see
Theorem 7.1) of the following non-local equation, for (t, x) ∈ (0,+∞)× R,

uεt + φ

(
x

ε
,Nε

0

(
uε

ε
,

[
ξε(t, ·)
ε

])
(x),Mε

1

[
uε(t, ·)
ε

]
(x)
)
· |uεx| = 0

ξεt + φ

(
x

ε
,Nε

0

(
ξε

ε
,

[
uε(t, ·)
ε

])
(x),Mε

2

[
ξε(t, ·)
ε

]
(x)
)
· |ξεx| = 0,

(2.4)

where Nε
0 and Mε

i for i = 1, 2, are non-local operators defined by

Nε
0 (U, [Ξ]) (x) =

∫
R
J0(z)F (Ξ(x+ εz)− U(x))dz − 3

2Vmax, (2.5)

and

Mε
i [U ](x) =

∫
R
Ji(z)E(U(x+ εz)− U(x))dz − 3

2Vmax, (2.6)

with Ji = V ′i for i = 0, 1, 2 and

F (z) =

 0 if z ≥ 1,
1/2 if − 1 ≤ z < 1,
3/2 if z < −1,

and E(z) =

 0 if z ≥ 0,
1/2 if − 2 ≤ z < 0,
3/2 if z < −2.

(2.7)

Finally, the function φ : R3 → R, is defined by φ(x, a, b) = −φ(x,−a,−b) for all (x, a, b) ∈ R3. In
particular it has the following form

φ(x, a, b) =



a if x < −h0 − hmax − 1,
(h0 + hmax − |x|)(max(a, b)− a) + max(a, b) if − 1 ≤ x+ h0 + hmax < 0,
max(a, b) if − h0 − hmax ≤ x < −h0,
|x|
h0

max(a, b) +
(

1− |x|
h0

)
b if − h0 ≤ x ≤ 0,

b if x > 0.

(2.8)

Remark 2.1 (Choice of the "cumulative distribution functions"). Contrary to [18], it is impossible
to work with the integral of the empirical measure of the positions of all the vehicles. Indeed, near
the bifurcation, the vehicles stop being in order (some go to R1 and others to R2), which makes it
impossible to recover the distance Ui+1 − Ui. To overcome this difficulty, we consider a modified
version of the integral of the empirical measure of the two types of vehicles (the ones going on
R1 and the ones going to R2). This modification simply allows us to obtain the index of the
vehicles more easily: for ε = 1, if i[2] = 1 then ρε1(t, Ui(t)) = −(i + 1) and if i[2] = 0 then
ρε2(t, Ui(t)) = −(i+ 1).

In particular, this implies (see Section 7) that if for instance i[2] = 1 and ε = 1, we have{
Nε

0 (ρε1(t, ·), [ρε2]) (Ui(t)) = −V0 (Ui+1(t)− Ui(t))
Mε

1 [ρε1(t, ·)](Ui(t)) = −V1 (Ui+1(t)− Ui(t)) .

We obtain a similar result if i[2] = 0. This results helps us inject the system of ODEs into a
system of PDEs.

The new transition function φ comes from the fact that with the non-local operators we recover
the opposite of the velocity of the vehicles.

Remark 2.2. Given the definition of the cumulative distribution function ρε1 (resp. ρε2) we expect
that (ρ1)x (resp. (ρ2)x) (the gradient of the limit of ρε1 (resp. ρε2) as ε goes to 0) is going to be the
density of vehicles on R0 and twice the density on R1 (resp. R2).
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We complete (2.4) with the following initial conditions{
uε(0, x) = u0(x) for x ∈ R,
ξε(0, x) = ξ0(x) for x ∈ R, (2.9)

and we make the following assumptions:

(A0) (Initial condition). For all x ≤ 0,

u0(x) = ξ0(x).

Moreover, we assume for all x ∈ R

−2k0 = − 2
h0
≤ (u0)x ≤ 0 and − 2k0 ≤ (ξ0)x ≤ 0.

2.2 Convergence result
2.2.1 The effective Hamiltonians

Here, we introduce three Hamiltonians, H0, H1, and H2 that we will use in the rest of the paper.
They are the effective Hamiltonians on each of the branches R0, R1, and R2. We define k0 = 1/h0
and H0 : R→ R by

H0(p) =


−p− 2k0 for p < −2k0,

−V0

(
−1
p

)
· |p| for − 2k0 ≤ p ≤ 0,

p for p > 0.

(2.10)

We also define, for i = 1, 2, Hi : R→ R by

Hi(p) =


−p− 2k0 for p < −2k0,

−Vi
(
−2
p

)
· |p| for − 2k0 ≤ p ≤ 0,

p for p > 0.

(2.11)

For i = 0, 1, 2, let us notice that such Hi is continuous, coercive
(

lim
|p|→+∞

Hi(p) = +∞
)

and

because of (A5), there exists a unique point pi ∈ [−2k0, 0] such that{
Hi is non-increasing on (−∞, pi),
Hi is increasing on (pi,+∞), (2.12)

We denote by

H0 = max
i∈{0,1,2}

min
p∈R

Hi(p). (2.13)

Figure 4 gives a schematic representation of H0, H1, and H2.

2.2.2 The macroscopic model

The main objective of this article is to obtain an homogenisation result when the number of vehicles
per unit length goes to infinity, that is to say what is the behavior of (ρε1, ρε2) as ε goes to 0. First
we can notice that the radius of the transition zone will go to 0, therefore at the macroscopic scale
we will obtain a junction condition in 0 in the sense of Imbert and Monneau [22]. We consider
one incoming road R0 (isometric to (−∞, 0]) and two outgoing roads R1 and R2 (isometric to
[0,+∞)) and all the branches are glued at the origin. Moreover, we define

R = R0 ∪R1 ∪R2 and Ri ∩Rj = {0} for i 6= j.
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H0

p
p0

H1

p1

H2

p2 −k0−2k0

min
p

H0(p)

min
p

H2(p)

min
p

H1(p)

Figure 4: Schematic representation of the effective Hamiltonians.

In order to give a more physical interpretation, we consider that the branches R0, R1 and R2 are
generated respectively by the vectors ~e0, ~e1 and ~e2, such that

R0 = (−∞, 0] · ~e0 and R1,2 = [0,+∞) · ~e1,2.

For a smooth function u : [0, T ]×R→ R, we denote by ∂iu(t, x) the spatial derivative of u at
x ∈ Ri, for i = 0, 1, 2 and we define

ux(t, x) :=
{
∂iu(t, x) if x ∈ R∗i := Ri\{0},
(∂0u(t, 0), ∂1u(t, 0), ∂2u(t, 0)) if x = 0. (2.14)

Finally, we introduce for all x, y ∈ R the distance d(x, y) on R,

d(x, y) =
{
|x− y| if x, y belong to the same branch,
|x|+ |y| if x, y belong to different branches. (2.15)

The main result of this article is to prove that the function ũε defined by

ũε(t, x) =

 uε(t,−d(0, x)) for (t, x) ∈ (0,+∞)×R0,
uε(t, d(0, x)) for (t, x) ∈ (0,+∞)×R∗1,
ξε(t, d(0, x)) for (t, x) ∈ (0,+∞)×R∗2,

(2.16)

converges locally uniformly on (0,+∞)× R as ε goes to 0 to the unique viscosity solution of the
following problem

u0
t +H0(u0

x) = 0 for (t, x) ∈ [0,+∞)×R∗0,
u0
t +H1(u0

x) = 0 for (t, x) ∈ [0,+∞)×R∗1,
u0
t +H2(u0

x) = 0 for (t, x) ∈ [0,+∞)×R∗2,
u0
t + FA(∂0u

0(t, 0), ∂1u
0(t, 0), ∂2u

0(t, 0))) = 0 for (t, x) ∈ [0,+∞)× {0},

u0(0, x) = ū0(x) =
{
u0(d(0, x)) for x ∈ R0 ∪R1,
ξ0(d(0, x)) for x ∈ R∗2,

(2.17)

where A is a constant to be determined and FA is defined by

FA(p0, p1, p2) = max(A,H+
0 (p0), H−1 (p1), H−2 (p2)), (2.18)
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and for i = 0, 1, 2, we define

H
−
i (p) =

{
Hi(p) if p ≤ pi,
Hi(pi) if p ≥ pi,

and H
+
i (p) =

{
Hi(pi) if p ≤ pi,
Hi(p) if p ≥ pi.

(2.19)

Remark 2.3. In (2.16), we can replace uε by ξε for x ∈ R0 and we obtain the same homogenisation
result. The coefficient 2 that appears in Hi for i = 1, 2 and not in H0 comes from the fact that
we look one vehicle over two on Ri and therefore the density of the vehicles is divided by 2.

Remark 2.4. As explained before, (ρi)x is related to the density of vehicles (see Remark 2.2). In
this way, (2.17) is a macroscopic model for traffic flow and the constant Ā can be interpreted as a
flux limiter at the junction. We refer to [22, 24] for this kind of model. In fact, in each road the
effective equation is equivalent to a LWR model.

2.2.3 The homogenization result

Theorem 2.5 (Junction condition by homogenization). Assume (A0) and (A). For ε > 0, let
(uε, ξε) be the solution of (2.4). Then there exists a unique constant A ∈ [H0, 0] such that the
function ũε defined by (2.16) converges locally uniformly to the unique viscosity solution u0 of
(2.17).

The previous result will allow us to get the following homogenization result for the vehicles.

Theorem 2.6. Assume (A) and that at initial time we have, for all i ∈ Z, if the vehicles i and
i+ 1 are both in R0,

Ui(0) ≤ Ui+1(0)− h0, (2.20)

and if not

Ui(0) ≤ Ui+2(0)− h0. (2.21)

We also assume that there exists a constant R > 0 such that for all i ∈ Z, if Ui(0) ≥ R

Ui+1(0)− Ui(0) =
{
h1 if i[2] = 1
h2 if i[2] = 0 (2.22)

and if Ui(0) ≤ −R

Ui+1(0)− Ui(0) = h, (2.23)

with h, h1, h2 ≥ h0. We define two functions u0 and ξ0 (satisfying (A0)) by

u0(x) =
{
−x/h if x ≤ 0
−2x/h1 if x > 0 and ξ0(x) =

{
−x/h if x ≤ 0
−2x/h2 if x > 0 for all x ∈ R.

Then there exists a unique constant A ∈ [H0, 0] such that the function

ρ̃ε(t, y) =

 ρε1(t,−d(0, y)) for (t, y) ∈ (0,+∞)×R0,
ρε1(t, d(0, y)) for (t, y) ∈ (0,+∞)×R∗1,
ρε2(t, d(0, y)) for (t, y) ∈ (0,+∞)×R∗2,

(2.24)

converges locally uniformly to the unique solution u0 of (2.17).

Remark 2.7. Conditions (2.22) and (2.23) mean that the initial condition is well-prepared.

The goal of the following theorem is to show that the effective Hamiltonians in (2.17) are only
evaluated for values in [−2k0, 0]. However, it is convenient to work with the extended Hamiltonians
presented in (2.10)-(2.11) because it is necessary to have coercive Hamiltonians, in order to apply
the results developed by Imbert and Monneau in [22].
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Theorem 2.8. Assume (A0)-(A). Let u0 be the unique solution of (2.17), then we have for all
(t, x) ∈ [0,+∞)×R,

−2k0 ≤ u0
x ≤ 0,

with k0 defined in (A0).

To construct the effective flux limiter A, we consider the following cell problem: find λ ∈ R
such that there exists a solution (v, ζ) of the following Hamilton-Jacobi equation{

φ (x,N0(v, [ζ])(x),M1[v](x)) · |vx| = λ, for x ∈ R,
φ (x,N0(ζ, [v])(x),M2[ζ](x)) · |ζx| = λ, for x ∈ R. (2.25)

Theorem 2.9 (Effective flux limiter). Assume (A). We define the following set of functions,

S = {(v, ζ) s.t. ∃ two Lipschitz continuous functions m1 and m2 s.t. m1(0) = m2(0) = 0
and a constant C > 0 s.t. ||v −m1||∞, ||ζ −m2||∞ ≤ C} .

Then A is given by

A = inf{λ ∈ [H0, 0] : ∃(v, ζ) ∈ S solution of (2.25)}. (2.26)

2.2.4 Link with macroscopic models

Notice that the homogenization of (2.4), does not directly give the dynamics of the density of
vehicles. In fact, in R0, u0 is the primitive of the density of vehicles, but in R1 and R2 it is twice
the primitive of the density of vehicles. Therefore, the integral of the density of vehicles in R is
given by

ρ̃0(t, x) =
{
u0(t, x) for x ∈ R0,
u0(t, x)/2 for x ∈ R∗1 ∪R∗2.

(2.27)

However, we cannot explicit the dynamics of ρ̃0 because of its definition at the origin.

2.3 Notations and organization of the paper
We recall the definition of the non-local operators that we use in this paper,

N0(U, [Ξ])(x) =
∫ +∞

−∞
J0(z)F (Ξ(x+ z)− U(x))dz − 3

2V
0
max, (2.28)

and for i = 1, 2,

Mi[U ](x) =
∫ +∞

−∞
Ji(z)E(U(x+ z)− U(x))dz − 3

2V
i
max. (2.29)

To each operator N and M , we associate the operators Ñ and M̃ , which are defined in the
same way except that the functions F and E are replaced by the functions F̃ and Ẽ defined by

F̃ (z) =

 0 if z > 1,
1/2 if − 1 < z ≤ 1,
3/2 if z ≤ −1,

and Ẽ(z) =

 0 if z > 0,
1/2 if − 2 < z ≤ 0,
3/2 if z ≤ −2.

(2.30)

Remark 2.10. Using the fact that E, F and V are bounded, there exists a constant M0 such that
for every U, Ξ and every x ∈ R, we have for i = 1, 2, −M0 ≤ −

3
2V

0
max ≤ N0(U, [Ξ])(x) ≤ 0,

−M0 ≤ −
3
2V

i
max ≤Mi[U ](x) ≤ 0,
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with

M0 = max
i∈{0,1,2}

3
2V

i
max.

Remark 2.11 (Choice of the transition function). In some computation it is useful to specified
the explicit dependence of the function φ(x, a, b) on max(a, b). That is why we use the following
notation,

φ̃(x, a,max(a, b), b) = φ(x, a, b) for all (x, a, b) ∈ R3. (2.31)

Finally, for a given point (t0, x0) ∈ (0,+∞)× R, we define for r̄, R̄ > 0, the set

Pr̄,R̄(t0, x0) = (t0 − r̄, t0 + r̄)× (x0 − R̄, x0 + R̄) (2.32)

and

B(x0, r̄) = {x ∈ R, s.t. |x− x0| ≤ r̄}.

Also for a given point (t0, y0) ∈ (0,+∞)×R, we define for r̄, R̄ > 0, the set

Qr̄,R̄(t0, y0) = (t0 − r̄, t0 + r̄)× BR̄(y0),

with

BR̄(y0) =
{
y ∈ R s.t. d(y, y0) < R̄

}
.

We denote by C > 0 a generic constant that may vary from one line to the next.

Organization of the paper. In Section 3, we introduce the definition of viscosity solutions for
the considered problems and give stability, existence, and uniqueness results. Section 4 contains
the results concerning the effective Hamiltonians and the correctors for the junction (Theorem 4.3)
that are necessary for the proof of convergence (Theorem 2.5) which proof is located in Section
5. In Section 6, we present the proof of Theorem 4.3. In Section 7, we show the link between the
ODEs and the system of PDEs. Finally, in Section 8, from the case of a simple bifurcation, we
extend to more general scenarios.

3 Viscosity solutions
In this section we give the definition of viscosity solution of the equations we treat in this paper.
We refer the reader to the user’s guide of Crandall, Ishii, Lions [9] and the book of Barles [6] for an
introduction to viscosity solutions. We also refer the reader to [25, 26, 29] for results concerning
viscosity solutions for weakly coupled systems and to [22] for viscosity solutions on networks.

3.1 Definitions
In order to give a more general definition for all the non-local equations we will consider in this
paper, we give the definition of a viscosity solution of the following equation, with p ∈ R,

{
ut +G1

p(x, u(t, x), [ξ(t, ·)], [u(t, ·)], ux) = 0
ξt +G2

p(x, ξ(t, x), [u(t, ·)], [ξ(t, ·)], ξx) = 0 for all (t, x) ∈ (0,+∞)× R, (3.1)

with, for i = 1, 2,

Gip(x, U, [Ξ], [U ], q) = (1− ψ+(x))Hi(q) + (1− ψ−(x))H0(q)
ψ+(x)ψ−(x)φ

(
x,N0

p (U, [Ξ]) (x),M i
p[U ](x)

)
|q + p|,
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and ψ± : R → [0, 1] two Lipschitz continuous functions. To Gip we associate G̃ip defined in the
same way but with the non-local operators Ñ0

p and M̃ i
p. For p ∈ [−2k0, 0], the non-local operators

N0
p and M i

p are defined by

N0
p (U, [Ξ])(x) =

∫ +∞

−∞
J0(z)F (Ξ(x+ z)− U(x) + p · z)dz − 3

2V
0
max, (3.2)

and for i = 1, 2

M i
p[U ](x) =

∫ +∞

−∞
Ji(z)E(U(x+ z)− U(x) + p · z)dz − 3

2V
i
max. (3.3)

We also consider the following initial condition{
u(0, x) = u0(x)
ξ(0, x) = ξ0(x), (3.4)

that satisfies (A0).

We recall the definition of the upper and lower semi-continuous envelops, u∗ and u∗, of a locally
bounded function u, for all (t, x) ∈ [0,+∞)× R,

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) and u∗ = lim inf
(s,y)→(t,x)

u(s, y). (3.5)

We can now give the definition of viscosity solutions for (3.1).

Definition 3.1 (Definition of viscosity solutions for (3.1)). Let T > 0, u0 : R → R, ξ0 : R → R
satisfying (A0). Let u : [0,+∞) × R → R, ξ : [0,+∞) × R → R upper-semi continuous (resp.
lower-semi continuous) locally bounded functions. We set Ω = (0, T ) × R. A function (u, ξ) is
a sub-solution (resp. a super-solution) of (3.1) if for all (t, x) ∈ Ω and for any test function
ϕ ∈ C1(Ω) such that u−ϕ attains a local maximum (resp. local minimum) at the point (t, x) ∈ Ω,
we have

ϕt(t, x) +G1
p(x, u(t, x), [ξ(t, ·)], [u(t, ·)], ϕx) ≤ 0

(
resp. ϕt(t, x) + G̃1

p(x, u(t, x), [ξ(t, ·)], [u(t, ·)], ϕx) ≥ 0
)
,

and if for all (t, x) ∈ Ω and for any test function ϕ such that ξ−ϕ attains a local maximum (resp.
local minimum) at (t, x), we have

ϕt(t, x) +G2
p(x, ξ(t, x), [u(t, ·)], [ξ(t, ·)], ϕx) ≤ 0

(
resp. ϕt(t, x) + G̃2

p(x, ξ(t, x), [u(t, ·)], [ξ(t, ·)], ϕx) ≥ 0
)
.

-A function (u, ξ) is a sub-solution (resp. super-solution) of (3.1)-(3.4) if (u, ξ) is a sub-solution
(resp. super-solution) of (3.1) on Ω and satisfies

u(0, x) ≤ u0(x) (resp. ≥) and ξ(0, x) ≤ ξ0(x) (resp. ≥). (3.6)

-A function (u, ξ) is a viscosity solution of (3.1) (resp. of (3.1)-(3.4)) if (u∗, ξ∗) is a sub-
solution and (u∗, ξ∗) is a super-solution of (3.1) (resp. of (3.1)-(3.4)).

Remark 3.2. We use this definition in order to have a stability result for the non-local operators
(see [12, 34] for similar definitions). We refer to [15, Proposition 4.2] for the corresponding
stability result.
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Definition 3.3 (Class of test functions for (2.17)). We denote R∞ := (0,+∞) × R and R∞i :=
(0,+∞)×R∗i for i = 0, 1, 2. We define a class of test functions on R∞ by

C2(R∞) =
{
ϕ ∈ C(R∞), the restriction of ϕ to R∞i , i = 0, 1, 2 is C2} .

Definition 3.4 (Definition of viscosity solutions for (2.17)). Let H0 and Hi, for i = 1, 2 be
given respectively by (2.10) and (2.11). Let A ∈ R. An upper semi-continuous (resp. lower semi-
continuous) function u : [0,+∞) × R → R is a viscosity sub-solution (resp. super-solution) of
(2.17) if u(0, x) ≤ u0(x) (resp. u(0, x) ≥ u0(x)) and for all (t, x) ∈ R∞ and for all ϕ ∈ C2(R∞)
such that

u ≤ ϕ (resp. u ≥ ϕ) in a neighbourhood of (t, x) ∈ R∞ and u(t, x) = ϕ(t, x),

we have 
ϕt(t, x) +H0(ϕx(t, x)) ≤ 0 (resp. ≥ 0) if x ∈ R∗0,
ϕt(t, x) +H1(ϕx(t, x)) ≤ 0 (resp. ≥ 0) if x ∈ R∗1,
ϕt(t, x) +H2(ϕx(t, x)) ≤ 0 (resp. ≥ 0) if x ∈ R∗2,
ϕt(t, x) + FA(ϕx(t, x)) ≤ 0 (resp. ≥ 0) if x = 0.

We say that u is a viscosity solution of (2.17) if u∗ and u∗ are respectively a sub-solution and a
super-solution of (2.17). We refer to this solution as A−flux limited solution.

Thanks to the work of Imbert and Monneau [22], we have the following result which gives an
equivalent definition of viscosity solutions for (2.17). We use this equivalent definition in the proof
of Theorem 2.5 in Section 5.

Theorem 3.5 (Equivalent definition for sub/super-solutions). Let H0 and Hi for i = 1, 2 be
given by (2.10)-(2.11) and consider A ∈ [H0,+∞) with H0 = max

i∈{0,1,2}
min
p∈R

Hi(p). Given arbitrary

solutions p0 ∈ R and pAi ∈ R for i = 1, 2 of

H0
(
pA0
)

= H
− (
pA0
)

= A and H
+
i

(
pAi
)

= Hi

(
pAi
)

= A, (3.7)

let us fix any time independent test function φ0(x) satisfying, for i = 0, 1, 2,

∂iφ
0(0) = pAi .

Given a function u : (0, T )×R→ R, the following properties hold true.
i) If u is an upper semi-continuous sub-solution of (2.17) with A = H0, for x 6= 0, satisfying

u(t, 0) = lim sup
(s,y)→(t,0), y∈R∗

i

u(s, y), (3.8)

then u is a H0-flux limited sub-solution.
ii) Given A > H0 and t0 ∈ (0, T ), if u is an upper semi-continuous sub-solution of (2.17) for

x 6= 0, satisfying (3.8), and if for any test function ϕ touching u from above at (t0, 0) with

ϕ(t, x) = ψ(t) + φ0(x), (3.9)

for some ψ ∈ C2(0,+∞), we have

ϕt + FA (ϕx) ≤ 0 at (t0, 0),

then u is a A-flux limited sub-solution at (t0, 0).
iii) Given t0 ∈ (0, T ), if u is a lower semi-continuous super-solution of (2.17) for x 6= 0 and if

for any test function ϕ satisfying (3.9) touching u from above at (t0, 0) we have

ϕt + FA (ϕx) ≥ 0 at (t0, 0),

then u is a A-flux limited super-solution at (t0, 0).
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3.2 Results for viscosity solutions of (2.4)
Lemma 3.6 (Existence of barriers for (3.1)). Assume (A0) and (A). There exists a constant
K1 > 0 such that the functions (u+, ξ+) and (u−, ξ−) defined by

(u+(t, x), ξ+(t, x)) = (K1t+ u0(x),K1t+ ξ0(x)) and (u−(t, x), ξ−(t, x)) = (u0(x), ξ0(x))

are respectively a super and sub-solution of (3.1).

Proof. We define K1 = M0 · (|p| + 2k0) + 2 max
i=0,1,2

(
max

q∈|−2k0,0]
|Hi(q)|

)
, where M0 is defined in

Remark 2.10. Let us prove that (u+, ξ+) is a super-solution of (3.1). Using assumption (A0) and
the form of the non-local operators and of Hi, i = 0, 1, 2 we have

G̃1
p(x, u+(t, x), [ξ+(t, ·)], [u+(t, ·)], (u0)x) ≥ −M0 · |p+ (u0)x|

−2 max
i=0,1,2

(
max

q∈[−2k0,0]
|Hi(q)|

)
≥ −M0(|p|+ 2k0)

−2 max
i=0,1,2

(
max

q∈[−2k0,0]
|Hi(q)|

)
= −K1,

where we have used Remark (2.10). Similarly, we have

G̃2
p(x, ξ+(t, x), [u+(t, ·)], [ξ+(t, ·)], (ξ0)x) ≥ −M0(|p|+ 2k0)

−2 max
i=0,1,2

(
max

x∈[−2k0,0]
|Hi(x)|

)
= −K1.

(3.10)

The proof for the sub-solution is similar using that the non-local operators and Hi((u0)x) for
i = 0, 1, 2 are non-positive. This ends the proof of Lemma 3.6.

Proposition 3.7 (Existence and uniqueness for (3.1)). Assume (A). Let (u, ξ) (resp. (v, ζ)) be a
sub-solution (resp. a super-solution) of (3.1)-(3.4). We also assume that there exists a constant
K > 0 such that for all (t, x) ∈ [0, T ]× R, we have

u(t, x) ≤ u0(x) +K(t+ 1), ξ(t, x) ≤ ξ0(x) +K(1 + t)
−v(t, x) ≤ −u0(x) +K(1 + t), ζ(t, x) ≤ −ξ0(x) +K(1 + t). (3.11)

If

u(0, x) ≤ v(0, x) and ξ(0, x) ≤ ζ(0, x) for all x ∈ R,

then

u(t, x) ≤ v(t, x) and ξ(t, x) ≤ ζ(t, x) for all (t, x) ∈ [0, T ]× R.

In particular, the previous result combined with the Lemma 3.6 imply that there exists a unique
solution (u, ξ) of (3.1)-(3.4). Moreover, the functions u and ξ are continuous and there exists a
constant K1 > 0 such that for all (t, x) ∈ [0,+∞)× R

0 ≤ u(t, x)− u0(x) ≤ K1t and 0 ≤ ξ(t, x)− ξ0(x) ≤ K1t.

Proof. The first part of this result (comparison principle) is classical and uses the monotonicity
properties of G (see for example [11, 15] for a similar result).

To prove the rest of Proposition 3.7, we apply Perron’s method (see [23, Proof of Theorem
6], [3, 21] to see how to apply Perron’s method for problems with non-local terms), joint to the
comparison principle.
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We now give a comparison principle on bounded sets, we use the notations from (2.32).

Proposition 3.8 (Comparison principle on bounded sets for (3.1)). Assume (A). Let (u, ξ) be a
sub-solution of (3.1) and let (v, ζ) be a super-solution of (3.1) on the open set Pr,R ⊂ (0, T )×R.
Also assume that

u ≤ v and ξ ≤ ζ outside Pr,R,

then

u ≤ v and ξ ≤ ζ on Pr,R.

We now give a result on the control of the oscillations for the solution of (2.4) (with ε = 1).
This result will be used in particular to prove Theorem 2.8.

Theorem 3.9 (Control of the oscillations). Let T > 0. Assume (A0)-(A) and let (u, ξ) be a
solution of (2.4)-(2.9), with ε = 1. Then there exists a constant C1 > 0 such that for all x, y ∈ R,
x ≥ y and for all t, s ∈ [0, T ], t ≥ s, we have

0 ≤ u(t, x)− u(s, x) ≤ C1(t− s),
0 ≤ ξ(t, x)− ξ(s, x) ≤ C1(t− s) and −K0(x− y)− 2 ≤ u(t, x)− u(t, y) ≤ 0,

−K0(x− y)− 2 ≤ ξ(t, x)− ξ(t, y) ≤ 0, (3.12)

with K0 := 2k0.

Proof. Using the barriers constructed in Lemma 3.6 (with p = 0, ψ+ ≡ 1 and ψ− ≡ 1) we deduce
that (u, ξ) satisfies for all (t, x) ∈ [0,+∞)× R,

0 ≤ u(t, x)− u0(x) ≤M0K0t and 0 ≤ ξ(t, x)− ξ0(x) ≤M0K0t. (3.13)

In the rest of the proof we use the following notation

Ω̃ =
{

(t, x, y) ∈ [0, T )× R2 s.t. x ≥ y
}
.

Step 1: proof of the bound of the time derivative. For all h ≥ 0, we have

u(0, x) ≤ u(h, x) ≤M0K0h+ u(0, x) and ξ(0, x) ≤ ξ(h, x) ≤M0K0h+ ξ(0, x).

Using the fact that (2.4) is invariant by addition of constant to the solution and by translation in
time, we deduce by the comparison principle that, for all (t, x) ∈ [0,+∞)× R, we have

u(t, x) ≤ u(t+ h, x) ≤M0K0h+ u(t, x) and ξ(t, x) ≤ ξ(t+ h, x) ≤M0K0h+ ξ(t, x).

We deduce the result by choosing C1 = M0K0.

Step 2: proof of the upper inequality for the control of the space oscillations. We
introduce

M = sup
(t,x,y)∈Ω̃

max(u(t, x)− u(t, y), ξ(t, x)− ξ(t, y)). (3.14)

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 2.1: the test functions. For η, α > 0, small parameters, we define ϕ1(t, x, y) = u(t, x)− u(t, y)− η

T − t
− αx2 − αy2,

ϕ2(t, x, y) = ξ(t, x)− ξ(t, y)− η

T − t
− αx2 − αy2.
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Using (3.13), we have that

lim
|x|,|y|→=∞

ϕi(t, x, y)) = −∞.

Since ϕ1, ϕ2 are upper semi-continuous, the function ψ = max(ϕ1, ϕ2) reaches a maximum at a
finite point that we denote by (t̄, x̄, ȳ) ∈ Ω̃. Classically, we have for η and α small enough,{

0 < M

2 ≤ ψ(t̄, x̄, ȳ),
α|x̄|, α|ȳ| → 0 as α→ 0.

Step 2.2: t̄ > 0 and x̄ > ȳ. By contradiction, assume first that t̄ = 0. Then we have,
η

T
≤ u0(x)− u0(y) ≤ 0 or η

T
≤ ξ0(x)− ξ0(y) ≤ 0,

where we have used (A0), and we get a contradiction. The fact that x̄ > ȳ comes directly from
the fact that ψ(t̄, x̄, ȳ) > 0.

Step 2.3: utilisation of the equation. By doing a duplication of the time variable and
passing to the limit we get, if ψ(t̄, x̄, ȳ) = ϕ1(t̄, x̄, ȳ),

η

(T − t̄)2 ≤ −φ
(
x̄, N0(u(t̄, ·), [ξ(t̄, ·)])(x̄),M1[u(t̄, ·)](x)

)
· |2αx̄| ≤ 2M0|αx̄|

or, if ψ(t̄, x̄, ȳ) = ϕ2(t̄, x̄, ȳ),
η

(T − t̄)2 ≤ −φ
(
x̄, N0(ξ(t̄, ·), [u(t̄, ·)])(x̄),M2[ξ(t̄, ·)](x)

)
· |2αx̄| ≤ 2M0|αx̄|,

where we have used the fact that the non-local operators are negative. This is a contradiction for
α small enough.

Step 3: proof of the lower inequality for the control of the space oscillations. In order
to do this part of the proof, we use the following lemma, which proof is postponed.

Lemma 3.10. Assume (A0)-(A). Let T > 0, then the solution (u, ξ) of (2.4)-(2.9) (with ε = 1)
satisfies

|ξ(t, x)− u(t, x)| ≤ 1 for (t, x) ∈ [0, T )× (−∞,−h0]. (3.15)

We now introduce,

M = sup
(t,x,y)∈Ω̃

max (u(t, y)− u(t, x)−K0(x− y)− 2)

and we want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 3.1: the test functions. For η and α small parameters, we introduce

ϕ(t, x, y) = u(t, y)− u(t, x)−K0(x− y)− 2− η

T − t
− αx2

Using (3.13), we deduce that the function ϕ reaches a maximum at a finite point that we denote
by (t̄, x̄, ȳ) ∈ Ω̃ and that for η and α small enough, we have{

0 < M

2 ≤ ψ(t̄, x̄, ȳ),
α|x̄| → 0 as α→ 0.

(3.16)

Moreover, as in Step 2.2 we get that t̄ > 0 and x̄ > ȳ.
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Step 3.2: getting a contradiction. By doubling the time variable and passing to the limit,
we get

η

(T − t̄)2 ≤ φ
(
x̄, Ñ0(u(t̄, ·), [ξ(t̄, ·)](x̄), M̃1[u(t̄, ·)](x̄)

)
· | −K0 − 2αx̄|

−φ
(
ȳ, N0(u(t̄, ·), [ξ(t̄, ·)](ȳ),M1[u(t̄, ·)](ȳ)

)
· |K0|

≤ −φ
(
ȳ, N0(u(t̄, ·), [ξ(t̄, ·)](ȳ),M1[u(t̄, ·)](ȳ)

)
·K0,

(3.17)

where we have used the fact that the non-local operators are non-positive.
Let us now prove that

M1[u(t̄, ·)](ȳ) =
∫ hmax

h0

J1(z)E(u(t̄, ȳ + z)− u(t̄, ȳ))dz − 3
2V

1
max = 0. (3.18)

It is sufficient to prove that for all z ∈ (h0, hmax], we have

u(t̄, ȳ + z)− u(t̄, ȳ) < −2.

Let z ∈ (h0, hmax], if ȳ + z < x̄, using the fact that ϕ(t̄, x̄, ȳ + z) ≤ ϕ(t̄, x̄, ȳ), we observe that

u(t̄, ȳ + z)− u(t̄, ȳ) ≤ −K0z < −2.

If ȳ + z ≥ x̄, using the fact that u is non-increasing in space and that ϕ(t̄, x̄, ȳ) > 0, we obtain

u(t̄, ȳ + z)− u(t̄, ȳ) ≤ u(t̄, x̄)− u(t̄, ȳ) < −K0z − 2 < −2.

We recall that (Remark 2.11) φ(x, a, b) = φ̃(x, a,max(a, b), b). In particular, given that the non-
local operators are non-positive (Remark 2.10), we have

max
(
N0(u(t̄, ·), [ξ(t̄, ·)])(ȳ),M1[u(t̄, ·)](ȳ)

)
= 0. (3.19)

Therefore, given the definition of φ in (2.8), the right-hand side term in (3.17) is equal to zero unless
ȳ ≤ −h0 − hmax. Let us now prove that if ȳ ≤ −h0 − hmax, we have N0(u(t̄, ·), [ξ(t̄, ·)])(ȳ) = 0,
which will directly give us a contradiction from (3.17).

We claim that

N0(u(t̄, ·), [ξ(t̄, ·)])(ȳ) =
∫ hmax

h0

J0(z)F (ξ(t̄, ȳ + z)− u(t̄, ȳ))dz − 3
2V

0
max = 0. (3.20)

In fact it is sufficient to prove that for all z ∈ (h0, hmax], we have

ξ(t̄, ȳ + z)− u(t̄, ȳ) < −1.

Let z ∈ (h0, hmax], if ȳ + z < x̄, we obtain

ξ(t̄, ȳ + z)− u(t̄, ȳ) ≤ u(t̄, ȳ + z)− u(t̄, x̄) + 1
≤ 1−K0z
< −1,

where we have used Lemma 3.10 for the first line (since ȳ + z ≤ ȳ + hmax ≤ −h0), the fact that
ϕ(t̄, x̄, ȳ + z) ≤ ϕ(t̄, x̄, ȳ) for the second line and the fact that K0z > 2 for the third line.

If ȳ + z ≥ x̄, we then have

ξ(t̄, ȳ + z)− u(t̄, ȳ) ≤ u(t̄, ȳ + z)− u(t̄, ȳ) + 1
≤ u(t̄, x̄)− u(t̄, ȳ) + 1
≤ 1−K0(x̄− ȳ)− 2 < −1,

where we have used Lemma 3.10 for the first line, the fact that u is non-increasing in space for the
second line, and the fact that ϕ(t̄, x̄, ȳ) > 0 for the third line. Injecting (3.18), (3.19), and (3.20)
in (3.17), we obtain η/T 2 ≤ 0, which is a contradiction.

The proof of the lower bound on the control of the space oscillations of ξ is done similarly and
we skip it. This ends the proof of Theorem 3.9.
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Proof of Lemma 3.10. We only prove that ξ(t, x) − u(t, x) ≤ 1 for x ≤ −h0 and t ∈ [0, T ), the
proof for the second part of the result is similar so we skip it. We will prove this result under
a different form using the technique introduced by Ishii and Lions in [27] for the proof of local
gradient estimates. Let z ∈ (−∞,−h0) and δ > 0 a small parameter be such that z ≤ −h0 − δ.
We introduce

∆ = [0, T )×B(z, δ).

We will prove that for a constant L := (4K1T + 8k0δ)/δ2, we have

ξ(t, x)− u(t, x) ≤ 1 + L(x− z)2 for all (t, x) ∈ ∆. (3.21)

In fact, if we take x = z in (3.21), we get

ξ(t, z)− u(t, z) ≤ 1 ∀(t, z) ∈ [0, T )× (−∞,−h0).

Using the continuity of the solution (u, ξ), we can pass to the limit in the previous inequality as
z goes to −h0 and we obtain the complete result. In order to prove (3.21), we introduce

M = sup
(t,x)∈∆

(
ξ(t, x)− u(t, x)− 1− L(x− z)2) (3.22)

and we want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test function. For η and ε small parameters, we define

ϕ(t, x, y) = ξ(t, x)− u(t, y)− 1− L

2 (x− z)2 − L

2 (y − z)2 − (x− y)2

2ε − η

T − t
.

As in the previous proof, we have that ϕ reaches a maximum at a finite point that we denote by

(t̄, x̄, ȳ) ∈ [0, T )×B(z, δ)×B(z, δ).

By classical arguments, we have that{
0 < M

2 ≤ ϕ(t̄, x̄, ȳ),
|x̄− ȳ| → 0 as ε→ 0.

Step 2: t̄ > 0 for ε small enough. By contradiction assume that t̄ = 0, then we have
η

T
< ξ0(x)− u0(x)− 1 + 2k0|x− y| ≤ oε(1),

where we have used assumption (A0) and we get a contradiction for ε small enough.

Step 3: |x̄−z| < δ and |ȳ−z| < δ. By contradiction assume that either |x̄−z| = δ or |ȳ−z| = δ,
in which case, we have

0 < ϕ(t̄, x̄, ȳ) = ξ(t̄, x̄)− u(t̄, ȳ)− 1− L

2 (x̄− z)2 − L

2 (ȳ − z)2 − (x̄− ȳ)2

2ε
≤ 2K1T + ξ0(x̄)− ξ0(ȳ) + ξ0(ȳ)− u0(ȳ)− 1− L

2 (x̄− z)2 − L

2 (ȳ − z)2 − (x̄− ȳ)2

2ε
≤ 2K1T + 2k0|x̄− ȳ| −

(x̄− ȳ)2

2ε − L

2 δ
2

≤ 2K1T + 4k0δ −
L

2 δ
2 ≤ 0,

(3.23)

where we have used the barriers from Lemma 3.6 for the second line, assumption (A0) for the third
line, and for the fourth line the fact that L = (4K1T + 8k0δ)/δ2. This gives us a contradiction.
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Step 3: utilisation of the equation. By doubling the time variable and passing to the limit,
we obtain that there exists two real numbers a, b ∈ R such that

a− b = η

(T − t̄)2 ,

and

a+ φ
(
x̄, N0(ξ(t̄, ·), [u(t̄, ·)])(x̄),M2[ξ(t̄, ·)](x̄)

)
· |pε + L(x̄− z)| ≤ 0,

b+ φ
(
ȳ, Ñ0(u(t̄, ·), [ξ(t̄, ·)])(ȳ), M̃1(t̄, ·)](ȳ)

)
· |pε − L(ȳ − z)| ≥ 0,

with pε = (x̄− ȳ)/ε. Combining these inequalities we obtain
η

T 2 ≤ −φ
(
x̄, N0(ξ(t̄, ·), [u(t̄, ·)])(x̄),M2[ξ(t̄, ·)](x̄)

)
· |pε + L(x̄− z)| . (3.24)

Notice that because x̄ < z + δ ≤ −h0, and because of the form of φ (Remark 2.11), the right-
hand side term in (3.24) is only a combination of the non-local term N0(ξ(t̄, ·), [u(t̄, ·)])(x̄) and of
max(N0(ξ(t̄, ·), [u(t̄, ·)])(x̄),M2[ξ(t̄, ·)](x̄)).

Let us prove that N0(ξ(t̄, ·), [u(t̄, ·)])(x̄) = 0, which, given that the non-local operators are
non-positive, will imply that the entire right-hand side term in (3.24) is equal to zero.

As a matter of fact, using that |x̄− ȳ| → 0 as ε goes to 0, for all h ∈ [h0, hmax], we can assume
that x̄+ h > ȳ. Using the fact that u is decreasing in space we deduce that

u(t̄, x̄+ h)− ξ(t̄, x̄) ≤ u(t̄, ȳ)− ξ(t̄, x̄) < −1, (3.25)

where we have used the fact that ϕ(t̄, x̄, ȳ) > 0. This implies that N0(ξ(t̄, ·), [u(t̄, ·)])(x̄) = 0. This
gives us a contradiction and ends the proof of Lemma 3.10.

4 Effective Hamiltonians and correctors for the junction
This section is devoted to the construction of correctors at the junction and far from the junction.

4.1 Correctors far from the junction
The following propositions explicit the construction of the effective Hamiltonians and of the cor-
rectors far from the junction.

Proposition 4.1 (Homogenization on R0). Assume (A). Then for p ∈ [−2k0, 0], there exists a
unique λ ∈ R, such that there exists a bounded solution (v, ζ) of

N0
p (v, [ζ])(x) · |vx + p| = λ,

N0
p (ζ, [v])(x) · |ζx + p| = λ,

v and ζ are Z-periodic.
(4.1)

Moreover, for p ∈ [−2k0, 0], we have λ = H0(p) = −V0

(
−1
p

)
|p|.

Proposition 4.2 (Homogenization on R1 and R2). Assume (A). Then for i = 1, 2 and for
p ∈ [−2k0, 0], there exists a unique λ ∈ R, such that there exists a bounded solution v of{

M i
p[v](x) · |vx + p| = λ,

v is Z− periodic, (4.2)

with M i
p defined in (3.3). Moreover, for p ∈ [−2k0, 0] we have λ = Hi(p) = −Vi

(
−2
p

)
|p|.

To prove the previous propositions, it is only necessary to notice that v = ζ ≡ 0 are obvious
solutions to each problem.
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4.2 Correctors at the junction
Like in [18, 19] in order to prove the convergence result we need to construct correctors for the
junction. We now present the existence result of the appropriate correctors. The proof of this
result is postponed to Section 6. Given A ∈ R, A ≥ H0, we introduce the real numbers p1

+, p
2
+ ∈ R

such that

H1(p1
+) = H

+
1 (p1

+) = A and H2(p2
+) = H

+
2 (p2

+) = A (4.3)

thanks to the form of H1 and of H2, there is only one couple of real numbers satisfying (4.3). We
also introduce two real number p̂0

− and p0
− defined by{

p̂0
− = min{p, p ∈ E0}
p0
− = max{p, p ∈ E0}

with E0 = {p ∈ [−2k0, 0], H−0 (p) = H0(p) = A}. (4.4)

Note that if A 6= 0, then p̂0
− = p0

−.
Theorem 4.3 (Existence of global corrector for the junction). Assume (A).
i) (General properties) There exists a constant A ∈ [H0, 0] such that there exists a solution (w,χ)

of (2.25) with λ = A and such that there exists a constant C > 0 and two globally Lipschitz
continuous functions m1 and m2 with m1(0) = m2(0) = 0 such that, for all x ∈ R,

|w(x)−m1(x)| ≤ C and |χ(x)−m2(x)| ≤ C, (4.5)

and for all x ≤ h0,

|w(x)− χ(x)| ≤ C. (4.6)

ii) (Bound from below at infinity) There exist two constants γ0 > 0 and C > 0 such that for
every γ ∈ (0, γ0), we have for x > 0 and h ≥ 0,

w(x+ h)− w(x) ≥ (p1
+ − γ)h− C χ(x+ h)− χ(x) ≥ (p2

+ − γ)h− C (4.7)

and for x ≤ −h0 − hmax − 1 and h ≥ 0

w(x− h)− w(x) ≥ (−p0
− − γ)h− C χ(x− h)− χ(x) ≥ (−p0

− − γ)h− C. (4.8)

The first inequality in (4.7) is valid only if A > minH1 and the second inequality is valid only
if A > minH2. Similarly, the inequalities in (4.8) are valid only if A > minH0.

iii) (Rescaling) For ε > 0, we set

wε(x) = εw
(x
ε

)
and χε(x) = εχ

(x
ε

)
,

then (up to a sub-sequence εn → 0) we have that wε and χε converge locally uniformly
respectively towards W and X which satisfy respectively

|W (x)−W (y)| ≤ C|x− y| for all x, y ∈ R,
H1(Wx) = A for all x > 0,
H0(Wx) = A for all x < 0.

(4.9)

and 
|X(x)−X(y)| ≤ C|x− y| for all x, y ∈ R,
H2(Xx) = A for all x > 0,
H0(Xx) = A for all x < 0.

(4.10)

In particular, we have (with W (0) = 0 = X(0)),

p1
+x1{x>0} + p0

−x1{x<0} ≤W (x) ≤ p1
+x1{x>0} + p̂0

−x1{x<0} (4.11)

and

p2
+x1{x>0} + p0

−x1{x<0} ≤ X(x) ≤ p2
+x1{x>0} + p̂0

−x1{x<0}. (4.12)
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5 Proof of convergence
This section contains the proof of Theorem 2.5, which relies on the existence of correctors provided
by Propositions 4.1, 4.2 and Theorem 4.3.

We will use the following lemmas for the proof of Theorem 2.5, the first one is a direct conse-
quence of Perron’s method and Lemma 3.6 and the second one is a direct consequence of Theorem
3.9.

Lemma 5.1 (Barriers uniform in ε). Assume (A0) and (A). Then there exists a constant C > 0,
such that for all ε > 0, the solution (uε, ξε) of (2.4)-(2.9) satisfies for all t > 0 and x ∈ R,

|uε(t, x)− u0(x)| ≤ Ct and |ξε(t, x)− ξ0(x)| ≤ Ct.

Lemma 5.2 (Control of the space oscillations). Assume (A0) and (A). Then the solution (uε, ξε)
of (2.4)-(2.9) satisfies for all t > 0, x, y ∈ R, x ≥ y,{

−2k0(x− y)− 2ε ≤ uε(t, x)− uε(t, y) ≤ 0,
−2k0(x− y)− 2ε ≤ ξε(t, x)− ξε(t, y) ≤ 0. (5.1)

Before doing the proof of Theorem 2.5, let us show how it will allow us to prove Theorem 2.8.

Proof of Theorem 2.8. We want to prove that for all t ∈ [0,+∞), x, y ∈ R0 ∪R1, x ≥ y (or for all
t ∈ [0,+∞), x, y ∈ R0 ∪R2, x ≥ y)

−2k0 · d(x, y) ≤ u0(t, x)− u0(t, y) ≤ 0.

Using Lemma 5.2, we have that ũε, defined by (2.16), satisfies for all t ∈ [0,+∞), x, y ∈ R0 ∪R1,
x ≥ y (or for all t ∈ [0,+∞), x, y ∈ R0 ∪R2, x ≥ y),

−2k0 · d(x, y)− 2ε ≤ ũε(t, x)− ũε(t, y) ≤ 0.

Now using Theorem 2.5, and passing to the limit as ε→ 0, we obtain the result.

Proof of Theorem 2.5. Let us introduce for (t, x) ∈ (0, T )× R,

u(t, x) = lim sup
ε→0

∗uε(t, x) and ξ(t, x) = lim sup
ε→0

∗ξε(t, x), (5.2)

u(t, x) = lim inf
ε→0 ∗

uε(t, x) and ξ(t, x) = lim inf
ε→0 ∗

ξε(t, x). (5.3)

Thanks to Lemma 5.1 these functions are well defined. We also introduce

v(t, y) =

 max
(
u(t,−d(0, y)), ξ(t,−d(0, y))

)
for (t, y) ∈ (0, T )×R0,

u(t, d(0, y)) for (t, y) ∈ (0, T )×R∗1,
ξ(t, d(0, y)) for (t, y) ∈ (0, T )×R∗2,

and

v(t, y) =


min

(
u(t,−d(0, y)), ξ(t,−d(0, y))

)
for (t, y) ∈ (0, T )×R0,

u(t, d(0, y)) for (t, y) ∈ (0, T )×R∗1,
ξ(t, d(0, y)) for (t, y) ∈ (0, T )×R∗2.

We want to prove that v and v are respectively a sub-solution and a super-solution of (2.17). In
this case, the comparison principle will imply that v ≤ v, but by construction we have v ≤ v,
hence we will get v = v = u0, the unique solution of (2.17).
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Let us prove that v is a sub-solution of (2.17) (the proof for v is similar and we skip it). We
argue by contradiction and assume that there exists a test function ϕ ∈ C2((0,+∞)×R) (in the
sense of Definition 3.3), and a point (t̄, ȳ) ∈ (0,+∞)×R such that

v(t̄, ȳ) = ϕ(t̄, ȳ)
v ≤ ϕ on Qr̄,r̄(t̄, ȳ) with r̄ > 0
v ≤ ϕ− 2η outside Qr̄,r̄(t̄, ȳ) with η > 0
ϕt +H(ȳ, ϕy(t̄, ȳ)) = θ with θ > 0,

(5.4)

where

H(ȳ, ϕy(t̄, ȳ)) =


H0(∂0ϕ(t̄, ȳ)) if ȳ ∈ R∗0,
H1(∂1ϕ(t̄, ȳ)) if ȳ ∈ R∗1,
H2(∂2ϕ(t̄, ȳ)) if ȳ ∈ R∗2,
FA(∂0ϕ(t̄, 0), ∂1ϕ(t̄, 0), ∂2ϕ(t̄, 0)) if ȳ = 0.

We denote by x̄ = sign(ȳ)d(0, ȳ), with sign : R→ R,

sign(y) =

 1 if y ∈ R∗1 ∪R∗2,
−1 if y ∈ R∗0,

0 if y = 0.

Given Lemma 5.2 and (5.2)-(5.3), we can assume (up to changing ϕ at infinity) that for ε small
enough, we have

uε(τ, sign(y)d(0, y)) ≤ ϕ(τ, y)− η for (τ, y) ∈
(
Qr̄,r̄(t̄, ȳ)

)c ∩ (R0 ∪R1),
ξε(τ, sign(y)d(0, y)) ≤ ϕ(τ, y)− η for (τ, y) ∈

(
Qr̄,r̄(t̄, ȳ)

)c ∩ (R0 ∪R2). (5.5)

Using the previous lemmas we get that the function v satisfies for all t > 0, x, y ∈ R∗0 (or x, y ∈ R∗1
or x, y ∈ R∗2), such that sign(x)d(0, x) ≥ sign(y)d(0, y),

−2k0 · d(x, y) ≤ v(t, x)− v(t, y) ≤ 0. (5.6)

First case: ȳ 6= 0. We only consider ȳ ∈ R∗0, since the other cases (ȳ ∈ R∗1 and ȳ ∈ R∗2) can be
treated in the same way. We define p = ∂0ϕ(t̄, ȳ) which, according to (5.6) satisfies

−2k0 ≤ p ≤ 0. (5.7)

We choose, r̄ > 0 small enough so that x̄+ r̄ < 0. Let us prove that the test function ϕ̃ defined by

ϕ̃(t, x) = ϕ(t, x~e0) for x < 0,

(notice that ϕ̃x(t̄, x̄) = ∂0ϕ(t̄, ȳ) and ϕ̃t(t̄, x̄) = ϕt(t̄, ȳ)) satisfies in the viscosity sense, the following
inequality for (t, x) ∈ Pr̄,r̄(t̄, x̄),

ϕ̃t + φ

(
x

ε
, Ñε

0

(
ϕ̃(t, ·)
ε

,

[
ϕ̃(t, ·)
ε

])
(x), M̃ε

1

[
ϕ̃(t, ·)
ε

]
(x)
)
· |ϕ̃x| ≥

θ

2 . (5.8)

Let us notice that for ε small enough we have for all (t, x) ∈ Pr̄,r̄(t̄, x̄), for k = 1, 2,

φ

(
x

ε
, Ñε

0

(
ϕ̃(t, ·)
ε

,

[
ϕ̃(t, ·)
ε

])
(x), M̃ε

k

[
ϕ̃(t, ·)
ε

]
(x)
)

= Ñε
0

(
ϕ̃(t, ·)
ε

,

[
ϕ̃(t, ·)
ε

])
(x). (5.9)

For all (t, x) ∈ Pr̄,r̄(t̄, x̄), we have for r̄ small enough

ϕ̃t(t, x) + Ñε
0

(
ϕ̃(t, ·)
ε

,

[
ϕ̃(t, ·)
ε

])
(x) · |ϕ̃x(t, x)| = ϕ̃t(t̄, x̄) + or̄(1)

+Ñε
0

(
ϕ̃(t, ·)
ε

,

[
ϕ̃(t, ·)
ε

])
(x) · |p|

= θ −H0(p) + or̄(1)

+Ñε
0

(
ϕ̃(t, ·)
ε

,

[
ϕ̃(t, ·)
ε

])
(x) · |p|

=: ∆,

(5.10)
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where we have used (5.4) and the definition of p. We recall that for −2k0 ≤ p ≤ 0, we have

H0(p) = N0
p (0, [0])(0) · |p| = Ñ0

p (0, [0])(0) · |p|.

Moreover, for all z ∈ [h0, hmax], and for ε and r̄ small enough we have that

ϕ̃(t, x+ εz)− ϕ̃(t, x)
ε

= zϕ̃x(t, x) +O(ε)
≤ pz + or̄(1) + cε,

with c > 0 a fixed constant. Now using the fact that F̃ is decreasing we have

F̃ (pz + cε+ or̄(1)) ≤ F̃
(
ϕ̃(t, x+ εz)− ϕ̃(t, x)

ε

)
.

Using this result and replacing the non-local operators in (5.10) by their definition we obtain

∆ ≥ θ + or̄ + |p|
∫ hmax

h0

J0(z)F̃ (pz + cε+ or̄(1))dz (5.11)

− |p|
∫ hmax

h0

J0(z)F̃ (pz)dz.

We can see that if we have p = 0, we obtain directly our result. However, if −2k0 ≤ p < 0,∫
R
J0(z)F̃ (pz + cε+ or̄(1))dz =− V0

(
−1− cε− or̄(1)

p

)
− 1

2V0

(
−−1 + cε+ or̄(1)

p

)
+ 3

2V
0
max,∫

R
J0(z)F̃ (pz)dz =− V0

(
−1
p

)
+ 3

2V
0
max. (5.12)

Injecting (5.12) in (5.11) and choosing ε and r̄ small enough, we obtain

∆ ≥ θ + or̄(1) + |p| ·
[
−V0

(
−1− cε+ or̄(1)

p

)
+ V0

(
−1
p

)]
≥ θ + or̄(1)− ||V ′0 ||∞ · (cε+ or̄(1))

≥ θ

2 ,

(5.13)

where we have used assumption (A1) for the second line.

Getting the contradiction. By definition, for ε small enough and using (5.5), we have

uε ≤ ϕ̃− η and ξε ≤ ϕ̃− η outside Pr̄,r̄(t̄, x̄).

Using the comparison principle on bounded sets for (2.4), we get

uε ≤ ϕ̃− η and ξε ≤ ϕ̃− η on Pr̄,r̄(t̄, x̄).

Passing to the limit as ε → 0, this implies v ≤ ϕ − η on Qr̄,r̄(t̄, ȳ) and this contradicts the fact
that v(t̄, ȳ) = ϕ(t̄, ȳ).

Remark 5.3. In the case ȳ ∈ R∗1 or ȳ ∈ R∗2, (2.4) is completely decoupled for ε small enough in
Pr̄,r̄(t̄, x̄) and therefore we can consider each line of (2.4) as independent.
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Second case: ȳ = 0. Thanks to (5.6) (which implies (3.8)), we may use Theorem 3.5 and
assume that the test function has the following form

ϕ(t, y) = g(t) + p0
−y1{y∈R∗

0} + p1
+y1{y∈R∗

1} + p2
+y1{y∈R∗

2} on Qr̄,2r̄(t̄, 0), (5.14)

where g is a C1 function defined in (0,+∞). The last line in condition (5.4) becomes

g′(t) + FA(p0
−, p

1
+, p

2
+) = g′(t) +A = θ at (t̄, 0). (5.15)

Let us consider (w,χ) the solution of (2.25) provided by Theorem 4.3, and let us denote

ϕε(t, x) =
{

g(t) + εw
(x
ε

)
on Pr̄,2r̄(t̄, 0),

ϕ
(
t, x~e01{x≤0} + x~e11{x≥0}

)
outside Pr̄,2r̄(t̄, 0),

(5.16)

and

ψε(t, x) =
{

g(t) + εχ
(x
ε

)
on Pr̄,2r̄(t̄, 0),

ϕ
(
t, x~e01{x≤0} + x~e21{x≥0}

)
outside Pr̄,2r̄(t̄, 0).

(5.17)

We claim that these functions satisfy in the viscosity sense, for r̄ and ε small enough, on Pr̄,r̄(t̄, 0),
ϕεt (t, x) + φ

(
x

ε
, Ñε

0

(
ϕε(t, ·)
ε

,

[
ψε(t, ·)
ε

])
, M̃ε

1

[
ϕε

ε
(t, ·)

]
(x)
)
· |ϕεx| ≥

θ

2 ,

ψεt (t, x) + φ

(
x

ε
, Ñε

0

(
ψε(t, ·)
ε

,

[
ϕε(t, ·)
ε

])
, M̃ε

2

[
ψε

ε
(t, ·)

]
(x)
)
· |ψεx| ≥

θ

2 ,

We only prove that ϕε is a super-solution (the case for ψε is similar and we skip it), let h be a
test function touching ϕε from below at (t1, x1) ∈ Pr̄,r̄(t̄, 0), so we have

w
(x1

ε

)
= 1
ε

(h(t1, x1)− g(t1)) ,

and

w(y) ≥ 1
ε

(h(t1, εy)− g(t1)) ,

for y in a neighbourhood of x1

ε
. Since w does not depend on time, we have

ht(t1, x1) = g′(t1).

Therefore, we have

ht(t1, x1)− g′(t1) + φ
(x1

ε
, Ñ0 (w, [χ])

(x1

ε

)
, M̃1[w]

(x1

ε

))
· |hx(t1, x1)| ≥ A.

This implies that (using (5.15) and taking r̄ small enough)

ht(t1, x1) + φ
(x1

ε
, Ñ0 (w, [χ])

(x1

ε

)
, M̃1[w]

(x1

ε

))
· |hx(t1, x1)| ≥ A+ g′(t1) ≥ θ

2 .

Now for ε small enough such that εhmax ≤ r̄, we deduce from the previous inequality that for all
(t, x) ∈ Pr̄,r̄(t̄, x̄), we have

ht(t1, x1) + φ

(
x1

ε
, Ñε

0

(
ϕε(t, ·)
ε

,

[
ψε(t, ·)
ε

])
(x1), M̃ε

1

[
ϕε

ε
(t, ·)

]
(x1)

)
· |hx(t1, x1)| ≥ θ

2 . (5.18)
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Getting the contradiction. Using (5.5) and (5.14), we have for ε small enough{
uε + η ≤ g(t) + p0

−x1{x<0} + p1
+x1{x>0}

ξε + η ≤ g(t) + p0
−x1{x<0} + p2

+x1{x>0},
on Pr̄,2r̄(t̄, 0)\Pr̄,r̄(t̄, 0),

Using the fact that wε →W and ζε → X, and using (4.11), we have for ε small enough
uε + η

2 ≤ ϕ
ε

ξε + η

2 ≤ ψ
ε,

on Pr̄,2r̄(t̄, 0)\Pr̄,r̄(t̄, 0).

Combining this result with (5.16)-(5.17), we get
uε + η

2 ≤ ϕ
ε

ξε + η

2 ≤ ψ
ε,

outside Pr̄,r̄(t̄, 0).

By the comparison principle on bounded subsets the previous inequality holds in Pr̄,r̄(t̄, 0). Passing
to the limit as ε→ 0, we obtain

v + η

2 ≤ ϕ on Qr̄,r̄(t̄, 0).

Evaluating this inequality in (t̄, 0), we obtain a contradiction.

Remark 5.4. In order to prove that v is a super-solution, the test function in the case ȳ = 0,
needs to be

ϕ(t, y) = g(t) + p̂0
−y1{y∈R∗

0} + p1
+y1{y∈R∗

1} + p2
+y1{y∈R∗

2} on Qr̄,2r̄(t̄, 0). (5.19)

This ends the proof of Theorem 2.5.

6 Truncated cell problem
This section contains the proof of Theorem 4.3. We proceed as in [18, 19] and we will construct
correctors on a truncated domain and then pass to the limit as the size of the domain goes to
infinity. For l ∈ (h0 + hmax + 1,+∞), h0 << l and h0 + hmax + 1 ≤ R << l, we want to find
λl,R ∈ R such that there exists a solution (wl,R, χl,R) of

{
G1
R(x,wl,R(x), [χl,R], [wl,R], wl,Rx ) = λl,R

G2
R(x, χl,R(x), [wl,R], [χl,R], χl,Rx ) = λl,R

if x ∈ (−l, l){
H

+
1 (wl,Rx ) = λl,R

H
+
2 (χl,Rx ) = λl,R

if x = l{
H
−
0 (wl,Rx ) = λl,R

H
−
0 (χl,Rx ) = λl,R

if x = −l

(6.1)

with, for j = 1, 2,

GjR(x,w(x), [χ], [w], q) = ψ−R(x)ψ+
R(x)φ(x,N0(w, [χ])(x),Mj [w](x))|q|

+(1− ψ+
R(x))Hj(q) + (1− ψ−R(x))H0(q), (6.2)

and ψ+
R , ψ

−
R ∈ C∞, ψ±R : R→ [0, 1], with ψ−R(x) = ψ+

R(−x) and

ψ+
R ≡

{
1 on (−∞, R]
0 on [R+ 1,+∞), and ψR(x) < 1 ∀x /∈ (−∞, R]. (6.3)

To GjR we associate G̃jR which is defined in the same way by replacing the non-local operators N0
and Mj respectively by Ñ0 and M̃j .
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6.1 Comparison principle for a truncated problem
Proposition 6.1 (Comparison principle on a truncated domain). Let us consider the following
problem for 0 < l1 < l2 and λ ∈ R, with l2 >> R.

{
G̃1
R(x, u(x), [ξ], [u], ux) ≥ λ

G̃2
R(x, ξ(x), [u], [ξ], ξx) ≥ λ if x ∈ (l1, l2){

H
+
1 (ux) ≥ λ

H
+
2 (ξx) ≥ λ

if x = l2

(6.4)

and for ε0 > 0,


{
G1
R(x, v(x), [ζ], [v], vx) ≤ λ− ε0

G2
R(x, ζ(x), [v], [ζ], ζx) ≤ λ− ε0

if x ∈ (l1, l2){
H

+
1 (vx) ≤ λ− ε0

H
+
2 (ζx) ≤ λ− ε0

if x = l2

(6.5)

Then if v(l1) ≤ u(l1) and ζ(l1) ≤ ξ(l1), we have v ≤ u and ζ ≤ ξ in [l1, l2].

Proof. Like in [18], the only new difficulty to prove this proposition is the comparison at l2. But
since near l2, the system decouples itself, we can prooceed as in [19, Proposition 4.1].

Remark 6.2. We have a similar result if we exchange the boundary conditions, that is to say for
l1 < l2 < −h0 − hmax − 1, and if for all x ∈ [l2, l2 + hmax] v(x) ≤ u(x) and ζ(x) ≤ ξ(x) and the
following conditions are imposed at x = l1,

{
H
−
0 (ux) ≥ λ

H
−
0 (ξx) ≥ λ

if x = l1{
H
−
0 (vx) ≤ λ− ε0

H
−
0 (ζx) ≤ λ− ε0

if x = l1.

(6.6)

6.2 Existence of correctors on a truncated domain
Proposition 6.3 (Existence of correctors on a truncated domain). There exists a constant λl,R ∈
R such that there exists a solution (wl,R, χl,R) of (6.1). Moreover, there exists a constant C
(depending only on k0) and two Lipschitz continuous functions ml,R

1 and ml,R
2 , such that

H0 = max
i∈{0,1,2}

min
p∈R

Hi(p) ≤ λl,R ≤ 0,

|wl,R(x)−ml,R
1 (x)| ≤ C for all x ∈ [−l, l],

|χl,R(x)−ml,R
2 (x)| ≤ C for all x ∈ [−l, l],

|ml,R
i (x)−ml,R

i (y)| ≤ C|x− y| for all x, y ∈ [−l, l], for i = 1, 2
|wl,R(x)− χl,R(x)| ≤ C for all x ∈ [−l, h0].

(6.7)

Proof. We consider the approximated truncated cell problem,

{
δvδ +G1

R(x, vδ(x), [ζδ], [vδ], vδx) = 0
δζδ +G2

R(x, ζδ(x), [vδ], [ζδ], ζδx) = 0 if x ∈ (−l, l){
δvδ +H

+
1 (vδx) = 0

δζδ +H
+
2 (ζδx) = 0

if x = l{
δvδ +H

−
0 (vδx) = 0

δζδ +H
−
0 (ζδx) = 0

if x = −l

(6.8)
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Step 1: existence of a solution. Using that (0, 0) and (C0/δ, C0/δ) are respectively sub and
super-solution of (6.8), with C0 = |min

p∈R
H0(p)| and that we have a comparison principle, we deduce

that there exists a continuous viscosity solution (vδ, ζδ) of (6.8) which satisfies

0 ≤ vδ ≤ C0

δ
and 0 ≤ ζδ ≤ C0

δ
. (6.9)

Step 2: control of the oscillations of vδ and ζδ.

Lemma 6.4. The functions vδ and ζδ satisfy for all x, y ∈ [−l, l], x ≥ y,

−K0(x− y)− 2 ≤ vδ(x)− vδ(y) ≤ 0 and −K0(x− y)− 2 ≤ ζδ(x)− ζδ(y) ≤ 0, (6.10)

with K0 = 2k0.

Proof of Lemma 6.4. In the rest of the proof we will use the following notation

Ω̂ =
{

(x, y) ∈ [−l, l]2 s.t. x ≥ y
}
.

Proof of the upper inequality. We want to prove that

M = sup
(x,y)∈Ω̂

max
(
vδ(x)− vδ(y), ζδ(x)− ζδ(y)

)
≤ 0. (6.11)

We argue by contradiction and assume that M > 0. Since Ω is compact and vδ and ξδ are
continuous, we can see that M is reached for a finite point that we denote by (x̄, ȳ) ∈ Ω̂. Given
that M > 0, we deduce that x̄ 6= ȳ. Therefore, we can use the viscosity inequalities for (6.8).

Let us assume for instance that M = vδ(x̄)− vδ(ȳ) (the other case is similar so we skip it).
We distinguish 3 cases.
-If (x̄, ȳ) ∈ (−l, l), we have

δvδ(x̄) +G1
R(x̄, vδ(x̄), [ζδ], [vδ], 0) ≤ 0

δvδ(ȳ) + G̃1
R(ȳ, vδ(ȳ), [ζδ], [vδ], 0) ≥ 0

combining these inequalities with the fact that G(x, U, [Ξ], [U ], 0) = 0, we obtain

δM ≤ 0.

-If x̄ = l and ȳ ∈ (−l, l), we obtain similarly

δM ≤ 0, (6.12)

using the fact that H+
1 (0) = 0.

-If x̄ ∈ (−l, l] and ȳ = −l, we obtain

δM ≤ H−0 (0) ≤ 0.

For every value of x̄, ȳ we obtain a contradiction, therefore M ≤ 0.

Proof of the lower inequality. In order to proof this inequalities, we will use the following
lemma which proof is postponed.

Lemma 6.5. For all x ∈ [−l,−h0], we have

|ζδ(x)− vδ(x)| ≤ 1. (6.13)
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We want to prove that

M = sup
(x,y)∈Ω̂

max
(
vδ(y)− vδ(x)−K0(x− y)− 2, ζδ(y)− ζδ(x)−K0(x− y)− 2

)
≤ 0.

We argue by contradiction and assume that M > 0. We can see that M is reached for a finite
point that we denote by (x̄, ȳ) ∈ Ω̂. Since M > 0, we deduce that x̄ > ȳ. Therefore, we can use
the viscosity inequalities from (6.8).

Let us for instance assume that M = vδ(ȳ)− vδ(x̄)−K0(x̄− ȳ)− 2 (the other case is similar
and we skip it).

We distinguish 4 cases.
-If x̄, ȳ ∈ (−l, l), we obtain

δvδ(ȳ) +G1
R(ȳ, vδ(ȳ), [ζδ], [vδ],−K0) ≤ 0

δvδ(x̄) + G̃1
R(x̄, vδ(x̄), [ζδ], [vδ],−K0) ≥ 0,

combining these inequalities and using the definition of M , we obtain

δM ≤ G̃1
R(x̄, vδ(x̄), [ζδ], [vδ],−K0)−G1

R(ȳ, vδ(ȳ), [ζδ], [vδ],−K0). (6.14)

We recall that the non-local operators are non-positive (see Remark 2.10) and that Hi(−K0) =
0 for i = 0, 1, 2. This implies that

δM ≤−G1
R(ȳ, vδ(ȳ), [ζδ], [vδ],−K0) = ψ−R(ȳ)ψ+

R(ȳ)φ
(
ȳ, N0(vδ, [ζδ])(ȳ),M1[vδ](ȳ)

)
·K0. (6.15)

To treat (6.15), we will compute M1[vδ](ȳ) and N0(vδ, [ζδ])(ȳ).
Let us prove that M1[vδ](ȳ) = 0. In fact, it is sufficient to prove that for all z ∈ (h0, hmax], we

have

vδ(ȳ + z)− vδ(ȳ) < −2.

Let z ∈ (h0, hmax], if ȳ + z ≤ x̄, then using the fact that

vδ(ȳ + z)− vδ(x̄)−K0(x̄− ȳ − z)− 2 ≤ vδ(ȳ)− vδ(x̄)−K0(x̄− ȳ)− 2,

we deduce that

vδ(ȳ + z)− vδ(ȳ) ≤ −K0z < −2.

If ȳ + z > x̄, using the fact that vδ is non-increasing and that M > 0, we obtain

vδ(ȳ + z)− vδ(ȳ) ≤ vδ(x̄)− vδ(ȳ) ≤ −K0(x̄− ȳ)− 2 < −2.

Using that N0(vδ, [ζδ])(ȳ) ≤ 0, and that M1[vδ](ȳ) = 0, we get

max
(
N0(vδ, [ζδ])(ȳ),M1[vδ](ȳ)

)
= 0.

We can therefore assume that −R− 1 ≤ ȳ ≤ −h0− hmax (if not we get a contradiction in (6.15)).
Let us now prove that for all −R− 1 ≤ ȳ ≤ −h0−hmax, N0(vδ, [ζδ])(ȳ) = 0. In fact, it suffices

to prove that for all z ∈ (h0, hmax], we have

ζδ(ȳ + z)− vδ(ȳ) < −1.

Let z ∈ (h0, hmax]. If ȳ + z ≥ x̄, using the fact that ζδ is non-increasing and Lemma 6.5 (since
ȳ + z ≤ ȳ + hmax ≤ −h0), we obtain

ζδ(ȳ + z)− vδ(ȳ) ≤ vδ(ȳ + z)− vδ(ȳ) + 1
≤ vδ(x̄)− vδ(ȳ) + 1
≤ −K0(x̄− ȳ)− 1 < −1,
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where we used the fact that M > 0 for the third line. If ȳ + z < x̄, using Lemma 6.5 and that

vδ(ȳ + z)− vδ(x̄)−K0(x̄− ȳ − z)− 2 ≤ vδ(ȳ)− vδ(x̄)−K0(x̄− ȳ)− 2,

we obtain

ζδ(ȳ + z)− vδ(ȳ) ≤ vδ(ȳ + z)− vδ(ȳ) + 1
≤ 1−K0z < −1.

Injecting the previous results into (6.15), we get δM ≤ 0, which is a contradiction.
-If x̄ ∈ (−l, l) and ȳ = −l, we obtain

δvδ(ȳ) +H
−
0 (−K0) ≤ 0

δvδ(x̄) ≥ δvδ(x̄) + G̃1
R(x̄, vδ(x̄), [ζδ], [vδ],−K0) ≥ 0.

Using the fact that H−0 (−K0) = 0 we obtain δM ≤ 0, which is a contradiction.
-If x̄ = l and ȳ ∈ (−l, l), we obtain

δvδ(ȳ) +G1
R(ȳ, vδ(ȳ), [ζδ], [vδ],−K0) ≤ 0

δvδ(x̄) +H
+
1 (−K0) ≥ 0,

using the result of the first case, and the fact that H+
1 (−K0) < 0, we directly obtain δM ≤ 0,

which is a contradiction.
-If x̄ = l and ȳ = −l, we obtain

δvδ(ȳ) +H
−
0 (−K0) ≤ 0

δvδ(x̄) +H
+
1 (−K0) ≥ 0,

just like before, we obtain δM ≤ 0, which is a contradiction.
For every value of x̄, ȳ ∈ [−l, l] we obtain a contradiction, therefore we have M ≤ 0. This ends

the proof of Lemma 6.4.

Step 3: construction of the Lipschitz continuous function.

Lemma 6.6. There exists two Lipschitz continuous functions mδ
1 and mδ

2, such that there exists
a constant C > 0 (independent of l and R) such that |v

δ(x)−mδ
1(x)| ≤ C for all x ∈ [−l, l],

|ζδ(x)−mδ
2(x)| ≤ C for all x ∈ [−l, l],

|mδ
i (x)−mδ

i (y)| ≤ C|x− y| for all x, y ∈ [−l, l], for i = 1, 2.
(6.16)

Moreover, for all x ∈ [−l, h0], we have

|vδ(x)− ζδ(x)| ≤ C. (6.17)

Proof. We only do the construction of mδ
1, since the construction of mδ

2 is similar and we skip it.
We define mδ

1 as an affine function in each interval of the form [ih0, (i + 1)h0], with i ∈ Z, such
that

mδ
1(ih0) = vδ(ih0) and mδ

1((i+ 1)h0) = vδ((i+ 1)h0).

Since mδ
1 and vδ are non-increasing, and |vδ((i+ 1)h0)− vδ(ih0)| ≤ K0h0 + 2 = 4, we deduce that

for all x ∈ [ih0, (i+ 1)h0],

−4 ≤ vδ((i+ 1)h0)−mδ
1(ih0) ≤ vδ(x)−mδ

1(x) ≤ vδ(ih0)−mδ
1((I + 1)h0) ≤ 4, (6.18)
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and for all x, y ∈ [−l, l],

|mδ
1(x)−mδ

1(y)| ≤ 2K0|x− y|. (6.19)

We build mδ
2 the same way but using ζδ instead of vδ.

Moreover, let x ∈ [−l, h0], first if x ≤ −h0, using Lemma 6.5, we have that

|vδ(x)− ζδ(x)| ≤ 1.

If x ∈ [−h0, h0], we have

|vδ(x)− ζδ(x)| ≤ |vδ(x)−m1(x)|+ |ζδ(x)−m2(x)|+ |m1(x)−m2(x)|
≤ 8 + |m1(x)−m1(−h0)|+ |m2(−h0)−m2(x)|+ |m1(−h0)−m2(−h0)|
≤ 8 + 1 + 4K0|x+ h0|
≤ 9 + 8K0h0 = 25,

where we have used for the third inequality the fact that

|m1(−h0)−m2(−h0)| = |vδ(−h0)− ζδ(−h0)| ≤ 1

and for the last inequality, the fact that x ∈ [−h0, h0].
Choosing C = max(2K0, 25) we obtain (6.16) and (6.17). This ends the proof of Lemma 6.6.

Step 4: passing to the limit as δ goes to 0. Using (6.9), Lemma 6.6 and (6.16), we deduce
that there exists a subsequence δn → 0 such that

δnv
δn(0)→ −λl,R as n→ +∞,

δnζ
δn(0)→ −λl,R as n→ +∞,

mδn
i −m

δn
i (0)→ ml,R

i as n→ +∞ for i = 1, 2.

The last convergence being locally uniform. Let us consider,

wl,R = lim sup
δn→0

∗(vδn − vδn(0)) and wl,R = lim inf
δn→0 ∗

(vδn − vδn(0))

and

χl,R = lim sup
δn→0

∗(ζδn − vδn(0)) and χl,R = lim inf
δn→0 ∗

(ζδn − vδn(0)).

Therefore, we have that λl,R, wl,R, wl,R, χl,R, χl,R and ml,R
i , satisfy for i = 1, 2,

min
p∈R

H0(p) ≤ λl,R ≤ 0,

|wl,R −ml,R
1 | ≤ C, |wl,R −m

l,R
1 | ≤ C,

|χl,R −ml,R
2 | ≤ C, |χl,R −m

l,R
2 | ≤ C,

|∂xml,R
i | ≤ C,

(6.20)

and for x ≤ h0,

|χl,R − wl,R| ≤ C, |χl,R − wl,R| ≤ C. (6.21)

By stability of viscosity solutions, we have that (wl,R− 2C,χl,R− 2C) and (wl,R, χl,R) are respec-
tively a sub-solution and a super-solution of (6.1), and

wl,R − 2C ≤ wl,R and χl,R − 2C ≤ χl,R.
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By Perron’s method, we can construct a solution (wl,R, χl,R) of (6.1) and thanks to (6.20)-(6.21),
ml,R, wl,R, χl,R and λl,R satisfy (6.7) in which the first inequality is replaced by

min
p∈R

H0(p) ≤ λl,R ≤ 0.

The first inequality of (6.7) comes from the fact that near {−l} and {l}, (6.1) contains only local
operators Hi for i = 0, 1, 2. Indeed, using [2, Lemme B.1], we can touch from above, near {−l} or
{l}, the functions (wl,R, χl,R) with a regular test function ϕ. This implies that Hi(ϕx) ≤ λl,R for
i = 0, 1 or 2 which gives

max
i∈{0,1,2}

min
p∈R

Hi(p) ≤ λl,R. (6.22)

The uniqueness of λl,R is classical so we skip it. This ends the proof of Proposition 6.3.

Proof of Lemma 6.5. This proof uses similar arguments to ones used in the proof of Theorem 3.9.
We only prove that for all x ∈ [−l,−h0] we have ζδ(x)− vδ(x) ≤ 1, the proof for the second part
of the result is similar and we skip it. First, let us prove the inequality on the interval [−R,−h0].

Step 1: x ∈ [−R,−h0]. Let z ∈ (−R,−h0) and α > 0 be some small parameter such that
z ∈ [−R+ α,−h0 − α]. We denote by

∆ = {x ∈ [−l, l] s.t. |z − x| ≤ α} .

We want to prove that for L := 4C0/(δα2), we have

ζδ(x)− vδ(x) ≤ 1 + L(x− z)2 for all x ∈ ∆. (6.23)

In fact, if we take x = z in the previous inequality, we obtain

ζδ(x)− vδ(x) ≤ 1 for all z ∈ (−R,−h0)

Using the continuity of vδ and ζδ, we deduce the result in [−R,−h0].
In order to prove (6.23), we introduce

M = sup
x∈∆

(
ζδ(x)− vδ(x)− 1− L(x− z)2) . (6.24)

We argue by contradiction and assume that M > 0.

Step 1.1: the test function. We define for ε a small parameter, the function

ϕ(x, y) = ζδ(x)− vδ(y)− 1− L

2 (x− z)2 − L

2 (y − z)2 − (x− y)2

2ε .

The function ϕ reaches a maximum at a finite point (x̄, ȳ) in the domain{
(x, y) ∈ [−l, l]2 s.t. |z − x| ≤ α and |z − y| ≤ α

}
. (6.25)

By classical arguments, we deduce that
0 < M ≤Mε

|x̄− ȳ| → 0 as ε→ 0
(x̄− ȳ)2

2ε → 0 as ε→ 0.
(6.26)
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Step 1.2: |x̄ − z| < α and |ȳ − z| < α. By contradiction, assume that |x̄ − z| = α or
|ȳ − z| = α, in which case, we have

0 < ϕ(x̄, ȳ) = ζδ(x̄)− vδ(ȳ)− 1− L

2 (x̄− z)2 − L

2 (ȳ − z)2 − (x̄− ȳ)2

2ε
≤ 2C0

δ
− L

2 α
2 = 0,

(6.27)

where we have used (6.9) and the fact that L = 4C0/(δα2) for the second line, which gives us a
contradiction.

Step 1.3: utilisation of the equation. Using the viscosity inequalities we obtain

δζδ(x̄) +G2
R(x̄, ζδ(x̄), [vδ], [ζδ], L(x̄− z) + pε) ≤ 0

δvδ(ȳ) + G̃1
R(ȳ, vδ(ȳ), [ζδ], [vδ],−L(ȳ − z) + pε) ≥ 0,

with pε = (x̄− ȳ)/ε. Combining these inequalities and using the definition of M , we obtain

δM ≤G̃1
R(ȳ, vδ(ȳ), [ζδ], [vδ],−L(ȳ − z) + pε)−G2

R(x̄, ζδ(x̄), [vδ], [ζδ], L(x̄− z) + pε)
≤φ
(
ȳ, Ñ0(vδ, [ζδ])(ȳ), M̃δ

1 [vδ](ȳ)
)
.| − L(ȳ − z) + pε|

− φ
(
x̄, N0(ζδ, [vδ])(x̄),M2[ζδ](x̄)

)
.|L(x̄− z) + pε|

≤ − φ
(
x̄, N0(ζδ, [vδ])(x̄),M2[ζδ](x̄)

)
.|L(x̄− z) + pε|,

(6.28)

where we have used the fact that the non-local operators are non-positive (Remark 2.10) and that
x̄, ȳ ∈ [−R,−h0] which implies that ψ±R(ȳ) = ψ±R(x̄) = 1.

Let us prove that N0(ζδ, [vδ])(x̄) = 0. It is sufficient to prove that for all h ∈ [h0, hmax], we
have

vδ(x̄+ h)− ζδ(x̄) < −1.

In fact, using (6.26), for ε small enough, we can assume that for all h ∈ [h0, hmax], we have
x̄+ h > ȳ. Using the fact that vδ is non-increasing and that M > 0, we have

vδ(x̄+ h)− ζδ(x̄) ≤ vδ(ȳ)− ζδ(x̄) < −1.

Using that the non-local operators are non-positive, we have that

max(N0(ζδ, [vδ])(x̄),M2[ζδ](x̄)) = 0.

Given the form of the transition function (see Remark 2.11), (6.28) becomes

δM ≤ −φ̃(x̄, 0, 0,M2[ζδ](x̄)) · |L(x̄− z) + pε| = 0. (6.29)

This gives us a contradiction and therefore M ≤ 0.

Step 2: x ∈ [−l,−R] . We introduce

M = sup
x∈[−l,−R]

(
ζδ(x)− vδ(x)− 1

)
. (6.30)

We want to prove that M ≤ 0 and we argue by contradiction and by assuming that M > 0. Given
that ζδ and vδ are continuous, M is reached for a point x̄ ∈ [−l,−R]. First, let us notice that
thanks to Step 1, M cannot be reached for x̄ = −R. We distinguish 2 cases.
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Case 1: x̄ ∈ (−l,−R). We introduce

ϕ(x, y) = ζδ(x)− vδ(x)− 1− (x− y)2

2ε − 1
2
(
(x− x̄)2 + (y − x̄)2) ,

which reaches a maximum at a point (xε, yε) ∈ [−l,−R]2. We denote by Mε = ϕ(xε, yε). By
classical arguments, we can prove that

lim
ε→0

Mε = M, lim
ε→0

(xε − yε)2

2ε = 0, and (xε, yε)→ (x̄, x̄) as ε goes to 0. (6.31)

Therefore, for ε small enough, we can assume that xε, yε ∈ (−l,−R). Using the viscosity inequal-
ities, we obtain

δζδ(xε) +G2
R(xε, ζδ(xε), [vδ], [ζδ], (xε − x̄) + pε) ≤ 0

δvδ(yε) + G̃1
R(yε, vδ(yε), [ζδ], [vδ],−(yε − x̄) + pε) ≥ 0,

with pε = (xε − yε)/ε. Combining these inequalities and using the definition of M , we obtain

δM ≤G̃1
R(yε, vδ(yε), [ζδ], [vδ],−(yε − x̄) + pε)
−G2

R(xε, ζδ(x̄), [vδ], [ζδ], (xε − x̄) + pε)
≤(1− ψ−R(yε))H0(−(yε − x̄) + pε)− (1− ψ−R(xε))H0((xε − x̄) + pε)

+ ψ−R(yε)φ
(
yε, Ñ0(vδ, [ζδ])(yε), M̃ δ

1 [vδ](yε)
)
.| − (yε − x̄) + pε|

− ψ−R(xε)φ
(
xε, N0(ζδ, [vδ])(xε),M2[ζδ](xε)

)
.|(xε − x̄) + pε|

≤(1− ψ−R(yε))H0(−(yε − x̄) + pε)− (1− ψ−R(xε))H0((xε − x̄) + pε)
− ψ−R(xε)N0(ζδ, [vδ])(xε).|(xε − x̄) + pε|,

(6.32)

where we have used that φ(xε, a, b) = a for xε ≤ −h0 − hmax − 1.
Using that N0(ζδ, [vδ])(xε) = 0 (see Step 1), we get

δM ≤(1− ψ−R(yε))H0(−(yε − x̄) + pε)− (1− ψ−R(xε))H0(xε − x̄+ pε). (6.33)

This implies that

δM ≤(1− ψ−R(yε))
(
H0(−(yε − x̄) + pε)−H0((xε − x̄) + pε)

)
+ ||(ψ−R)′||∞|xε − yε|

∣∣H0((xε − x̄) + pε)
∣∣

≤||H ′0||∞ (|xε − x̄|+ |yε − x̄|) + ||(ψ−R)′||∞|xε − yε| · V 0
max|(xε − x̄) + pε|

≤oε(1)

(6.34)

where we have used the regularity of ψ−R for the first inequality, the form of H0 (the fact that
|H0(p)| ≤ V 0

max|p|, see (2.10)), and (6.31) for the last inequality.
Injecting (6.34) into (6.33), we obtain that

δM ≤ oε(1),

which gives a contradiction for ε small enough.

Case 2: x̄ = −l. We introduce

ϕ(x, y) = ζδ(x)− vδ(x)− 1− εGγ
(x
ε
,
y

ε

)
− 1

2
(
(x− x̄)2 + (y − x̄)2) ,

where Gγ is the vertex test function introduce by Imbert and Monneau in [22, Theorem 3.2]. We
fix γ = δM/2. We refer to [22] for a detailed description on the vertex test function and on how
to build it, but for the readers convenience we recall the properties we use in this proof.
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1. (Regularity)

Gγ ∈ C([−l, l]2)
{
Gγ(x, ·) ∈ C1([−l, l]) for all x ∈ [−l, l]
Gγ(·, y) ∈ C1([−l, l]) for all y ∈ [−l, l]. (6.35)

2. (Bound from below) Gγ ≥ 0 = G(0, 0).

3. (Super-linearity) There exists g : [0,+∞)→ R non-decreasing and such that for all (x, y) ∈
[−l, l]2

g(|x− y|) ≤ Gγ(x, y) and lim
a→+∞

g(a)
a

= +∞.

4. (Compatibility condition on the gradient)

H0(y,−Gγy(x, y))−H0(x,Gγx(x, y)) ≤ γ, (6.36)

with, for all x ∈ [−l, l] and p ∈ R,

H0(x, p) =
{

H
−
0 (p) if x = −l

H0(p) if x ∈ (−l, l]
(6.37)

Like in the previous case, the test function ϕ reaches a maximum at a point (xε, yε) and (6.31)
remains valid with x̄ = −l. Proceeding like before, we obtain (6.32) but for ε small enough the
only terms that remain are the local ones. Therefore, we have

δM ≤H0

(
yε,−(yε − x̄)−Gγy

(xε
ε
,
yε
ε

))
−H0

(
xε, xε − x̄+Gγx

(xε
ε
,
yε
ε

))
≤H0

(
yε,−Gγy

(xε
ε
,
yε
ε

))
−H0

(
xε, G

γ
x

(xε
ε
,
yε
ε

))
+ ||H ′0||∞ (|xε + l|+ |yε + l|)

≤γ + oε(1).

(6.38)

This implies that δM/2 ≤ oε(1) and we obtain a contradiction for ε small enough.

Proposition 6.7 (First definition of the flux limiter). The following limits exist (up to some
sub-sequence)  AR = lim

l→+∞
λl,R,

A = lim
R→+∞

AR.
(6.39)

Moreover, we have

H0 ≤ A,AR ≤ 0.

Proof. This proof is a direct consequence of (6.7).

Proposition 6.8 (Control of the slopes on a truncated domain). Assume that l and R are large
enough. Let (wl,R, χl,R) be the solution of (6.1) given by Proposition 6.3.

If we assume up to a sub-sequence that A = lim
R→+∞

lim
l→+∞

λl,R > minH1. Then there exist
γ0 > 0 and a constant C > 0 (independent of l and R) such that for all γ ∈ (0, γ0) and for all
x ≥ 0 and h ≥ 0

wl,R(x+ h)− wl,R(x) ≥ (p1
+ − γ)h− C (6.40)
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Similarly, if we assume that A > minH2 then we have for all x ≥ 0 and h ≥ 0

χl,R(x+ h)− χl,R(x) ≥ (p2
+ − γ)h− C. (6.41)

Finally, if we assume that A > minH0, we have for all x ≤ −h0 − hmax − 1 and h ≥ 0,

wl,R(x− h)− wl,R(x) ≥ (−p0
− − γ)h− C and χl,R(x− h)− χl,R(x) ≥ (−p0

− − γ)h− C.(6.42)

Proof. We do the proof of Proposition 6.8 in two steps.

Step 1: proof of (6.40)-(6.41). We do the proof only for wl,R, since the truncated cell problem
(6.1) decouples itself for x > 0. The proof for χl,R is similar and we skip it. For µ > 0, small
enough, we denote by p1

µ the real numbers defined by

H1(p1
µ) = H

+
1 (p1

µ) = λl,R − µ. (6.43)

Using that

minH1 < λl,R ≤ 0,

we deduce that p1
µ exists for µ small enough and p1

µ ∈ [−2k0, 0).
Let us now consider w+ = p1

µx that satisfies

H1(w+
x ) = λl,R − µ for x ∈ R. (6.44)

We also have

M1[w+](x) =
∫
R
J1(z)E(p1

µ(x+ z)− p1
µx)dz − 3

2V
1
max

=
∫ −2

p1
µ

0

1
2J1(z)dz +

∫ +∞

−2
p1
µ

3
2J1(z)dz − 3

2V
1
max

=− V1

(
−2
p1
µ

)
.

For all x ∈ (0, l), we have

M1[w+](x) · |w+
x | = −V1

(
−2
p1
µ

)
· |p1

µ| = H1(p+
µ ) = λl,R − µ. (6.45)

Using (6.45), we can see that the restriction of w+ to (0, l] satisfies{
G1
R(x,w+, [χ+], [w+], w+

x ) = λl,R − µ if x ∈ (0, l)
H

+
1 (w+

x ) = λl,R − µ if x = l,

notice that since x > 0 there is no actual dependence on χ+ on the previous equation.
Let us introduce, for some x0 ∈ (0, l],

g = wl,R − wl,R(x0) and u = w+ − w+(x0) (6.46)

Then we have

g(x0) = 0 ≥ u(x0). (6.47)

Using that g is a solution of (6.4) (in (0, l] the solutions are invariant by addition of constants)
and u is a solution of (6.5) (with ε0 = µ), joint to the comparison principle (Proposition 6.1), we
get that

wl,R(x)− wl,R(x0) ≥ p1
µ(x− x0)
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This implies that for all h ≥ 0, and for all x ∈ (0, l),

wl,R(x+ h)− wl,R(x) ≥ p1
µh

Finally, if we choose γ0 < |p1 − p1
+|, then we have

H1(p1
+ − γ) = H

+
1 (p1

+ − γ).

Choosing µ > 0 such that

p1
µ = p1

+ − γ.

we obtain (6.40).

Step 2: proof of (6.42). The arguments are similar to the previous ones but for the readers
convenience, we detail where the two proofs differ. For µ > 0, small enough, we denote by p0

µ a
solution of

H0(p0
µ) = H

−
0 (p0

µ) = λl,R − µ

Moreover, since minH0 < λl,R, for µ small enough, we have p0
µ ∈ [−2k0, 0). We introduce

w− = p0
µx = χ−. Like before, we can see that the restriction of w− to [−l,−h0 − hmax − 1)

satisfies {
G1
R(x,w−, [χ−], [w−], w−x ) = λl,R − µ if x ∈ (−l,−h0 − hmax − 1)

H
−
0 (w−x ) = λl,R − µ if x = −l.

Similarly, the restriction of χ− to [−l,−hmax − h0 − 1) satisfies{
G2
R(x, χ−, [w−], [χ−], χ−x ) = λl,R − µ if x ∈ (−l,−h0 − hmax − 1)

H
−
0 (χ−x ) = λl,R − µ if x = −l.

Let us introduce, for some x0 ∈ [−l,−h0 − hmax − 1),{
g = wl,R − wl,R(x0)
h = χl,R − wl,R(x0), and

{
u = w− − w−(x0)− C̃
v = χ− − χ−(x0)− C̃, (6.48)

with C̃ = Chmax + 3C where C > 0 is the constant provided by Proposition 6.3. Then, using
Proposition 6.3, we have for all x ∈ [x0, x0 + hmax]

g(x) = wl,R(x)− wl,R(x0) ≥ −C|x− x0| − 2C ≥ −Chmax − 2C ≥− C̃
≥− C̃ + p0

µ(x− x0) = u(x)

and

h(x) = χl,R(x)− wl,R(x0) =χl,R(x)− χl,R(x0) + χl,R(x0)− wl,R(x0)
≥− Chmax − 2C − C ≥ −C̃ ≥ −C̃ + p0

µ(x− x0) = v(x).

Using the comparison principle (Proposition 6.1) with the boundary conditions (6.6) (see Remark
6.2), we get that {

wl,R(x)− wl,R(x0) ≥ p0
µ(x− x0)− C

χl,R(x)− wl,R(x0) ≥ p0
µ(x− x0)− C.

Using Proposition 6.3, we have that |χl,R(x0) − wl,R(x0)| ≤ C. Therefore, up to changing the
constant C̃ > 0, we have {

wl,R(x)− wl,R(x0) ≥ p0
µ(x− x0)− C̃

χl,R(x)− χl,R(x0) ≥ p0
µ(x− x0)− C̃.
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This implies that for all h ≥ 0, and for all x ∈ (−l,−h0 − hmax − 1),{
wl,R(x− h)− wl,R(x) ≥ −p0

µh− C̃
χl,R(x− h)− χl,R(x) ≥ −p0

µh− C̃.

Finally, if we choose γ0 < |p0 − p0
−|, then we have

H0(p0
− + γ) = H

−
0 (p0
− + γ).

Choosing µ > 0 such that

p0
µ = p0

+ + γ.

we obtain (6.42).

Proof of Theorem 4.3. The proof is performed in two steps.

Step 1: proof of i) and ii). We want to pass to the limit as l → +∞ and then as R → +∞
for the solution of (6.1) given by Proposition 6.3. Using (6.3), there exists ln → +∞, such that
for i = 1, 2, we have

mln,R
i −mln,R

i (0)→ mR
i as n→ +∞,

the convergence being locally uniform. We also define

wR(x) = lim sup
n→+∞

∗ (wln,R − wln,R(0)
)
,

wR(x) = lim inf
n→+∞∗

(
wln,R − wln,R(0)

)
,

and
χR(x) = lim sup

n→+∞

∗ (χln,R − wln,R(0)
)
,

χR(x) = lim inf
n→+∞∗

(
χln,R − wln,R(0)

)
.

Thanks to (6.3), we know that these limits are finite and satisfy

mR
1 − C ≤ wR ≤ wR ≤ mR

1 + C. and mR
2 − C ≤ χR ≤ χR ≤ mR

2 + C.

By stability of viscosity solutions (wR−2C,χR−2C) and (wR, χR) are respectively a sub-solution
and a super-solution of {

G1
R(x,wR(x), [χR], [wR], wRx ) = AR

G2
R(x, χR(x), [wR], [χR], χRx ) = AR

(6.49)

Therefore, using Perron’s method, we can construct a solution (wR, χR) of (6.49), with mR, AR,
wR and χR satisfying

|mR
i (x)−mR

i (y)| ≤ C|x− y| for all x, y ∈ R, for i = 1, 2,
|wR(x)−mR

1 (x)| ≤ C, |χR(x)−mR
2 (x)| ≤ C for all x ∈ R,

|wR(x)− χR(x)| ≤ C for all x ≤ h0,
H0 ≤ AR ≤ 0.

(6.50)

Using Proposition 6.8, if A > H1 (resp. A > minH2), we know that there exists γ0 and a constant
C > 0, such that for all γ ∈ (0, γ0), for all x ≥ 0, and h ≥ 0,

wR(x+ h)− wR(x) ≥ (p1
+ − γ)h− C

(
resp. χR(x+ h)− χR(x) ≥ (p1

+ − γ)h− C
)
. (6.51)

Similarly, if we assume A > minH0, then we have similarly, for all x ≤ −h0−hmax−1 and h ≥ 0,

wR(x− h)− wR(x) ≥ (−p0
− − γ)h− C and χR(x− h)− χR(x) ≥ (−p0

+ − γ)h− C. (6.52)
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We now pass to the limit as R→ +∞. We consider (up to a sub-sequence), for i = 1, 2,

w(x) = lim sup
R→+∞

∗ (wR − wR(0)
)
, w(x) = lim inf

R→+∞∗

(
wR − wR(0)

)
,

χ(x) = lim sup
R→+∞

∗ (χR − wR(0)
)
, χ(x) = lim inf

R→+∞∗

(
χR − wR(0)

)
,

A = lim
R→+∞

AR, mi = lim
R→+∞

(mR
i −mR

i (0)).

The last convergence being locally uniform. Thanks to (6.50), we know that the previous limits
are finite and that

m1 − C ≤ w ≤ w ≤ m1 + C. and m2 − C ≤ χ ≤ χ ≤ m2 + C. (6.53)

By stability of viscosity solutions (w − 2C,χ − 2C) and (w,χ) are respectively sub-solution and
super-solution of (2.25) with λ = A. Using Perron’s method we can construct a solution (w,χ) of
(2.25) with λ = A that satisfies (4.5), (4.6), (4.7) and (4.8).

Step 2: proof of iii). Let us now consider the rescaled functions wε = εw(x/ε) and χε(x) =
εχ(x/ε). Using (4.5), we have that

wε(x) = εm1

(x
ε

)
+O(ε) and χε(x) = εm2

(x
ε

)
+O(ε). (6.54)

Therefore, there exists a subsequence εn → 0 as n→ +∞, such that

wεn →W and χεn → X locally uniformly as n→ +∞, (6.55)

with W (0) = X(0) = 0. Arguing as in the proof of convergence away from the junction point, we
have that (W,X) satisfies 

{
H0(Wx) = A
H0(Xx) = A

for x < 0,{
H1(Wx) = A
H2(Xx) = A

for x > 0.

This proves (4.9). Let us now prove (4.11).
For x < 0, we have for all γ ∈ (0, γ0), if A > minH0,

Wx ≤ p0
− + γ and Xx ≤ p0

− + γ,

where we have used (4.8). Therefore, we have

p̂0
− ≤Wx, Xx ≤ p0

−, (6.56)

this inequality remains valid if A = minH0 (in which case, given the form of H0, we have
Wx = Xx = p̂0

− = p0
− = p0).

For x > 0, we have for all γ ∈ (0, γ0), if A > minH1 (resp. A > minH2),

Wx ≥ p1
+ − γ

(
resp. Xx ≥ p2

+ − γ
)
,

where we have used (4.7). Therefore given the form of H1 (resp. of H2), we have that Wx = p1
+

(resp. Xx = p2
+) for x > 0, this result is still valid if A = minH1 (resp. A = H2).

Combining these results, we obtain (4.11).
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Proof of Theorem 2.9. Up to a sub-sequence, we assume that A = lim
R→+∞

lim
l→+∞

λl,R. We want to

prove that A = inf E, with

E = {λ ∈ [H0, 0] : ∃(v, ζ) ∈ S solution of (2.25)},

and
S = {(v, ζ) s.t. ∃ two Lipschitz continuous functions m1 and m2 s.t. m1(0) = m2(0) = 0

and a constant C > 0 s.t. ||v −m1||∞, ||ζ −m2||∞ ≤ C} .

We argue by contradiction and assume that there exists λ ∈ E such that λ < A, associated with
(vλ, ζλ) solution of (2.25). Arguing as in the proof of Theorem 4.3, we deduce that the functions

vελ(x) = εvλ
(x
ε

)
and ζελ(x) = εζλ

(x
ε

)
(6.57)

have as limits, as ε goes to 0, Wλ and Xλ (with Wλ(0) = Xλ(0) = 0) which satisfies
{
H0(Wλ

x ) = λ
H0(Xλ

x ) = λ
for x < 0,{

H1(Wλ
x ) = λ

H2(Xλ
x ) = λ

for x > 0.

This means that for all x > 0, we have

Wλ
x ≤ p

λ,1
+ < p1

+ with H1(pλ,1+ ) = H
+
1 (pλ,1+ ) = λ, (6.58)

and

Xλ
x ≤ p

λ,2
+ < p2

+ with H2(pλ,2+ ) = H
+
2 (pλ,2+ ) = λ. (6.59)

Similarly, for all x < 0, we have

Wλ
x , X

λ
x ≥ pλ− > p0

− with pλ− = min{p ∈ [−2k0, 0] : H0(p) = H
−
0 (p) = λ}. (6.60)

These inequalities imply that for all γ > 0, there exists a constant C̃γ such that

vλ(x) ≤
{

(pλ,1+ + γ)x+ C̃γ for x > 0,
(pλ− − γ)x+ C̃γ for x < 0. and ζλ(x) ≤

{
(pλ,2+ + γ)x+ C̃γ for x > 0,
(pλ− − γ)x+ C̃γ for x < 0. (6.61)

In fact if (vλ, ζλ) does not satisfy (6.61), we cannot have (6.58), (6.59), and (6.60). Using Theorem
4.3, we have for γ small enough and for R̃ > 0 big enough,

vλ ≤ v and ζλ < ζ for |x| ≥ R̃.

This implies that there exists a constant CR̃ such that for all x ∈ R, we have

vλ(x) < v(x) + CR̃ and ζλ(x) < ζ(x) + CR̃.

Let us now introduce two functions (u, ξ) and (uλ, ξλ), defined by{
u(t, x) = v(x) + CR̃ −At,
ξ(t, x) = ζ(x) + CR̃ −At,

and
{
uλ(t, x) = vλ(x)− λt,
ξλ(t, x) = ζλ(x)− λt.

Both functions are solutions of (2.4) (with ε = 1) and

uλ(0, x) ≤ u(0, x) and ξλ(0, x) ≤ ξ(0, x).

Using the comparison principle (Proposition 3.7), we obtain

vλ(x)− λt ≤ v(x)−At+ CR̃.

Dividing by t and passing to the limit as t goes to infinity, we get A ≤ λ, which is a contradiction.
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7 Link between the system of ODEs and the system of
PDEs

Theorem 7.1. For ε = 1, the cumulative distribution function (ρ1, ρ2) defined by (2.1)-(2.2), is
a discontinuous viscosity solution of{

(ρ1)t + φ (x,N0(ρ1, [ρ2(t, ·)])(x),M1[ρ1(t, ·)](x)) · |∂xρ1| = 0 for (t, x) ∈ [0,+∞)× R,
(ρ2)t + φ (x,N0(ρ2, [ρ1(t, ·)])(x),M2[ρ2(t, ·)](x)) · |∂xρ2| = 0 for (t, x) ∈ [0,+∞)× R. (7.1)

Conversely, if (u, ξ) is a bounded and continuous viscosity solution of (7.1) satisfying for some
T > 0, and for all t ∈ (0, T ),

u(t, x) and ξ(t, x) are decreasing in x,

then the points Ui(t), defined by u(t, Ui(t)) = −(i+1) for i ∈ Z if i odd, and defined by ξ(t, Ui(t)) =
−(i+ 1) for i ∈ Z if i even, satisfy the system (1.1) on (0, T ).

Before the proof of Theorem 7.1, let us do the proof of Theorem 2.6.

Proof of Theorem 2.6. We recall that in Theorem 2.6, we have

u0(x) =
{
−x/h if x ≤ 0
−2x/h1 if x > 0 and ξ0(x) =

{
−x/h if x ≤ 0
−2x/h2 if x > 0 for all x ∈ R.

First, we would like to prove that for all ε > 0, we have

|ρε1(0, x)− u0(x)| ≤ f(ε) for all x ∈ R (7.2)

and

|ρε1(0, x)− ξ0(x)| ≤ g(ε) for all x ∈ R, (7.3)

with f(ε), g(ε) → 0 as ε goes to 0. Let us begin by proving (7.2). To do this, we consider a
piece-wise affine function v such that

ρ1
1(0, x) = v(x) for x = Ui(0), for all i ∈ Z such that i[2] = 1. (7.4)

First, given that for all i ∈ Z, Ui+1(0)−Ui(0) ≥ h0, we notice that v is 2k0−Lipschitz continuous
and by definition of ρ1

1, we have

|ρ1
1(0, x)− v(x)| ≤ 2 for all x ∈ R. (7.5)

Let us consider the integer i0 ∈ N defined by

i0 = sup {i ∈ Z, s.t. i[2] = 1, Ui(0) ≤ −R} .

Using the assumption that for all i ∈ Z such that Ui(0) ≤ −R we have Ui+1(0) − Ui(0) = h, we
deduce that for all x ≤ Ui0(0)

v(x) = −x
h

+ Ui0(0)
h

+ ρ1
1(0, Ui0(0)) = −x

h
+ Ui0(0)

h
− i0 − 1.

Let us now consider the integer i1 ∈ N defined by

i1 = inf {i ∈ Z, s.t. i[2] = 1, Ui(0) ≥ R} .

Now using the assumption that for all i ∈ Z such that i[2] = 1 and Ui(0) ≥ R we have Ui+2(0)−
Ui(0) = h1, we deduce that for all x ≥ Ui1(0)

v(x) = −2x
h1

+ 2Ui1(0)
h1

+ ρ1
1(0, Ui1(0)) = −2x

h1
+ 2Ui1(0)

h1
− (i1 + 1).
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Moreover, we recall that for all ε > 0, we have ρε1(0, x) = ερ1
1(0, x/ε), this implies that for all

x /∈ [εUi0(0), εUi1(0)],

|ρε1(0, x)− u0(x)| ≤
∣∣∣ρε1(0, x)− εv

(x
ε

)∣∣∣+
∣∣∣εv (x

ε

)
− u0(x)

∣∣∣
≤2ε+ εmax

(∣∣∣∣2Ui1(0)
h1

− i1 − 1
∣∣∣∣ , ∣∣∣∣Ui0(0)

h
− i0 − 1

∣∣∣∣) . (7.6)

Similarly, we have for all x ∈ [εUi0(0), εUi1(0)],

|ρε1(0, x)− u0(x)| ≤
∣∣∣ρε1(0, x)− εv

(x
ε

)∣∣∣+
∣∣∣εv (x

ε

)
− εu0

(x
ε

)∣∣∣
≤2ε+ ε max

y∈[Ui0 (0),Ui1 (0)]
(|v(y)− u0(y)|) , (7.7)

where we have used the fact that εu0(x/ε) = u0(x). Combining (7.6) and (7.7) and choosing

f(ε) = 2ε+ εmax
(

max
y∈[Ui0 (0),Ui1 (0)]

(|v(y)− u0(y)|) ,
∣∣∣∣2Ui1(0)

h1
− i1 − 1

∣∣∣∣ , ∣∣∣∣Ui0(0)
h
− i0 − 1

∣∣∣∣
)

we deduce (7.2). Similarly, we can construct g(ε) such that (7.3) is satisfied. Notice also that
thanks to (7.2) and (7.3), we have

|(ρε1)∗(0, x)− u0(x)| ≤ f(ε) + ε and |(ρε2)∗(0, x)− ξ0(x)| ≤ g(ε) + ε. (7.8)

Therefore, we have{
u0(x)−max(f(ε), g(ε)) ≤ ρε1(0, x) ≤ (ρε1)∗(0, x) ≤ u0(x) + max(f(ε), g(ε)) + ε.
ξ0(x)−max(f(ε), g(ε)) ≤ ρε2(0, x) ≤ (ρε2)∗(0, x) ≤ ξ0(x) + max(f(ε), g(ε)) + ε.

Using the fact that (ρε1, ρε2) is a viscosity solution of (2.4) and the comparison principle (Proposition
3.7) we deduce that (with (uε, ξε) a continuous solution of (2.4) associated to the initial condition
(u0, ξ0)){

uε(t, x)−max(f(ε), g(ε)) ≤ ρε1(t, x) ≤ (ρε1)∗(t, x) ≤ uε(t, x) + max(f(ε), g(ε)) + ε.
ξε(t, x)−max(f(ε), g(ε)) ≤ ρε2(t, x) ≤ (ρε2)∗(t, x) ≤ ξε(t, x) + max(f(ε), g(ε)) + ε.

Passing to the limit as ε→ 0 and using Theorem 2.5 we get that

ρ̃ε(t, x) =

 ρε1(t,−d(0, x)) for (t, x) ∈ (0,+∞)×R0,
ρε1(t, d(0, x)) for (t, x) ∈ (0,+∞)×R∗1,
ρε2(t, d(0, x)) for (t, x) ∈ (0,+∞)×R∗2,

(7.9)

converges locally uniformly to u0 (unique solution of (2.17)), which ends the proof of Theorem
2.6.

Proof of Theorem 7.1. Theorem 7.1 is a consequence of the following lemma.

Lemma 7.2 (Link between the velocities). Assume (A). Let ((Ui)i) be the solution of (1.1) with{
Ui(0) ≤ Ui+1(0)− h0 if Ui(0), Ui+1(0) ∈ R0
Ui(0) ≤ Ui+2(0)− h0 otherwise. (7.10)

Then we have for all i ∈ Z, such that i[2] = 1,

U̇i(t) = −φ(Ui(t), N0(u(t, ·), [ξ(t, .)])(Ui(t)),M1[u(t, .)](Ui(t))), (7.11)
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and for all i ∈ Z such that i[2] = 0,

U̇i(t) = −φ(Ui(t), N0(ξ(t, ·), [u(t, .)])(Ui(t)),M2[ξ(t, .)](Ui(t))), (7.12)

where E and F are defined in (2.7), Ji = V ′i for i = 0, 1, 2, and u and ξ are continuous functions,
decreasing in x, such that{

u(t, x) = ρ1(t, x) = (ρ1)∗(t, x) for x = Ui(t), for all i ∈ Z, such that i[2] = 1,
ξ(t, x) = ρ2(t, x) = (ρ2)∗(t, x) for x = Ui(t), for all i ∈ Z, such that i[2] = 0. (7.13)

with (ρ1, ρ2) defined in (2.1)-(2.2) (with ε = 1).

Proof. We drop the time dependence to simplify the presentation. We only do the proof in the
case i ∈ Z, i[2] = 0, the other case being identical.

In the case Ui ≤ 0, all the vehicles remain in order, meaning that ξ(Ui) = −(i + 1) and
−(i+ 2) = u(Ui+1) < u(Ui) < u(Ui−1) = −i, using this and (7.13) we have for all z ∈ [0,+∞),{

−1 < u(Ui + z)− ξ(Ui) < 1 if z ∈ [0, Ui+1 − Ui),
u(Ui + z)− ξ(Ui) ≤ −1 if z ∈ [Ui+1 − Ui,+∞).

Given that u and ξ are continuous, this implies that

N0(ξ, [u])(Ui) =
∫ Ui+1−Ui

0

1
2J0(z)dz +

∫ +∞

Ui+1−Ui

3
2J0(z)dz − 3

2V
0
max = −V0(Ui+1 − Ui). (7.14)

Now using (7.13), and the fact that ξ(Ui) = −(i+ 1), we obtain{
−2 < ξ(Ui + z)− ξ(Ui) ≤ 0 if z ∈ [0, Ui+2 − Ui),
ξ(Ui + z)− ξ(Ui) ≤ −2 if z ∈ [Ui+2 − Ui,+∞).

Again, given that ξ is continuous, this implies that

M2[ξ](Ui) =
∫ Ui+2−Ui

0

1
2J2(z)dz +

∫ +∞

Ui+2−Ui

3
2J2(z)dz − 3

2V
2
max = −V2(Ui+2 − Ui). (7.15)

Combining (7.14) and (7.15), we get (7.12).

Thanks to (7.13), we have for x = Ui(t), for all i ∈ Z, i[2] = 1,

Ñ0((ρ1)∗(t, ·), [(ρ2)∗(t, ·)])(x) = Ñ0(u(t, ·), [ξ(t, ·)])(x) = N0(u(t, ·), [ξ(t, ·)])(x),
M̃1[(ρ1)∗(t, ·)](x) = M̃1[u(t, ·)](x) = M1[u(t, ·)](x).

Similarly, we have for all x = Ui(t), for all i ∈ Z, i[2] = 0,

Ñ0((ρ2)∗(t, ·), [(ρ1)∗(t, ·)])(x) = Ñ0(ξ(t, ·), [u(t, ·)])(x) = N0(ξ(t, ·), [u(t, ·)])(x),
M̃2[(ρ2)∗(t, ·)](x) = M̃2[ξ(t, ·)](x) = M2[ξ(t, ·)](x)

and using Lemma 7.2, and Definition 3.1, we can see that ((ρ1)∗, (ρ2)∗) is a discontinuous vis-
cosity super-solution of (7.1). We obtain a similar result for ((ρ1)∗, (ρ2)∗) therefore, (ρ1, ρ2) is a
discontinuous viscosity solution of (7.1).

We prove the converse. Using from [15, Proposition 11], we can conclude that
((ρ1)∗ = due, (ρ2)∗ = dξe) (resp. (ρ∗1 = buc, ρ∗2 = bξc) ) is a viscosity super-solution (resp.
sub-solution) of{

(ρ1)t − c̃1(t, x)(ρ1)x = 0 with c̃1(t, x) = φ(x,N0(u(t, ·), [ξ(t, ·)])(x),M1[u(t, ·)](x)),
(ρ2)t − c̃2(t, x)(ρ2)x = 0 with c̃2(t, x) = φ(x,N0(ξ(t, ·), [u(t, ·)])(x),M2[ξ(t, ·)](x)). (7.16)
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Using the fact that u and ξ are decreasing, we define for all i ∈ Z, i[2] = 1,

Ui(t) = inf {x, u(t, x) ≤ −(i+ 1)} = (u(t, ·))−1(−i− 1), (7.17)

and for all i ∈ Z, i[2] = 0,

Ui(t) = inf {x, ξ(t, x) ≤ −(i+ 1)} = (ξ(t, ·))−1(−i− 1), (7.18)

and we consider the functions t 7→ Ui(t). They are continuous because u and ξ are decreasing in
x and continuous in (t, x).

We now prove that the functions Ui are viscosity solutions of (1.1). Let ϕ be a test function
such that ϕ(t) ≤ Ui(t) and ϕ(t0) = Ui(t0). Let us now define ϕ̂(t, x) = −(i + 1) + ϕ(t) − x. Let
us for instance consider i ∈ Z, such that i[2] = 0 then we have

ϕ̂(t0, Ui(t0)) = (ρ2)∗(t0, Ui(t0))

and

ϕ̂(t, x) ≤ (ρ2)∗(t, x) for Ui(t)− 1 < x < Ui+2(t).

This implies that

ϕt(t0) + c̃2(t0, Ui(t0)) ≥ 0
⇔ ϕt(t0) ≥ −c̃2(t0, Ui(t0)) = −φ (Ui(t0),−V0(Ui+1(t0)− Ui(t0)),−V2(Ui+2(t0)− Ui(t0)))
⇔ ϕt(t0) ≥ φ (Ui(t0), V0(Ui+1(t0)− Ui(t0)), V2(Ui+2(t0)− Ui(t0))) .

We obtain a similar result in the case i[2] = 1. This proves that Ui are viscosity super-solutions
of (1.1). The proof for sub-solutions is similar and we skip it. Moreover, c̃i(·, Ui(·)), for i = 1, 2,
is continuous, we deduce that Ui ∈ C1, and is therefore a classical solution of (1.1).

8 Extensions
In this section, we will introduce some extensions of model (1.1) for which an homogenization
result is possible by using the same arguments as the ones used in the case presented in this
paper. However, since the models we introduce in this section are more complex, many technical
difficulties appear. Particularly, we will no longer be working with a system of two equations but
with a more general system. We will not go into details of the proofs for each of the models,
however we give some guidelines for any reader that would like to do the proofs in detail.

8.1 One incoming road, n outgoing roads
8.1.1 General model

Let us begin by considering a model where we have one incoming road R0 and n ∈ N\{0} outgoing
roads that we denote by Rk, for k = 1, . . . , n. We consider a simple periodic setting and assume
that the vehicle i ∈ Z such that i[n] = k − 1 goes into Rk, where i[n] denotes the rest of the
euclidean division of i by n (therefore i[n] ∈ {0, . . . , n − 1}). We consider the following model, if
i[n] = k − 1, for all t > 0,

U̇i(t) = φ (Ui(t), V0 (Ui+1(t)− Ui(t)) , Vk (Ui+n(t)− Ui(t))) , (8.1)

where Ui denotes the position of the i th vehicle and U̇i its velocity. For i = 0, . . . , n, Vi is an
optimal velocity function. The function φ is the same as before and is defined in (1.2).

In Figure 5, we have an schematic representation of model (8.1).
We assume that the optimal velocities satisfy assumption (A). However, we need to change

assumption (A5), to take into account the fact that we have n possible exits.
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Transition zones

−h0−h0 − hmax

U̇i = V0(Ui+1 − Ui)

O

U̇i = Vk(Ui+n − Ui)

U̇i = V2(Ui+n − Ui)

−h0 − hmax − 1

U̇i = V1(Ui+n − Ui)

U̇i = Vn(Ui+n − Ui)

U̇i = φ(Ui, V0(Ui+1 − Ui), V1,...,n(Ui+n − Ui))

U̇i = min(V0(Ui+1 − Ui), V1,...,n(Ui+n − Ui))

R1

R2

Rk

Rn

R0

Figure 5: Schematic representation of the microscopic model.

• (A5’) There exists a unique p0 (resp. p1, . . . , pk) such that the function p 7→ pV0(−1/p) (resp.
p 7→ pVj(−2/p), for j=1,. . . ,k) is decreasing in [−1/h0, p0] (resp.[−2/h0, pi]) and increasing
in [p0, 0] (resp. [pi, 0]).

To simplify we call (A’) assumption (A) with (A5’) instead of (A5).

8.1.2 Injecting the system of ODEs into a system of PDEs

The technique remains the same as before and we inject the system of ODE (8.1) into a system
of PDEs by considering n "cumulative distribution functions". For j = 0, . . . , n− 1,

ρεj(t, x) =− nε ·

 ∑
i[n]=j, i≥0

H

(
x− εUi

(
t

ε

))
+

∑
i[n]=j, i<0

(
−1 +H

(
x− εUi

(
t

ε

)))
+ ε(n− 1− j),

(8.2)

with H the heaviside function defined in (2.3).

Remark 8.1. We choose this type of "cumulative distribution function", to simplify the compu-
tations, because if i[n] = j, then we have ρj(t, Ui(t)) = −(i+ 1).

Under assumption (A’) we can prove that (ρj)j=0,...,n−1 is a (discontinuous viscosity) solution
of the following non-local system of PDEs, for (t, x) ∈ (0,+∞)× R,

∂tu
ε
j + φ

(
x

ε
,Nε

0

(
uεj
ε
,

[
uεj+1(t, ·)

ε

])
(x),Mε

j+1

[
uεj(t, ·)
ε

]
(x)
)
· |∂xuεj | = 0

for j = 0, . . . , n− 2

∂tu
ε
n−1 + φ

(
x

ε
,Nε

0

(
uεn−1
ε

,

[
uε0(t, ·)
ε

])
(x),Mε

n

[
uεn−1(t, ·)

ε

]
(x)
)
· |∂xuεn−1| = 0,

(8.3)

where Nε
0 and Mε

j for j = 1, . . . , n are non-local operators defined by

Nε
0 (U, [Ξ]) (x) =

∫
R
J0(z)F (Ξ(x+ εz)− U(x))dz − 3

2V
0
max, (8.4)

and

Mε
j [U ](x) =

∫
R
Jj(z)E(U(x+ εz)− U(x))dz − 3

2V
j
max, (8.5)
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with Jj = V ′j for j = 0, 1, . . . , n,

F (z) =

 0 if z ≥ n− 1,
1/2 if − 1 ≤ z < n− 1,
3/2 if z < −1,

and E(z) =

 0 if z ≥ 0,
1/2 if − n ≤ z < 0,
3/2 if z < −n.

(8.6)

Finally, the function φ is the same as the one in (2.8).
We will consider the following initial conditions,

uεj(0, x) = uj,0(x) for x ∈ R and for j = 0, . . . , n− 1, (8.7)

and we make the following assumptions.

(A0’) (Initial condition). For all x ≤ 0, and all j = 1, . . . , n− 1,

u0,0(x) = uj,0(x).

Moreover, we assume that for all x ∈ R

−nk0 = − n

h0
≤ (uj,0)x ≤ 0 for all j = 0, . . . , n− 1.

8.1.3 The effective Hamiltonians

Like in the case of a simple bifurcation, we will have an effective Hamiltonian on each road. We
introduce Hk, for k = 0, . . . , n which are the effective Hamiltonian on each of the roads Rk for
k = 0, . . . , n. We define k0 = 1/h0 and H0 : R→ R by

H0(p) =


−p− nk0 for p < −nk0,

−V0

(
−1
p

)
· |p| for − nk0 ≤ p ≤ 0,

p for p > 0.

(8.8)

We also define, for k = 1, . . . , n, Hk : R→ R by

Hk(p) =


−p− nk0 for p < −nk0,

−Vk
(
−n
p

)
· |p| for − nk0 ≤ p ≤ 0,

p for p > 0.

(8.9)

For k = 0, . . . , n, let us notice thatHk is continuous, coercive
(

lim
|p|→+∞

Hk(p) = +∞
)
and because

of (A5’), there exists a unique point pk ∈ [−nk0, 0] such that{
Hk is non-increasing on (−∞, pk),
Hk is increasing on (pk,+∞), (8.10)

We denote by

H0 = max
k∈{0,...,n}

min
p∈R

Hk(p). (8.11)

8.1.4 Convergence result

Let (uεj)j be the solution of (8.3)-(8.7). It is possible to prove that the function defined by

ũε(t, x) =
{
uε0(t,−d(0, x)) for (t, x) ∈ (0,+∞)×R0,
uεk−1(t, d(0, x)) for (t, x) ∈ (0,+∞)×R∗k, k ∈ {1, . . . , n},

(8.12)
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converges locally uniformly on compact subsets of (0,+∞)×R as ε goes to 0 to the unique viscosity
solution of the following problem

u0
t +H0(u0

x) = 0 for (t, x) ∈ [0,+∞)×R∗0,
u0
t +Hk(u0

x) = 0 for (t, x) ∈ [0,+∞)×R∗k,
u0
t + FA(∂0u

0(t, 0), . . . , ∂nu0(t, 0))) = 0 for (t, x) ∈ [0,+∞)× {0},

u0(0, x) = ū0(x) =
{
u0,0(−d(0, x)) for x ∈ R0,
uk−1,0(d(0, x)) for x ∈ Rk

(8.13)

where A is a constant to be determined and FA is defined by

FA(p0, . . . , pn) = max(A,H+
0 (p0), max

k=1,...,n
H
−
k (pk)), (8.14)

where for k = 0, . . . , n,

H
−
k (p) =

{
Hk(p) if p ≤ pk
Hk(pk) if p ≥ pk

and H
+
k (p) =

{
Hk(pk) if p ≤ pk
Hk(p) if p ≥ pk.

(8.15)

Theorem 8.2 (Junction condition by homogenization). Assume (A0’) and (A’). For ε > 0, let
(uεj)j be the solution of (8.3)-(8.7). Then there exists A ∈ [H0, 0] such that the function defined
by (8.12) converges locally uniformly to the unique viscosity solution u0 of (8.13).

Theorem 8.3. Assume (A’) and that at initial time we have, for all i ∈ Z, if the vehicle i+ 1 is
in R0,

Ui(0) ≤ Ui+1(0)− h0, (8.16)

and if not

Ui(0) ≤ Ui+n(0)− h0. (8.17)

We also assume that there exists a constant R > 0 such that, for all i ∈ Z, if Ui(0) ≥ R

Ui+n(0)− Ui(0) = hj if i[n] = j − 1

and if Ui(0) ≤ −R

Ui+1(0)− Ui(0) = h,

with h ≥ h0 and for j ∈ {1, . . . , n}, hj ≥ h0. We define the functions (uj,0)j (satisfying (A0’)) by

uj−1,0(x) =


−x
h

if x ≤ 0
−nx
hj

if x > 0
for all x ∈ R for j = 1, . . . , n.

Then there exists a constant A ∈ [H0, 0] such that the function

ρ̃ε(t, y) =
{
ρε0(t,−d(0, y)) for (t, y) ∈ (0,+∞)×R0,
ρεk−1(t, d(0, y)) for (t, y) ∈ (0,+∞)×R∗k, k ∈ {1, . . . , n},

(8.18)

converges locally uniformly to u0 the unique solution of (8.13).

Theorem 8.4. Assume (A0’)-(A’). Let u0 be the unique solution of (8.13), then we have for all
(t, x) ∈ [0,+∞)×R,

−nk0 ≤ u0
x ≤ 0,

with k0 defined in (A0’).
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Remark 8.5. First, notice that, at the macroscopic scale, we obtain a similar result like the one
from the case of a simple bifurcation (and of course if n = 2 we find the same result).

In the introduction we mentioned that the main difficulty to obtain an homogenization result
was to build the correctors at the junction since we are in a non-periodic setting. However, notice
that in the proof of Proposition 6.3 (in the core of the proof of Theorem 4.3 which gives the existence
of correctors at the junction) the key element is that we are able to control the oscillations in space
of the solutions in the truncated domain for the approximated cell problem (Lemma 6.4). Notice
also that the arguments used in that lemma are actually similar to the ones used to prove Theorem
3.9. That is why we will give the equivalent theorem in the case of n outgoing roads and then give
some guidelines on how to prove it.

Theorem 8.6 (Control of the oscillations). Let T > 0. Assume (A0’)-(A’) and let (uj)j be a
solution of (8.3)-(8.7), with ε = 1. Then there exists a constant C1 > 0 such that for all x, y ∈ R,
x ≥ y and for all t, s ∈ [0, T ], t ≥ s, we have

0 ≤ u(t, x)− u(s, x) ≤ C1(t− s),
0 ≤ ξ(t, x)− ξ(s, x) ≤ C1(t− s) and −K0(x− y)− n ≤ u(t, x)− u(t, y) ≤ 0,

−K0(x− y)− n ≤ ξ(t, x)− ξ(t, y) ≤ 0, (8.19)

with K0 := nk0.

Sketch of the proof of Theorem 8.6. We only give the ideas necessary to prove Theorem 8.6, and
the order in which the proof must be done.

1. Prove the control of the oscillations in time using the barriers and the fact that the solutions
are invariant by additions of constants and by translations in time.

2. Like in Theorem 3.9, prove that the functions uj are non-increasing in space.

3. Now we need a comparison between the functions (uj)j solution of (8.3) (with ε = 1) for all
x ≤ −h0. We want to prove that for all x ≤ −h0, all t ∈ [0, T ] and for j = 0, . . . , n− 2,

−1 ≤ uj+1(t, x)− uj(t, x) ≤ n− 1 and − 1 ≤ u0(t, x)− un−1(t, x) ≤ n− 1. (8.20)

To prove (8.20), we need to proceed in the following order.

(a) Using a localisation argument, like in the proof of Lemma 3.10, we prove that for all
x ≤ −h0, all t ∈ [0, T ] and for j = 0, . . . , n− 2,

−1 ≤ uj+1(t, x)− uj(t, x) and − 1 ≤ u0(t, x)− un−1(t, x).

(b) Using the previous result, we deduce that for all x ≤ −h0, all t ∈ [0, T ] and for
j = 0, . . . , n− 2

uj+1(x)− uj(x) ≤ n− 1 and u0(x)− un−1(x) ≤ n− 1.

4. Using the previous results, proceeding like in the proof of Theorem 3.9 prove the lower
bounds on the control of the space oscillations.

8.2 A more general distribution of vehicles
Let us consider the case we have one incoming road R0 and two outgoing roads R1 and R2 like
in the case treated in detail in the previous sections. However, instead of considering one vehicle
going to the left and one to the right, we consider a more general distribution of the vehicles (but
still a periodic distribution). More precisely, let n ≥ 2 and assume that the vehicle i ∈ Z such
that i[n] = 0 goes into R1 and the rest of the vehicles go into R2 (one vehicle goes left and n− 1
go right). We then consider the following model for all i ∈ Z and all t > 0,
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-if i[n] = 0,

U̇i(t) = φ
(
Ui(t), V0 (Ui+1(t)− Ui(t)) , V1 (Ui+n(t)− Ui(t))

)
, (8.21)

-if i[n] = k ∈ {1, . . . , n− 2},

U̇i(t) = φ
(
Ui(t), V0 (Ui+1(t)− Ui(t)) , V2 (Ui+1(t)− Ui(t))

)
, (8.22)

-if i[n] = n− 1,

U̇i(t) = φ
(
Ui(t), V0 (Ui+1(t)− Ui(t)) , V2 (Ui+2(t)− Ui(t))

)
, (8.23)

where Ui denotes the position of the i−th vehicle and U̇i its velocity. For i = 0, 1, 2, Vi is an
optimal velocity function. The function φ is the same as before (see (1.2)).

In Figure 6, we have a schematic representation of model (8.21)-(8.22)-(8.23).

Transition zones

O
−h0−h0 − hmax

U̇i = V0(Ui+1 − Ui)

−h0 − hmax − 1

U̇i = min(V0(Ui+1 − Ui), V1,2(Uĩ − Ui))

U̇i = φ (Ui, V0(Ui+1 − Ui), V1,2(Uĩ − Ui))

U̇i = V2(Ui+1 − Ui) if i[n] ∈ {1, . . . , n− 2}

U̇i = V2(Ui+2 − Ui) if i[n] = n− 1

U̇i = V1(Ui+2 − Ui) if i[n] = 0

R0

R1

R2

Figure 6: Schematic representation of the microscopic model (8.21)-(8.22)-(8.23). The index ĩ
denotes the index of the vehicle that will be in front of the vehicle i after the bifurcation.

We assume that the optimal velocities satisfy assumption (A), however, we need to change
assumption (A5), to take into account the fact that we have a different distribution of vehicles.

• (A5”)There exists a unique p0 (resp. p1 and p2) such that the function p 7→ pV0(−1/p) (resp.
p 7→ pV1(−n/p) and p 7→ pV2(−n/(p(n − 1))) is decreasing in [−1/h0, p0] (resp.[−n/h0, p1]
and [−nk0/(n− 1), p2]) and increasing in [p0, 0] (resp. [pi, 0]).

To simplify we call (A”) assumption (A) with (A5”) instead of (A5).

As before, for j = 0, . . . , n− 1, we define the following "cumulative distribution functions"

ρεj(t, x) =− nε ·

 ∑
i[n]=j, i≥0

H

(
x− εUi

(
t

ε

))
+

∑
i[n]=j, i<0

(
−1 +H

(
x− εUi

(
t

ε

)))
+ ε(n− 1− j).

(8.24)

Under assumption (A”) we can prove that (ρj)j=0,...,n−1 is a (discontinuous viscosity) solution
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of the following non-local system of PDEs, for (t, x) ∈ (0,+∞)× R,

∂tu
ε
0 + φ

(
x

ε
,Nε

0

(
uε0
ε
,

[
uε1(t, ·)
ε

])
(x),Mε

1

[
uε0(t, ·)
ε

]
(x)
)
· |∂xuε0| = 0

∂tu
ε
j + φ

(
x

ε
,Nε

0

(
uεj
ε
,

[
uεj+1(t, ·)

ε

])
(x), Nε

2

(
uεj
ε
,

[
uεj+1(t, ·)

ε

])
(x)
)
· |∂xuεj | = 0

for j = 1, . . . , n− 2

∂tu
ε
n−1 + φ

(
x

ε
,Nε

0

(
uεn−1
ε

,

[
uε0(t, ·)
ε

])
(x), Lε2

(
uεn−1
ε

,

[
uε1(t, ·)
ε

])
(x)
)
· |∂xuεn−1| = 0,

(8.25)

where Nε
0 andMε

1 are defined respectively in (8.4) and (8.5). The non-local operator Nε
2 is defined

like Nε
0 but with J2 and V 2

max instead of J0 and V 0
max (in order to recover the velocity V2 on R2).

Finally, the non-local operator Lε2 is defined by

Lε2 (U, [Ξ]) (x) =
∫
R
J2(z)G(Ξ(x+ εz)− U(x))dz − 3

2V
2
max, (8.26)

with J2 = V ′2 and

G(z) =

 0 if z ≥ n− 2,
1/2 if − 2 ≤ z < n− 2,
3/2 if z < −2.

(8.27)

The function φ is the same as the one in (2.8).

8.2.1 The effective Hamiltonians

Like in the previous scenarios, we have an effective Hamiltonian on each road. The effective
Hamiltonians H0 : R→ R and H1 : R→ R are defined respectively in (8.8) and (8.9) while H2 is
defined by (with k0 = 1/h0)

H2(p) =


−p− nk0 for p < −nk0

−V2

(
−n

p(n− 1)

)
for − nk0 ≤ p ≤ 0,

p for p > 0.

(8.28)

For k = 0, 1, 2, let us notice that such Hk is continuous, coercive
(

lim
|p|→+∞

Hk(p) = +∞
)

and

because of (A5”), there exists a unique point pk ∈ [−nk0, 0] such that{
Hk is non-increasing on (−∞, pk),
Hk is increasing on (pk,+∞), (8.29)

We denote by

H0 = max
k∈{0,1,2}

min
p∈R

Hk(p).

8.2.2 Convergence result

Theorem 8.7. Assume (A”) and that at initial time between two consecutive vehicles there is
atleast a distance of h0 between them. We also assume that there exists a constant R > 0 such
that for all i ∈ Z, if Ui(0) ≥ R

Ui+n(0)− Ui(0) = h1 if i[n] = 0,
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{
Ui+1(0)− Ui(0) = h2 if i[n] 6= 0, n− 1
Ui+2(0)− Ui(0) = h2 if i[n] = n− 1,

and if Ui(0) ≤ −R

Ui+1(0)− Ui(0) = h,

with h, h1, h2 ≥ h0. We define the functions u0,0 and u1,0 (satisfying (A0’)) by

uk−1,0(x) =


−x
h

if x ≤ 0
−nx
hk

if x > 0
for all x ∈ R and k = 1 or 2.

Then there exists a constant A ∈ [H0, 0] such that, for any k ∈ {0, . . . , n − 1} and any j ∈
{1, . . . , n− 1}, the function

ρ̃ε(t, y) =


ρεk(t,−d(0, y)) for (t, y) ∈ (0,+∞)×R0,
ρε0(t, d(0, y)) for (t, y) ∈ (0,+∞)×R∗1,
ρεj(t, d(0, y)) for (t, y) ∈ (0,+∞)×R∗2,

(8.30)

converges locally uniformly to u0 the unique solution of

u0
t +H0(u0

x) = 0 for (t, x) ∈ [0,+∞)×R∗0,
u0
t +H1(u0

x) = 0 for (t, x) ∈ [0,+∞)×R∗1,
u0
t +H2(u0

x) = 0 for (t, x) ∈ [0,+∞)×R∗2,
u0
t + FA(∂0u

0(t, 0), ∂1u
0(t, 0), ∂2u

0(t, 0))) = 0 for (t, x) ∈ [0,+∞)× {0},

u0(0, x) = ū0(x) =

 u0,0(−d(0, x)) for x ∈ R0,
u0,0(d(0, x)) for x ∈ R1
u1,0(d(0, x)) for x ∈ R2

(8.31)

where A is a constant to be determined and FA is defined by

FA(p0, p1, p2) = max(A,H+
0 (p0), H−1 (p1), H−2 (p2)), (8.32)

and for k = 0, 1, 2, we define

H
−
k (p) =

{
Hk(p) if p ≤ pk,
Hk(pk) if p ≥ pk,

and H
+
k (p) =

{
Hk(pk) if p ≤ pk,
Hk(p) if p ≥ pk.

Moreover, the unique solution u0 of (8.31) satisfies

−nk0 ≤ u0
x ≤ 0,

with k0 = 1/h0.

Remark 8.8. Let us notice that if we choose n = 2, we recover the same result as the one from
the case of a simple bifurcation (one vehicle goes left, the other goes right).

Like in the previous extension, we will give the equivalent of Theorem 3.9 in the case of the
more general distribution of vehicles. Contrary to the case of n outgoing roads, there is a slight
difference, in this case, when building the correctors away from the junction in R2. We will explain
how to correctly choose them and how to obtain the effective Hamiltonian H2.

Theorem 8.9 (Control of the oscillations). Let T > 0. Assume that (A”) and (A0’) are valid
and let (uj)j be a solution of (8.25), with ε = 1. Then there exists a constant C1 > 0 such that
for all x, y ∈ R, x ≥ y and for all t, s ∈ [0, T ], t ≥ s, we have

0 ≤ u(t, x)− u(s, x) ≤ C1(t− s),
0 ≤ ξ(t, x)− ξ(s, x) ≤ C1(t− s) and −K0(x− y)− n ≤ u(t, x)− u(t, y) ≤ 0,

−K0(x− y)− n ≤ ξ(t, x)− ξ(t, y) ≤ 0, (8.33)

with K0 := nk0.
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Sketch of the proof of Theorem 8.9. We only give the ideas necessary to prove Theorem 8.9, and
the order in which the proof must be done.

1. Prove the control of the oscillations in time using the barriers and the fact that the solutions
are invariant by additions of constants and by translations in time.

2. Like in Theorem 3.9, prove that the functions uj are non-increasing in space.

3. Now we need a comparison between the functions (uj)j solution of (8.25) (with ε = 1). We
want to prove that for all x ∈ R, all t ∈ [0, T ] and for j = 1, . . . , n− 2, we have

−1 ≤ uj+1(t, x)− uj(t, x) ≤ n− 1. (8.34)

We also want to prove that for all x ≤ −h0 and all t ∈ [0, T ],

−1 ≤ u1(t, x)− u0(t, x) ≤ n− 1 and − 1 ≤ u0(t, x)− un−1(t, x) ≤ n− 1. (8.35)

Finally, we want to prove that for all x ≥ −h0 and all t ∈ [0, T ], we have

−2 ≤ u1(t, x)− un−1(t, x) ≤ n− 2. (8.36)

To prove (8.36)-(8.35)-(8.34), we need to proceed in the following order.

(a) First, prove that

−1 ≤ uj+1(t, x)− uj(t, x) for all x ∈ R, all t ∈ [0, T ] and for j = 1, . . . , n− 2. (8.37)

To do this, we argue classically by contradiction and assume that the supremum of
−1− uj+1(t, x) + uj(t, x) over [0, T ]× R is strictly positive.

(b) Using a localisation term, like in the proof of Lemma 3.10, prove that

−1 ≤ u1(t, x)− u0(t, x) for all x ≤ −h0 and all t ∈ [0, T ].

(c) Similarly, prove that

−1 ≤ u0(t, x)− un−1(t, x) for all x ≤ −h0 and all t ∈ [0, T ].

(d) Using the previous results, deduce that for all x ≤ −h0, all t ∈ [0, T ], and for j =
0, . . . , n− 2, we have

uj+1(t, x)− uj(t, x) ≤ n− 1 and u0(t, x)− un−1(t, x) ≤ n− 1.

(e) Using a localisation term, prove that for all x ≥ −h0 and all t ∈ [0, T ], we have

−2 ≤ u1(t, x)− un−1(t, x).

(f) Using the previous result and (8.37), deduce that for all x ≥ −h0, all t ∈ [0, T ] and for
j = 1, . . . , n− 2, we have

uj+1(t, x)− uj(t, x) ≤ n− 1 and u1(t, x)− un−1(t, x) ≤ n− 2.

4. Using the previous results, proceeding like in the proof of Theorem 3.9 prove the lower
bounds on the control of the space oscillations.
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Proposition 8.10 (Homogenization on R2). Assume (A”). Then for p ∈ [−nk0, 0], there exists
a unique λ ∈ R, such that there exists a bounded solution (vj)j=1,...,n−1 of

N2
p (vj , [vj+1])(x) · |∂xvj + p| = λ for j=1,. . . ,n-2,

L2
p(vn−1, [v1])(x) · |∂xvn−1 + p| = λ,

vj for j = 1, . . . , n− 1 is Z− periodic,

with

N2
p (U, [Ξ])(x) =

∫ +∞

−∞
J2(z)F (Ξ(x+ z)− U(x) + pz)dz − 3

2V
2
max

and

L2
p(U, [Ξ])(x) =

∫ +∞

−∞
J2(z)G(Ξ(x+ z)− U(x) + pz)dz − 3

2V
2
max.

Moreover, for p ∈ [−nk0, 0] we have λ = H2(p) = −V2

(
−n

p(n− 1)

)
|p|.

Proof. Contrary to the construction of the correctors on R0 and R1, we cannot consider the
correctors equal to zero. However, we can see that choosing for j = 1, . . . , n− 1,

vj ≡
j − 1
n− 1 ,

we obtain for j = 1, . . . , n− 2

L2
p(vn−1, [v1])(x) = N2

p (vj , [vj+1])(x) = −V2

(
−n

p(n− 1)

)
. (8.38)

This ends the proof of Proposition (8.10).

Remark 8.11. From the previous extensions, we can imagine even more complex scenarios.
For instance having a bifurcation with n outgoing roads, with a very general (but still periodic)
distribution of vehicles. The technique remains the same for that type of problem but one has to
consider a great number of "cumulative distribution functions".
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