N
N

N

HAL

open science

REAL-TIME TASK RECONFIGURATION IN
ENERGY-HARVESTING BASED
MULTIPROCESSOR SYSTEMS
Wiem Housseyni, Olfa Mosbahi, Mohamed Khalgui, Maryline Chetto

» To cite this version:

Wiem Housseyni, Olfa Mosbahi, Mohamed Khalgui, Maryline Chetto. REAL-TIME TASK RECON-
FIGURATION IN ENERGY-HARVESTING BASED MULTIPROCESSOR SYSTEMS. 29th Euro-
pean Simulation and Modelling Conference - ESM’2015, The European Multidisciplinary Society for
Modelling and Simulation Technology, Oct 2015, Leicester, United Kingdom. hal-01332705

HAL Id: hal-01332705
https://hal.science/hal-01332705

Submitted on 16 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01332705
https://hal.archives-ouvertes.fr

REAL-TIME TASK RECONFIGURATION IN ENERGY-HARVESTING BASED
MULTIPROCESSOR SYSTEMS

Wiem Housseyni,
Olfa Mosbahi,
Mohamed Khalgui

National Institute of Applied Sciences and Technology,

Institute-University of Carthago, Tunisia
Email:

Maryline Chetto
University of Nantes IRCCyN UMR CNRS
6597 44321 Nantes, France
Email:maryline.chetto@univ-nantes.fr

{wiem.housseyni,olfamosbahi,khalgui.mohamed}@gmail.com

KEYWORDS

Real-Time Scheduling, Multiprocessor Architecture, Re-
newable Energy, Dynamic Reconfiguration, DAG, De-
graded Execution.

ABSTRACT

This paper deals with real-time scheduling in a re-
configurable multiprocessor system. Each processor is
supplied with a renewable energy source, and uses a
rechargeable energy storage. A reconfiguration scenario
is any operation that consists in the addition, removal
or update of tasks which may result in timing unfeasi-
bility. In our work, each task is represented by a Proba-
bilistic Directed Acyclic Graph (DAGP). Our contribu-
tion in this paper concerns the online feasibility problem
that is issued from the reconfiguration process. We de-
scribe new approaches to solve this problem: the first
one changes the timing parameters of the DAGP, the
second one decomposes and migrates branches of the
DAGP, the third one modifies the scheduling mode, and
the fourth one deletes some tasks.

INTRODUCTION

Distributed embedded systems are widely used in real-
time domains such as biomedicine, automobile, aircraft
and industrial areas. In real-time systems, not only the
treatments should be correct but they have to produce
outputs in bounded time (Stankovic 1988). For soft real-
time systems, missing some deadlines may be tolerable.
In contrast, for hard real-time systems, non respect of
timing requirements may lead to severe consequences
(Liu and Layland 1973, Burns 1991, Manacher 1967).

Batteries are the dominant energy source for embed-
ded real-time systems. However, in addition to their
negative impact on the environment, their use may be
troublesome due to their limited energy storage capac-
ity and their finite useful live. For some application do-
mains, replacing battery is either costly or impractical.
Hence, these embedded systems should be designed to
operate incessantly and be autonomous through renew-

able energy sources. Several technologies are proposed
for environmental energy harvesting, in particular solar
and vibrational energies. Energy harvesting emerges as
a promising technology to surmount energy limitation
and enhance system lifetime. In an energy harvesting
based system, the main issue is to guarantee that at
any moment the system does not consume more energy
than harvested and available in the storage.

In this paper, we consider an energy harvesting based
real-time system which is composed of a set of identical
processors. Preemption and migration of tasks are au-
thorized on every processor. The hardware platform is
supplied with renewable energy sources. The harvested
energy is stored in rechargeable energy reservoirs with
limited capacity (e.g. batteries / supercapacitors).

A reconfigurable computing system undergoes unpre-
dictable events that require adequate online decisions so
as to maintain schedulability of the application software.
Reconfiguration should be performed whenever a task
needs to be added, removed or replaced or a task needs
to modify its timing parameters for applicative motiva-
tions. The problem of real-time task scheduling on a
reconfigurable monoprocessor architecture has received
substantial attention (George et al. 2005, Camponogara
et al. 2010, Gharsellaoui et al. 2012). In contrast, only
few works deal with multiprocessor counterparts. Fur-
thermore, considerable studies consider the problem of
minimizing energy consumption so as to maximize sys-
tem autonomy (Wang et al. 2015, Chniter et al. 2014).
But they do not address the energy neutrality problem
that characterizes energy harvesting based computing
systems.

Prior works on real-time scheduling in energy harvest-
ing systems addressed basic models where tasks are in-
dependent from each other. And they mainly focus on
monoprocessor architectures even with DVFS facilities.
However, these results cannot be simply extended to
tasks which are represented by directed acyclic graphs
(DAGS) in a distributed context. Consequently, both
static task assignment and dynamic task migration in
multiprocessor energy harvesting systems are new chal-
lenges. We will address these two issues. Firstly, we

will contribute with proposition of a more realistic task
model based on DAG. Secondly, we will provide new
solutions for task assignment and dynamic reconfigu-
ration. In our model, every task 7; can be viewed at
two distinct levels: i) at the first one, 7; is a compu-
tation box with given period T;, worst case execution
time C}, relative deadline D; and worst case energy con-
sumption En;, ii) at the second level, 7; is represented
by a probabilistic directed acyclic graph called Proba-
bilistic DAG (DAGP). The real-time simulator Cheddar
(Singhoff et al. 2004) permits to verify the systems be-
havior and evaluate the performance of our different ap-
proaches. Simulation results bring to light the effective-
ness of the proposed DAGP model and reconfiguration
strategies measured in terms of deadline miss ratio and
energy savings.

The remainder of the paper is as follows. Section II gives
a brief state of the art about both energy aware schedul-
ing and directed acyclic graph based models. Section ITI
formalizes the scheduling problem. Section IV presents
the new task model, namely Probabilistic DAG (DAGP)
and the terminology used throughout this paper. Sec-
tion V describes our solutions for reconfiguration in real-
time energy harvesting based multiprocessor systems.
Section VI reports simulation results that bring to light
the effectiveness of these solutions measured in terms of
deadline miss ratio. And finally we conclude in Section
VII with a summary of our contributions.

RELATED WORKS

In this section, we present a state of the art successively
about real-time scheduling under energy harvesting con-
straints, reconfigurable real-time systems and schedul-
ing of DAG tasks.

Real-time Scheduling and Energy Harvesting
Considerations

For about ten years, several important works have fo-
cused on scheduling in uniprocessor energy harvesting
based embedded systems. In (Moser et al. 2006), the
Lazy Scheduling Algorithm (LSA), based on the EDF
(Earliest Deadline First) rule is proved to be optimal for
periodic or aperiodic tasks with deadlines. In (Chetto
2014), another optimal scheduling algorithm, called ED-
H is proposed, based on the EDF rule, with less re-
strictive hypotheses than LSA. Energy harvesting aware
scheduling for the multiprocessor case has received much
less attention. Among the most interesting studies, Ab-
dallah et Al in (Abdallah et al. 2014) describe and eval-
uate real-time task assignment heuristics for optimizing
the global deadline success ratio. All of these studies
consider independent and modular task execution mod-
els.

Reconfigurable Real-Time Systems

Several interesting academic and industrial works fo-
cused on reconfigurable systems where automatic re-
configurations are applied by intelligent agents (Khal-
gui 2010). More recently, studies dealt with the same
issues with low-power considerations. In (Chniter et al.
2014), two combinatorial optimization approaches based
on DVF'S processors are described for minimizing energy
consumption. A mechanism adjusts deadlines so as to
guarantee feasibility conditions and overcome the prob-
lem of task rejection. In (Wang et al. 2015), a software-
agent-based architecture provides four solutions to re-
configure the system at run-time. In addition, the agent
provides three virtual processors in order to reduce the
systems power consumption. However, no work deals
with energy harvesting assumptions.

DAG Scheduling

Scheduling tasks modeled by DAGs has received mean-
ingful efforts for parallelization objectives. Saifullah
et al. (Saifullah et al. 2014) propose a method that
eliminates inter-task dependencies so as a DAG task
be transformed into a collection of independent sequen-
tial threads. The global earliest deadline first (GEDF)
schedulability test is then applied to the resulting set of
threads. In (Bonifaci et al. 2013), Bonifaci considers the
general parameters DAG tasks synchronization regard-
less of their internal structures. Only two parameters
related to the execution of the task model are defined:
the total execution time, and the critical-path length.
Recently in (Fonseca et al. 2015), the authors propose
a multi-DAG model which facilitates the schedulability
analysis of parallel tasks with multiple execution flows
on multi-core architectures. All of these works change
the nature of a DAG, and transform it into a collection
of segments. Nevertheless, no one of these works con-
sider DAGs with probabilities.

To our knowledge, no previous study has addressed the
scheduling problem where tasks have to be executed
with possible migration in a multiprocessor architecture
with regenerative energy. As far as we know, the Proba-
bilistic DAG model is proposed for the first time in this

paper.

FORMALIZATION OF RECONFIGURABLE
REAL-TIME SYSTEMS

In this section, we describe our system model that con-
sists of a reconfigurable distributed real-time system, a
harvesting energy module and an energy storage mod-
ule.

Real-Time Reconfigurable System

In this paper, we are interested in dynamic task re-
configuration. An external reconfiguration event is
defined as an exception or an event that leads to
add/remove/update tasks. Consequently, any recon-
figuration scenario may increase energy consumption
and/or make some tasks to violate their deadlines. We
assume that a reconfiguration scenario may affect only
one processor at a given time. The system model is
depicted in Figure 1.

Figure 1: System model

Notation: We consider a real-time embedded system
to be formalized as Sys = {H,, Sy} such that H, is
the hardware platform and S, is the software one. H,,
contains a set m of m processors m = {P,..., Pp,}. We
assume that preemption and migration of tasks are au-
thorized on all processors. The multiprocessor platform
is supplied by a renewable energy source and uses a set
B ={Bu,..., B} of m rechargeable energy storage with
limited capacities. Each processor P; in the multiproces-
sor platform is powered by its own storage unit denoted
by Bj. The software platform S, contains a set 1) of N
tasks ¢ = {71, ...,7v}. Each task is assigned to a given
processor according to a technique detailed afterwards.
We suppose that Sy, (t) is the task set that implements
the system Sys at a particular time {. We denote by Py
a faulty processor (i.e. where tasks have to migrate) and
tp, the set of tasks assigned to Py. Furthermore, in the
rest of the paper a subscript ” f” represents an item in a
faulty processor and we denote by ”|A|” the cardinality
of the set A. In our system, a task 7, i = {1, .., N}, is
characterized by:

e period T;, worst case execution time (WCET) C;
in conformance with the classical task model of Liu
and Layland (Liu and Layland 1973), worst case
energy consumption (WCEC) En; and a degree
of criticality dc; that defines its applicative impor-
tance.

e a Probabilistic Directed Acyclic Graph (DAGP)
that encodes all its possible execution traces (de-
tails are given in section IV.)

The system Sys can be reconfigured repeatedly. Af-
ter any external reconfiguration scenario at a particular
time ¢ such as addition or removal of tasks, the new
implementation is defined by:

Sht) =S, t)yuet/e,

where £T(t) C S, is the set of added tasks and £ () C
Sw is the set of tasks removed from Sys.

Energy Model

Energy Production Model

Let us assume that the harvesting energy is collected
from different energy sources (photovoltaic, piezoelec-
tric, thermal, ...). We suppose that the incoming power
received by a given storage unit remains unchanged
along time but it may be different from one storage unit
to another. Let Pj(t) be the instantaneous charging
rate produced by the energy source at time ¢ and E(t)
be the total energy produced over [0, t] by the power
source given by the following formula:

E(t) = /Ot P(t)dt (1)

Energy Storage Model

In this paper, we consider a hybrid energy storage model
(battery and super-capacitor). A storage unit is defined
by Bj = (Ejmawanmin)a V] = {17...7m} where Ejmax
and Ejn;, are respectively minimal energy and maxi-
mal energy that can be stored. Note that for simplicity
and without loss of generality, we assume that the en-
ergy storage can be completely depleted to as less as
zero. The energy available in the storage B; at time
t is denoted by Ep;(t). We also assume that each en-
ergy storage can be charged up to its capacity. Initially,
every energy storage is fully-charged: V j = {1..m},
EBj(O) = Ejmaz-

Energy Consumption Model

We assume that the energy consumed by the processor
P; is equal to zero when it does not execute jobs i.e.
when it is in the idle state. Furthermore, the energy
consumed in the time interval [t1,¢5] is the cumulative
amount of WCEC of tasks which execute on processor
P; between ¢; and t5. The energy consumed by a job in
any unit time-slot is no less than the energy produced
in the same unit time-slot.

Initial Task Assignment

The so-called Best Fit Energy Heuristic (BFEH) is pro-
posed for initial task assignment. This partitioning issue
amounts to a Bin-Packing one which is known to be NP-
hard (Michael and David 1979). Let us define 9 as a set
of n periodic real-time tasks and 7 as a set of m proces-
sors. Each task in v is assigned to one processor of 7 as
follows:

1. 9 is sorted in decreasing order of the ratios given
by worst case energy consumption WCEC, En,; di-
vided by deadline, D;.

2. 7 is sorted in decreasing order of the energy storage
capacity, Eg;(t).

Task 7; is assigned to processor P; if the EDF schedu-
lability test is satisfied and the storage B; has the least
residual energy. Ideally, the residual energy in the stor-
age should be zero. We consider that all the jobs of a
given task should be executed on the same processor.

PROBABILISTIC TASK DAG MODEL

In this section, we introduce a new task model called
probabilistic directed acyclic graph (DAGP) attached
to each task in the software platform S,.

Motivation

Typically, the code of any task is constructed from one
or more control structures such as the ”if-then-else”
statements. Two jobs 7; 5 and 7;; of task 7; may ex-
ecute different parts of the code. Hence, an ”execution
flow” is defined as the path used by a job throughout
its execution. In real world, the various possible execu-
tion flows do not have the same chance to be used. A
probability is attached to execution flow so as to express
the chance or the risk that a job performs this execution
flow.

Formalization

A DAGP model is attached to every task 7; ¢ = {1..N}
as depicted in Figure 2. This model is a graph G; =
(Vi, E;) where V; = {7i1,....,Tin, } is the set of task
nodes that represent the sub-tasks of 7;. n; is the num-
ber of sub-tasks in G;, and FE; is the set of directed
edges that represent dependencies between nodes in the
graph G;. Each edge is labeled by constant p which des-
ignates the inter-arrival period. The inter-arrival time
p between 7; j and 7; 5, is defined as the amount of time
that must elapse after the execution of 7; ; and before
the task 7; 5, can be triggered. We suppose that p is the
same among all subtasks. We assume that DAGP G;
attached to task 7; i = {1..N} is characterized by a set
Fi ={Fi1,..., Fim;} which denotes the set of all possi-
ble execution flows of G;. m; is the number of execution
flows in G;. Each execution flow F; ; = {Pr; ;,Vi ;, E; ;}
is characterized by a probability Pr; ;, a set of nodes
Vi; and a set of edges E;;. We associate a dc; at-
tribute to each task, that defines its execution emer-
gency. Task 7; Vi = {1..N} is characterized by sex-
tuplet (G4, Cy, Dy, T}, E,y, dce;), where 1) G; the DAGP
associated to task 7, ii) C; the maximum number of
CPU clock cycles needed to complete a job instance of
the task 7; called WCET iii) the relative deadline of the

Figure 2: Probabilistic DAG task’s model

task, D;, iv) T; is the period of the task. We assume that
D; is equal to T;, v) En; is the energy requirement of
the task 7;, the amount of energy required for its execu-
tion, called WCEC and vi) de; the execution emergency
level of the task 7;. We introduce in the following the
system model terminology.

Definition 1. The utilization factor of task 7; is de-
noted by U; and defined as follows:

The CPU utilization of processor Pj, j = {1..m} is de-
noted by:

Up, =Y U (2)
i=1

where n is the number of tasks assigned to processor P;.
Definition 2. The set of n tasks assigned to processor
P; is schedulable under a scheduling policy if the proces-
sor utilisation factor U is no greater than the schedulable
utilisation U, as denoted by:

Gy, 3)

i=1 "¢

where:

U — n(2% —1)if RM is applied
‘ 1if EDF is applied

Definition 3. The amount of energy consumed by pro-
cessor P; j = {1.m} is defined as the sum of WCEC
En; of all n tasks assigned to P;:

E,, = f: En, (4)
i=1

Definition 4. The WCET of an execution flow F; ; of
task 7, i = {1 .. N} is defined as the cumulative amount
of WCET of all nodes of the set V; ; plus the inter-arrival
period p:

Cr,= Y. Co+px(Vijl-1) (5)

Ti,k€Vi j

The critical execution flow F; of task 7; is defined as the
execution flow with the longest execution time. Defini-
tion 5. The WCET of task 7; is defined as the length
of the critical path as follows:

Ci = max(Cr,;),j = {1..m;} (6)

In the context of the DAGP model, we introduce the
notion of probabilistic utilisation factor Upr,, . which
denotes the utilisation factor of sub-task 7; j with prob-
ability P,.

Definition 6. According to Shin and Choi (Shin and
Choi 1999) the utilisation factor of sub-task 7; 5 is de-
noted by:

C,.
Upr,, = Prx == (7)
' Tik
Definition 7. The workload U, ; of execution flow
F; ; of task 7; is defined as the cumulative amount of
utilization for all sub-tasks in V; ;:

Ur,, = ZUPTTi,j’Ti’j ceVi; (8)

Definition 8. The energy, EF, ;, consumed during the
execution flow Fj ; is denoted by:

Ep,,=KxUj ,K=CxV?*xF (9)

where C' is a constant that depends on the processor
identity. We denote respectively by F' and V the fre-
quency and voltage of the system.

Definition 9. The worst case energy consumption En;
of a task 7; is defined as follows:

CASE STUDY

Let us consider a real-time embedded system Sys such
that H, = {P1,P»,P5} where each processor supports
only one operating frequency. We assume that task pre-
emption and migration are authorized on all processors.
The harvested energy is stored in a set of three batteries
/ super-capacitors 8 = {Bi, B2, B3} where P is sup-
plied from By = 45, P, supplied from By = 100 and P
supplied from B3 = 40. The software platform initially
contains a set of three periodic tasks 7,19, 73 depicted
in Table 1. In this case study, the EDF policy is ap-
plied for the three processors. Initially, the task set is
assigned to the multiprocessor platform according to the
Best Fit energy heuristic (BFEH) presented previously.
71,72 and T3 are assigned to processor P, P> and P
respectively. Due to the Cheddar implementation, the
feasible scheduling result of the system Sys is shown in
Figure 9. The system is feasible since the CPU loads of
the multiprocessor platform are U,, = 0,55, U,, = 0.56
and U,, = 0.4. The energy consumptions are Ep, =7,
Ep, = 13 and Ep, = 5 energy units.

Table 1: Initial System Configuration
Task | C; | Ti | D | Eni | de, | (mk)-firm |
moo[11[20(2 (7 |A |12
|9 [16]16 |13 |B | (1,2)
o | 1025]25 |5 | C | (1,2)

Tesk name=Task1 Period= 20; Capacity= 11; Deadline= 20; Start time= 0; Priority= 1; Cpu=Processorl

Tesk name=Task2 Period= 16; Capacity=9; Deadline= 16, Start time= 0; Priority= 1; Cpu=Processor2

]
r 1
Tesk name=Task3 Period= 25; Capacity= 10; Deadline= 25; Start time= 0; Priority= 1; Cpu=Processor3

Figure 9: Initial schedule for the system

Reconfiguration scenariol: Suppose that at time ¢,
an external reconfiguration scenario is applied to add a
new task 74 (Table 2) to processor P;. After addition,
as shown in Figure 10, the schedule is infeasible since 74
misses its deadline equal to 20. The energy consumed
by processor P; increases up to 20 energy units.

T
Task namesTask? Periods 20; Capacitys 11; Deaching= 20; Start ime 0 Priorilys 1; GpusProcessor]

I
Task namesTaskd Periods 20; Capacitys 10; Descling= 20; Start imés 0 Priokiy= 1; GpusProcessort

deadline viclation

Figure 10: Schedule after addition of task 74

Reconfiguration scenario2: Suppose that at time o
after ¢; a second external reconfiguration scenario is ap-
plied to add task 75 (Table 2) to processor P,. After
addition to P» as shown in Figure 11, the CPU load is
equal to 1.0625. The energy consumption, Ep,, also in-
creases on the hyper-period H (H=[lem(T3,T5)] = 48)
and becomes equal to 95 units of energy. The schedule
is infeasible since task 75 misses its deadline at 48 and
completes at t = 51.

L 1 J J
deadline violation
energy exhausted

Figure 11: Schedule after addition of task 75

Reconfiguration scenario3: Suppose that at time t3
after to an external reconfiguration scenario is applied
to add task 7¢ (Table 2) to processor P;. After addition,
as shown in Figure 12, the CPU load is equal to 1.65.

Inter arrival period=2

—— Bl
— B2
. y \ B3
(m2) ~— \

A Y
WCET=1

Figure 3: DAGP G; associated to
task 11

\
WCET=24

. 04 WCET=2
\
\\
06\,
(T2)
WCET=1
WCET=2

. WCET=1
VCET=2 — |)
WCET=2 7_797.77._7,,,.—7—'- (| T24) st
- — B2
-05 WCET=1 — B3
o N T
\ . .
03 [N 5 \WCET=2
\ \
\ WCET=1'm,
* | ZE5) \

(Jzar) ~
N
WCET=1

WCET=2 T

Figure 4: DAGP G5 associated to
task 7o

WCET=

1 03
~~ WCET=2
' .
|
| \
07 | \
|

+

182) |
WCET=1 .

WCET=1
03 07 WCET=1
WCET=1 - T a
(A

0.5 05

N WCET=2
~ y

WCET=1
(jo==r)

WCET=1

—— Bl

WCET=1 - 83

WCET=1

Figure 5: DAGP Gj3 associated to
task 73

WCET=1

03
— WCET=2
: .
\
\
|
1 1

07 |
|

\

(T62 \ |
\—4 . ‘
WCET=1

Figure 6: DAGP G, associated to

task 74 task 75

The energy consumption Ep, also increases and becomes
equal to 32 units of energy on the hyper-period H (H =
[lem(Ty, Ty, Ts)] = 20). The schedule on P is infeasible
since task 74 misses its deadline at 20 and completes at
t = 30. Task 7¢ misses its deadline at 20 and completes
at t = 33.

Figure 7: DAGP Gj5 associated to

WCET=1 WCET=1

Figure 8: DAGP Gj associated to
task 7g

1 1
r 1
Task name=task3 Period= 25; Capacity= 10; Deadline= 25; Start time= 0; Priofity= 1; Cpu=Processor3

Periot= 5: Capacity= 3; Deadline=5; Start time= 0; Priority=|1; Cpu=Processor3

energy exhausted

Task name=task7

Task name=Tesnd

Period= 20; Capecity= 10 Deadtine=20; Stort tme=&; Prify= 1,

Figure 12: Schedule after addition of task 74

Reconfiguration scenario4: Suppose that at time t4
after t3 an external reconfiguration scenario is applied
to add task 77 (Table 2) to processor Ps. The CPU util-
isation of processor P3 becomes U,, = 0.8, hence the
timing constraint is satisfied but as shown in Figure 13,
the schedule is infeasible since the energy constraint is
violated. As the energy consumption of E3 is equal to
80 on the hyper-period H (H = [lem(T5,T%)] = 75), T3
stops at =20 before completing execution since there is
no sufficient energy in the storage unit. The energy con-
sumption profile of processor P; is presented in Figure
14.

Figure 13: Scheduling of the system after the addition
of the task 77

Figure 14: Energy consumption of processor Pj3

Table 2: System Reconfiguration Scenarios
Task | C; | Ty | Di | Eng | de, | (mK)-firm |

Reconfiguration scenario 1

n |10]20]|20[13 |[D |12
Reconfiguration scenario 2

s |6 |12]12]14 |D |12
Reconfiguration scenario 3

w |3]5]5 [3 |A @2
Reconfiguration scenario 4

m |6 |15[15]13 |[E |12

The reconfiguration scenario increases the energy con-
sumption and/or pushes some tasks to violate the cor-
responding deadline. In order to re-establish the system
feasibility, we propose four solutions which are detailed
in section VI.

NEW SOLUTIONS FOR FEASIBLE LOW-
POWER REAL-TTME RECONFIGURABLE
SYSTEMS

The problem of scheduling probabilistic directed acyclic
graphs (DAGP) on a reconfigurable multiprocessor plat-
form under hard real-time and energy constraints is
known to be NP-complete (Michael and David 1979).
We assume that some events such as hardware failures
may occur and impose a dynamic software reconfigura-
tion for maintaining feasibility. This paper addresses
the even more difficult problem of scheduling on recon-
figurable systems that entirely rely on energy harvest-
ing with limited capacity storage. We provide four ap-
proaches to address these challenges.

Motivation

A run-time external reconfiguration scenario is a dy-
namic operation allowing the addition/removal of the
assumed DAGP tasks. Thereafter, some tasks may miss
their hard deadlines and the energy constraint may be
violated. Hence, checking the system feasibility after
any reconfiguration scenario is of utmost importance.
Further, each processor in the multiprocessor platform
should satisfy the hard real-time constraint in which the
CPU processor utilization is no greater than the schedu-
lable utilisation U,, in addition to the energy constraint
where the processor’s energy consumption is at most
equal to the energy harvested in the storage associated
to the processor. If the system feasibility is satisfied then
the system operates normally. Besides, if at least one
of the feasibility conditions is violated then the dynamic
software reconfiguration solutions are applied one by one
in order to reconfigure the system and re-establish sys-
tem feasibility. The four solutions are performed in a
hierarchical order:

e Modify the inter-arrival period of DAGP tasks so
as to decrease the global load,

e Decompose each DAGP task of the faulty processor
to a set of hipsters and let them migrate to other
non-faulty processors,

e Degrade the quality of service on each faulty proces-
sor. Tasks may be executed according to (m,k)-firm
constraints,

e Delete hipsters or DAGP tasks so as to minimize
the global deadline miss ratio.

Formalization

In this section, we formalize the solutions.

Solution 1:Inter-Arrival Period Modification (IAPM)
It consists in modifying the inter-arrival period for two
consecutive sub-tasks so as to decrease the global load.
Proposition 1: To re-obtain system feasibility on the
faulty processor, the new inter-arrival period p should
be equal to:

‘/7,(: CL

U — i, Sy S
‘/7,(: VL(, 1.
PR ‘—‘ =

Proof: According to formula (3), a given task set is
assumed to be schedulable under a scheduling policy if
the utilisation processor factor U is no greater than the
schedulable utilisation U,:

27

According to definition 4 the WCET C; of task 7,
i ={1..N}, is equal to C; ; + (|Vi,c| — 1) * p by replacing
C; by its value in formula (3) the feasibility condition
can be calculated as follows:

(11)

HQ

n |VL cI

Sy Cij + MCI 1) * Py

=1 j=1

Then, the inter-arrival period p

Vie CL

LU o o
Viel (Vi c]—1
S ‘—‘ =

Running-example 1: Let us consider the reconfigu-
ration scenariol, the solutionl ”Inter-arrival period
modification” is applied to processor Py. According to
formula (11), the inter-arrival period p is decreased
up to 1. Hence the WCET of tasks 74 and 7 are
decreased to 8 and 9. Therefore, the processor uti-
lization factor is modified to be U,, = 0,85 from U,
= 1.05. As shown in Figure 15, the schedule on Py
is feasible since Up, = 0,85.

[Ere———— |
r 1
Task name=Task1 Period= 20; Capacity= 10; Deadling= 20; Start time= 0, Pricrity= 1; Cpu=Processor]

I 1
Task name=Taskd Period= 20; Capacity= 9; Deadline= 20; Start time= 0; Pricrity= 1; Cou=Frocessor!

Figure 15: Schedule after Inter-arrival period modifica-
tion

Solution 2: Decomposition and Migration of Branches
This solution is divided into two steps:

e First step: selection of a branch or group of
branches and make them migrating to other non-
faulty processors in order to re-establish the system
feasibility,

e Second step: selection of processors into which the
migrant branches will be assigned.

Stepl: Hipster Selection Heuristic

Proposition 2: The task with the lowest degree of
criticality will be decomposed into a set of hipsters.
Then the current critical execution flow will be removed
from the DAGP.

Step2: Processor Selection Heuristic
Proposition 3: We calculate the set of pro-
cessors for which the candidate hipsters can
be affected. Then, sort this set in increas-
ing order of energy availability in storage unit.

Running-example 2: When the second reconfigura-
tion scenario is applied, Solution 2 ”Decomposition-
Migration” is as follows. Stepl: Sort the task set
{m2 = (9,16,16,13), 75 = (6,12,12,14)} in a non de-
creasing order of critical level then the task 1o is se-
lected to be decomposed. Let Go{Fa,Va, Ea} be the
DAGP associated to task 7o as depicted in Figure 4.
Let, .FQ = (F271,F2,2,F2,3,F274) be the set Of all ex-
ecution flows of 7o such that Fy; is the critical ex-
ecution flow. The new DAGP Gy associated to task
Ty after elimination of the critical execution flow F 3
is shown in Figure 16 and new parameters of T be-
come equal to (7,16,16,12). Step2: By migrating the
hipster Fy 1 to processor Py, the system feasibility is
re-established as presented in Figure 17. The sched-
ule is feasible since Uy, =0.96 and Uy, = 0.93. The
total energy consumptions of processor Py and P3 are
E,, =92, F,, =25.

WCET=2 0.2
WCET=1

TZ4) B2

0.3 - — -
WCET=1

WCET=2

Figure 16: DAGP G, associated to task 7o after elimi-
nation of the critical execution flow F3 ;

posed by Hamdaoui (Hamdaoui and Ramanathan De-
cembre 1995) in order to provide a flexible real-time
system with graceful degradation of the quality of ser-
vice (QoS). We tolerate some deadline violations while
maintaining a certain global quality of service in case of
system overload. Therefore, we accept that in a faulty
processor Py, tasks may be executed with (m,k)-firm
constraints.

Proposition 4: The task set v is schedulable under
(m k) firm constraints if 2 is equal to | ===

i=1 T

Proof: A given task set 1 is assumed to bé schedula-
ble with (m,k) firm constraints under a given scheduling
policy if the utilisation processing factor U with (m,k)

firm requirements, defined by U, x = S5, S is no

i=1 T,xk; *
greater than the schedulable utilisation U, defined as
follows:

Z C * ml
p T,xk; — Us
Suppose, that 7,? is a constant 6 then, 6 < 7{]7*0
i=1 T;
U,
0= (12)

Running-example 3: When the third reconfiguration
scenario is applied, Solution 3 ”Degradation” is as

follows.

Cixmy
S G <1 0= Iy

Therefore, we accept that in the faulty processor Py
the tasks be executed under (1,2)-firm constraints
which indicate that the deadlines of at least 1 instance
among 2 consecutive ones must be met for tasks T,
74 and Tg.

4J 9—7 m—l*k’

Solution 4: Removal Hipster (RHH)

Delete hipsters or DAGP tasks so as to minimize the
global deadline miss ratio. For any faulty processor P,
we associate to each task in ¢ p, a density denoted by:

(13)

Proposition 5: We sort all tasks in increasing
order of densities so that we can reject one by one
those with highest densities until the remaining uti-
lization factor of the faulty processor is lower than
U, and the total energy consumption is below Epy).

I T
Task name=Task2 Penod= 16; Capacity= 7 Deading= 16; Start time=0; Priority= 1; Cou=Processor

f T T
Task name=Task3 Penod= 13 Capacity= € Deadline= 12; Starttime=(0; Priority= 1, Cou=Processor2

Figure 17: Schedule after decomposition and migration
of branches

Solution 3: Degradation
This solution is based on the (m,k) firm constraint pro-

Running-example 4: When the reconfiguration scenario 4
is applied, Solution 4 ”Removal Hipster” is performed to
processor Ps. According to formula (13) v3 = = and Y7 =
}g Then, task 77 has the highest density. By removing
the critical execution flow Fy 1, parameters of T; become
(5,15,15,4). Therefore, the processor utilization factor
is modified to be U,, = 0,738 instead of U,, = 0.8 and
the total energy consumption E,, = 35(Ep3(t) = 40. In
this case study, the solution ” Remowval Hipster” reduces
the total energy consumption of processor Py with up to
56.25%.

EXPERIMENTAL STUDY

According to the solutions formulated above, Algo-
rithm1 evaluates a set of unpredictable reconfiguration
scenarios applied repeatedly during the running execu-
tion of the system and provides four solutions in order
to re-establish the system feasibility.

Algorithm 1 Main algotithm
while 1 do
Reconfig();
if feasible(P;) = false then
Inter-arrival period Modification(Py, ¥p,)
if feasible(P;) = false then
Decomposition Migration(Py, v p,, By (t), 7, 1)
if feasible(P;) = false then
Degradation(Py, vp,)
if feasible(P;) = false then
Removal Hipster(¢yp,, By(t))
end if
end if
end if
end if
end while

Decomposition-Migration DAGP Solution

Hipster Selection Heuristic

Algorithm2 depicts the pseudo-code of hipster selection
heuristic (HSH). For a faulty processor Py, Branch Se-
lection Heuristic sorts tasks in increasing order based on
criticality level dc, then, the task 7,.. with the lowest dc
is selected to be decomposed. We calculate the WCET
and WCEC of each execution flow in 74... In order to
get a feasible execution in the faulty processor Py, the
workload should be no greater than U, and the total en-
ergy consumption should be no greater than the amount
of energy available in the storage By. Therefore, the
scheme deletes the current critical execution flow Fy,.
and recalculates the new one until the feasibility condi-
tions are satisfied. The overall run-time computational
complexity of Hipster Selection Heuristic is O(N?).
Processor Selection and Assignment Heuristic
Algorithm3 depicts the pseudo-code of processor selec-
tion and assignment heuristic (HSAH). The overall run-
time computational complexity of Processor Selection
and Assignment Heuristic is O(m).

Removal Hipster Heuristic

The pseudo-code of the Removal Hipster Heuristic
(RHH) is given in algorithm 4. For a faulty processor
Py we associate to each assigned task a density defined
as the ratio of WCEC over the period T;. We sort all
tasks in an increasing order of densities so as to reject
critical execution flows with highest densities, one by

Algorithm 2 Hipster selection heuristic

Input:ep,r = {m1,...,7} tasks’ set assigned to the
faulty processor Py ; Foce = {Face,1s - Face,n} de-
notes the set Fj.. of all possible execution flow of
Gace; The energy available in the storage of processor
Py at a time t By(t).
Output:Candidate branches.
Sort tasks’ set ip¢ in increasing order of criticality
level
Tace +— min(iy)
for k = 1toN do
Calculate WCET (Fyec,i,), Calculate Ep,__,
end for
repeat
F +— Max(Faee)
Delete(F,Gacc)
C... + Max(Cp,
Calculate Up,
Calculate Ep,
until U, < U, and E,,, < By(t)

Tacc

+— Max(Pp

acc,i)

Algorithm 3 Processor Selection and Assignement
Heuristic

Input:Processors’ set m = { Py, ..., P };
Output:Branch assigned to non faulty processor.
P« 7 /{Ps}
for i=1 to m-1 do

if U; < U; + §== < U, then

insert(P;, Toon)

end if
end for
Affect F,.. to the candidate processor which has the

highest energy level.

one, until the remaining utilization of the faulty proces-
sor is lower than U,, and the total energy consumption
is below Epy). The overall run-time computational

Algorithm 4 Removal Hipster

Input:¢)p, = {71,...,7,} task set assigned to faulty
processor Py; The energy available in the storage of
processor Py at time t By (t).

Output: feasible tasks set

for i=1 to n do

E’.
Vi =T
end for

sort task set ¢, in decreasing order of task densities
Tacc T
for i=1 to n do
if Uy, > U, and E,, > Ep,(t) then
reject critical execution flow F); of nth task
done with task rejection, break
end if
end for

complexity of Removal Hipsters Heuristic is O(n).
Simulation And Analysis

We explore in this section the performance of the four
solutions, RHH, DMH, DH, IAPM. In order to evaluate
them, we consider a set of 50 tasks to be schedulable on
8 identical processors. Parameters of tasks are randomly
generated as follows:

e The period T; (i = 1, .., 50) is randomly chosen in
the range [500, 900)

e The WCET C; (i =1, .., 50) is randomly chosen in
the range [6, 20]

e The emergency execution level de; (i= 1, .., 50) is
randomly chosen in the range [A, D]

A DAGP generator is used to generate graphs of tasks
G; = (V;, E;) (i= 1, .., 50) according to C;, T;. The
generated graphs are similar to those taken in the case
study. We assume a set of 6 unpredictable reconfig-
uration scenarios applied repeatedly. The periodicity
of reconfiguration is equal to 100 units of time. Each
scenario adds a set of n tasks such that n is randomly
chosen in the range [10,50]. Moreover, we assume that a
reconfiguration scenario may affect randomly one of the
8 processors. Figure 18 presents the percentage of sat-
isfied deadlines for the solutions IAPM, DH and RHH.
It clearly shows that the performance of all algorithms
degrades when the processor utilization factor increases
due to a set of reconfiguration scenarios applied repeat-
edly at run-time. TAPM has the strongest degradation
whereas RHH and DH provide similar results when U is
equal to 1.76. Indeed, when U exceeds 1.34, IAPM loses
performance. In general, RHH outperforms all other

Pourcentage of success deadline (%)

50 -

40

1 14 12 13 14 15 18 17 18
Utilisation factor of processor U

Figure 18: Percentage of satisfied deadlines, when a set
of reconfiguration scenario is applied repeatedly during
the execution time

solutions. Figure 19 presents the percentage of energy
gain. It can be derived from this figure that the solu-
tion RHH achieves energy savings of up to 67% when
compared to the energy consumption of the initial task
schedule. However, the solution DMH provides energy
savings up to 5%.

Percentage of energy gain(%)

1 1.5 2 25 < S,
Utilisation factor of processor U

Figure 19: Percentage of energy gain when a set of re-
configuration scenario is applied repeatedly during the
execution time

CONCLUSION AND DISCUSSION

We firmly believe that nowadays it has become crucial
to investigate new models and techniques to schedule
contemporary applications subject to energy and real-
time requirements, especially when unpredictable recon-
figuration scenarios occur at run time. To the best of
our knowledge, the work reported in this paper is the
first one that focuses on scheduling of real-time periodic
tasks in a reconfigurable multiprocessor energy harvest-
ing real-time system. In this paper, we have presented a
partitioning heuristic in the energy harvesting context,
namely BF-EH, in order to build the initial system con-
figuration. However, when an external reconfiguration
scenario is applied, the system may evolve towards an
infeasible state. We have proposed a new task model
where a Probabilistic Directed Acyclic Graph DAGP is
attached to each task. Indeed, the probability of exe-
cution flows may reduce the percentage of missed dead-

lines and increases the energy availability in the storage
unit. We have proposed four approaches to re-establish
the system feasibility. Extensive simulation experiments
show that the proposed four solutions achieve energy
savings up to 67%, and reduce the deadline miss ratio
up to 10%.

REFERENCES

Abdallah N.; Queudet A.; and Chetto M.,
2014. Task Partitioning Strategies for Multi-
core Real-Time FEnergy Harvesting Systems. In
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2014 IEEE 17th
International Symposium on. IEEE, 125-132.

Bonifaci V.; Marchetti-Spaccamela A.; Stiller S.; and
Wiese A., 2013. Feasibility analysis in the sporadic
DAG task model. In Real-Time Systems (ECRTS),
2013 25th Euromicro Conference on. IEEE, 225-233.

Burns A., 1991. Scheduling hard real-time systems: a
review. Software Engineering Journal, 6, no. 3, 116—
128.

Camponogara E.; de Oliveira A.B.; and Lima G., 2010.
Optimization-based dynamic reconfiguration of real-
time schedulers with support for stochastic processor
consumption. Industrial Informatics, IEEE Transac-

tions on, 6(4), 594-609.

Chetto M., 2014. Optimal scheduling for real-time jobs
in energy harvesting computing systems. Emerging
Topics in Computing, IEEE Transactions on, 2, no. 2,
122-133.

Chniter H.; Khalgui M.; and Jarray F., 2014. Adaptive
embedded systems: New composed technical solutions
for feasible low-power and real-time flexible OS tasks.
In Informatics in Control, Automation and Robotics
(ICINCO), 2014 11th International Conference on.
IEEE, vol. 1, 92-101.

Fonseca J.; Nlis V.; Raravi G.; and Pinho L.M., 2015.
A Multi-DAG Model for Real-Time Parallel Applica-
tions with Conditional Fxecution. In Real-Time Sys-
tems (ECRTS), 2013 25th Euromicro Conference on
(pp 225-233) IEEE.

George S.E.; Bocko M.; and Nickerson G., 2005. Evalua-
tion of a vibration-powered, wireless temperature sen-
sor for health monitoring. In Aerospace Conference,
Big Sky, MT, USA. IEEE, 3775-3781.

Gharsellaoui H.; Khalgui M.; Ahmed S.B.; et al., 2012.
New Optimal Solutions for Real-Time Reconfigurable
Periodic Asynchronous Operating System Tasks with
Minimizations of Response Time. International Jour-
nal of System Dynamics Applications (IJSDA), 1,
no. 4, 88-131.

Hamdaoui M. and Ramanathan P., Decembre 1995. A
dynamic priority assignment technique for streams
with (m, k)-firm deadlines. IEEE Transactions on
Computers, vol 44, no 12, pp 1443-1451.

Khalgui M., 2010. NCES-based modeling and CTL-
based verification of reconfigurable embedded control
systems. Computers in Industry Journal, vol 61, no
3, pp 198-212.

Liu C.L. and Layland J.W., 1973. Scheduling algo-
rithms for multiprogramming in a hard-real-time en-
vironment. Journal of the Association for Computing
Machinery, 20, no. 1, 46-61.

Manacher G.K., 1967. Production and stabilization of
real-time task schedules. Journal of the Association
for Computing Machinery, 14, no. 3, 439-465.

Michael R.G. and David S.J., 1979. Computers and in-
tractability: a guide to the theory of NP-completeness.
WH Freeman and Co, San Francisco.

Moser C.; Brunelli D.; Thiele L.; and Benini L., 2006.
Lazy scheduling for energy harvesting sensor nodes. In
From Model-Driven Design to Resource Management
for Distributed Embedded Systems, Springer. 125-134.

Saifullah A.; Ferry D.; Li J.; Agrawal K.; Lu C.; and Gill
C.D., 2014. Parallel real-time scheduling of DAGS.
Parallel and Distributed Systems, IEEE Transactions
on, 25, no. 12, 3242-3252.

Shin Y. and Choi K., 1999. Power conscious fized pri-
ority scheduling for hard real-time systems. In De-

sign Automation Conference, 1999. Proceedings. 36th.
IEEE, New Orleans, LA, USA, 134-139.

Singhoff F.; Legrand J.; Nana L.; and Marcé L., 2004.
Cheddar: a flexible real time scheduling framework. In
ACM SIGAda Ada Letters. ACM, New York, vol. 24,
1-8.

Stankovic J.A., 1988. Real-time computing systems: The
next generation, Tech. Report COINS TR 88-06. De-
partment of Computer and Information Science, Uni-
versity of Massachusetts Amherst.

Wang X.; Khemaissia I.; Khalgui M.; Li Z.; Mosbahi O.;
and Zhou M., 2015. Dynamic low-power reconfigura-
tion of real-time systems with periodic and probabilis-
tic tasks. Automation Science and Engineering, IEEE
Transactions on, 12, no. 1, 258-271.

