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Abstract

Stochastic differential equations with mixed effects provide means to model intraindividual and in-
terindividual variability in biomedical experiments based on longitudinal data. We consider N i.i.d.
stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , defined by a stochastic differential equation
with linear mixed effects. We consider a parametric framework with distributions leading to explicit
approximate likelihood functions and investigate the asymptotic behaviour of estimators under the
double asymptotic framework: the number N of individuals (trajectories) and the number n of ob-
servations per individual tend to infinity within the fixed time interval [0, T ]. The estimation method
is assessed on simulated data for various models comprised in our framework.

Key Words: discrete observations, estimating equations, mixed-effects models, parametric inference,
stochastic differential equations.

1 Introduction

Stochastic differential equations with mixed effects (SDEMEs) have received increasing interest due to
their ability to model the whole inherent variability of biomedical experiments which usually contain
repeated measurements over time on several experimental units. This occurs especially in pharcokinet-
ics/pharmacodynamics modelling. Mixed effects models use random variables for the individual specific
parameters and thus provide means to model interindividual variability. Using stochastic differential
equations allow in addition to take into account the inherent randomness of the intraindividual dynam-
ics. Hence, SDEMEs provide a good framework to study population characteristics when longitudinal
data are collected on multiple individuals ruled by the same intraindividual mechanisms (see e.g. Over-
gaard et al. (2005), Ditlevsen and De Gaetano (2005b), Picchini et al. (2008), Møller et al. (2010), Donnet
et al. (2010), Berglund et al. (2001), Leander et al. (2015) for discussions and applications on real data
sets).
The estimation of population parameters, i.e. the parameters of the random effects distributions, in
SDEMEs is a delicate problem because there is in general no closed form for the likelihood function. In
the abstract framework of non linear mixed effects models, theoretical properties of the exact maximum
likelihood estimator (MLE) of parameters are studied in Nie and Yang (2005), Nie (2006),Nie (2007)
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under several asymptotic frameworks: the number of subjects and/or the number of observations per
subject goes to infinity. The results rely on many assumptions difficult to check in practice. Other
approaches coupled with implementation estimation algorithms have been developped in e.g.Overgaard
et al. (2005), Ditlevsen and De Gaetano (2005a) (exact likelihood for Brownian motion with drift), in
Picchini et al. (2010), Picchini and Ditlevsen (2011) (approximation of the likelihood).
For SDEMEs continuously observed throughout a time interval [0, T ], with random effect in the drift
term, estimation of the random effect itself is possible on the basis of one trajectory as T tends to to
infinity. This allows to build, when N trajectories are available, plug-in type parametric or nonparametric
estimators of the random effects distributions (see e.g. Comte et al. (2013), Dion and Genon-Catalot
(2015), Genon-Catalot and Larédo (2015)).
In this paper, we study discretely observed SDEMEs with linear random effect in the drift and fixed
effect in the diffusion coefficient or fixed effect in the drift and random effect in the diffusion coefficient.
We consider here a parametric framework with distributions leading to explicit approximate likelihood
functions and study the asymptotic behaviour of the associated estimators under the double asymptotic
framework: the number N of trajectories and the number n of sample points per trajectory both tend to
infinity while the time interval of observations is fixed.
More precisely, we consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with dynamics
ruled by the following SDEME:

dXi(t) = Φ′ib(Xi(t))dt+ Ψiσ(Xi(t)) dWi(t), Xi(0) = x, i = 1, . . . , N, (1)

where (W1, . . . ,WN ) are N independent Wiener processes, (Φi,Ψi), i = 1, . . . N are N i.i.d. Rd×(0,+∞)-
valued random variables, ((Φi,Ψi), i = 1, . . . , N) and (W1, . . . ,WN ) are independent and x is a known
real value. The functions σ(.) : R → R and b(.) = (b1(.), . . . , bd(.))

′ : R → Rd are known. Each
process (Xi(t)) represents an individual and the d+ 1-dimensional random vector (Φi,Ψi) represents the
(multivariate) random effect of individual i. We assume that each process (Xi(t)) is discretely observed
on a fixed time interval [0, T ] with T > 0 at n times tj = jT/n. We consider models with parametric
distributions for the random effects. Our aim is to estimate the unknown parameters from the observations
{Xi(tj), j = 1, . . . , n, i = 1, . . . , N}, as n,N go to infinity. We consider the two following cases:
(1)We set Ψi = ψ = γ−1/2 unknown and assume that Φi is a d-dimensional Gaussian vectorNd(µ, γ−1Ω).

We denote θ = (γ,µ,Ω).
(2) We set Φi = ϕ unknown, Ψi = Γ

−1/2
i and assume that Γi has Gamma distribution G(a, λ) with

density (λa/Γ(a))γa−1 exp (−λγ) on (0,+∞). We denote τ = (λ, a, ϕ).
Random effects are often modelled by normal laws when they are real valued or log-normal laws when they
are positive. Gamma distributions are another classical way for the latter case. In addition, choices (1)-
(2) lead to closed-form formulae for the likelihood function. If the sample paths are continously observed
throughout the time interval [0, T ] and for known γ, the exact likelihood of (Xi(t), t ∈ [0, T ], i = 1, . . . , N)

for case (1) was obtained in Delattre et al. (2013). Here, we consider discrete observations and assume that
the parameter γ in the diffusion coefficient is unknown. Model (1) with nul drift and discrete observations
is considered in Delattre et al. (2015) with Ψi = Γ

−1/2
i and Γi with Gamma distribution G(a, λ). Case

(2) extends this paper by considering a non null drift depending on an unknown parameter.
We present in Section 2 the model and assumptions and give preliminary lemmas linked with sample
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paths discretisations. Section 3 gives the approximate likelihood functions for cases (1)-(2) derived from
the Euler-scheme approximation of equation (1). In Section 4, we study the asymptotic properties of
estimators (Theorem 1, Theorem 2). In case (1), the fixed-effect parameter γ is estimated with rate√
Nn and the population parameters (µ,Ω) are estimated with rate

√
N . The case where Ω is singular

is included in Theorem 1 which allows to consider mixed effects as some components of Φi can be
deterministic. In case (2), all parameters are estimated with the same rate

√
N . Moreover, the estimators

of population parameters are asymptotically equivalent to the maximum likelihood estimators based on
direct observations of N i.i.d. Gamma random variables. Section 5 provides numerical simulation results
for various examples of SDEMEs and different values of N,n and illustrate the performances of the
present framework for statistical inference. Section 6 gives concluding remarks. Proofs are gathered in
Section 7 and auxiliary results in Section 8.

2 Model, assumptions and preliminaries

Consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with dynamics ruled by (1). The
processes (W1, . . . ,WN ) and the r.v.’s (Φi,Ψi), i = 1, . . . , N are defined on a common probability space
(Ω,F ,P). Consider the filtration (Ft = σ(Φi,Ψi,Wi(s), s ≤ t, i = 1, . . . , N), t ≥ 0).
The canonical space associated with one trajectory on [0, T ] is given by ((Rd× (0,+∞)×CT )) where CT
denotes the space of real valued continuous functions on [0, T ] endowed with the usual Borel σ-algebra. Let
θ = (γ,µ,Ω) in case (1) (resp. τ = (λ, a, ϕ) in case (2)) denote the unknown parameter. Let Pθ in case (1)
(resp. Pτ in case (2)) be the distribution of (Φi,Ψi, (Xi(t), t ∈ [0, T ]). For theN trajectories, the canonical
space is

∏N
i=1((Rd × (0,+∞)× CT ),Pθ = ⊗Ni=1Pθ) (resp.

∏N
i=1((Rd × (0,+∞)× CT ),Pτ = ⊗Ni=1Pτ )).

We introduce the following assumptions:

(H1) The real valued functions x→ bj(x), j = 1, . . . , d and x→ σ(x) are C2 on R with first and second
derivatives bounded by L. The function σ(.) is lower bounded : ∃σ0 > 0,∀x ∈ R, σ(x) ≥ σ0.

(H2) There exists a constant K such that, ∀x ∈ R, ‖b(x)‖+ |σ(x)| ≤ K.
(‖.‖ denotes the Euclidian norm of Rd.)

(H3) The matrix Vi(T ) is positive definite Pθ-a.s. for all θ (resp. Pτ -a.s. for all τ), where

Vi(T ) =

(∫ T

0

bk(Xi(s))b`(Xi(s))

σ2(Xi(s))
ds

)
1≤k,`≤d

, (2)

Assumption (H1) is standard and ensures that, for i = 1, . . . , N , for all deterministic (ϕ,ψ) ∈ Rd ×
(0,+∞), the stochastic differential equation

dXϕ,ψ
i (t) = ϕ′b(Xϕ,ψ

i (t))dt+ ψσ(Xϕ,ψ
i (t)) dWi(t), Xϕ,ψ

i (0) = x (3)

admits a unique strong solution process (Xϕ,ψ
i (t), t ≥ 0) adapted to the filtration (Ft). Moreover, the

stochastic differential equation with random effects (1) admits a unique strong solution adapted to (Ft)
such that the joint process (Φi,Ψi, Xi(t), t ≥ 0) is strong Markov and the conditional distribution of
(Xi(t)) given Φi = ϕ,Ψi = ψ is identical to the distribution of (3). The processes (Φi,Ψi, Xi(t), t ≥
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0)), i = 1, . . . , N are i.i.d.. (see e.g. Delattre et al. (2013), Genon-Catalot and Larédo (2015), Comte
et al. (2013)).
Assumption (H2) may appear strong. However, it ensures, in particular, that, for any distribution of
(Φi,Ψi) such that E(‖Φi‖2p + Ψ2p

i ) < +∞, E(Xi(t)
2p) < +∞. If (H2) does not hold, this property may

not be satisfied (see Section 8 for a discussion). Assumption (H3) ensures that all the components of Φi

can be estimated. If the functions (bk/σ
2) are not linearly independent, the dimension of Φi is not well

defined and (H3) is not fulfilled. If d = 1, (H3) is obviously verified.
As usual in mixed effects models, the likelihood of the i-th vector of observations (Xi(tj), j = 1, . . . , n)

is computed in two steps. First, we consider the conditional likelihood given the random effects Φi =

ϕ,Ψi = ψ. Then, we integrate it with respect to the distribution of the random effects. As we have
discrete observations, the exact conditional likelihood given the random effects, i.e. the exact likelihood
of a discretized sample of (3), is untractable because the transition densities are not explicit. Therefore,
we use an approximate conditional likelihood derived from the likelihood of the Euler scheme associated
with equation (3).
Let us first introduce the notations that we need in the sequel, using the notation Y ′ for the transposition
of a vector or a matrix Y .

∆n = ∆ =
T

n
, Xi,n = Xi = (Xi(tj)), tj,n = tj = jT/n for j = 1, . . . , n,

Si,n = Si =
1

∆

n∑
j=1

(Xi(tj)−Xi(tj−1))
2

σ2(Xi(tj−1))
, (4)

Vi,n = Vi =

 n∑
j=1

∆
bk(Xi(tj−1))b`(Xi(tj−1))

σ2(Xi(tj−1))


1≤k,`≤d

, (5)

Ui,n = Ui =

 n∑
j=1

bk(Xi(tj−1))(Xi(tj)−Xi(tj−1))

σ2(Xi(tj−1))


1≤k≤d

, (6)

Ui(T ) =

(∫ T

0

bk(Xi(s))

σ2(Xi(s))
dXi(s)

)
1≤k≤d

. (7)

Using that the Euler scheme increments are conditionally Gaussian random variables yields that the
approximate likelihood obtained by the Euler scheme discretisation for (3) with fixed ϕ and ψ = 1/

√
γ

is (up to constants) given by:

Ln(Xi,n, γ, ϕ) = γn/2 exp [−γ
2

(Si,n + ϕ′Vi,nϕ− 2ϕ′Ui,n)], where (8)

Si,n + ϕ′Vi,nϕ− 2ϕ′Ui,n =

n∑
j=1

(Xi(tj)−Xi(tj−1)−∆ϕ′b(Xi(tj−1)))
2

∆σ2(Xi(tj−1))
. (9)

As n tends to infinity, Si,n/n converges to Γ−1
i in probability, Vi,n converges a.s. to Vi(T ) (defined in (2))

and Ui,n converges in probability to Ui(T ). Hence, Assumption (H3) ensures that for n large enough Vi,n
is positive definite.
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In the general case, let νϑ(dγ, dϕ) denote the joint distribution (Ψi,Φi) depending on an unknown pa-
rameter ϑ, we propose to define an approximate likelihood function by:

LN,n(ϑ) =

N∏
i=1

Ln(Xi,n, ϑ) with Ln(Xi,n, ϑ) =

∫
Ln(Xi,n, γ, ϕ)νϑ(dγ, dϕ).

This function could be studied theoretically by using tools analogous to the ones developped by Nie
and Yang (2005), Nie (2006), Nie (2007). However, proofs are technically heavy. This is why we rather
focus on distributions for the random effects leading to explicit formulae for LN,n(ϑ) and thus to explicit
estimators of the unknown parameters.

Let us first state some preliminary lemmas. In the first two ones, we set X1(t) = X(t),Φ1 = Φ,Ψ1 = Ψ.

Lemma 1. Under (H1)-(H2), for s ≤ t and t− s ≤ 1, p ≥ 1,

Eϑ(|X(t)−X(s)|p|Φ = ϕ,Ψ = ψ) . Kp(t− s)p/2(‖ϕ‖p + ψp).

For t→ H(t,X.) a predictable process, let V (H;T ) =
∫ T

0
H(s,X.)ds and U(H;T ) =

∫ T
0
H(s,X.)dX(s).

Lemma 2. Assume (H1)-(H2) and p ≥ 1. If H is bounded, Eϑ(|U(H;T )|p|Φ = ϕ,Ψ = ψ) . ‖ϕ‖p + ψp.

Consider f : R→ R and set H(s,X.) = f(X(s)), Hn(s,X.) =
∑n
j=1 f(X((j − 1)∆))1((j−1)∆,j∆](s). If f

is Lipschitz,
Eϑ(|V (H;T )− V (Hn;T ))|p|Φ = ϕ,Ψ = ψ) . ∆p/2(‖ϕ‖p + ψp). (10)

If f is C2 with f ′, f ′′ bounded

Eϑ(|U(H;T )− U(Hn;T ))|p|Φ = ϕ,Ψ = ψ) . ∆p/2(‖ϕ‖2p + ‖ϕ‖pψp + ψ2p + ψ3p). (11)

We introduce the pivotal random variable which is needed to get the right constraint on N and n:

S
(1)
i,n =

1

Γi
C

(1)
i,n , where C

(1)
i,n =

n∑
j=1

(Wi(tj)−Wi(tj−1)))2

∆
∼ χ2(n) (12)

which corresponds to Si,n when b(.) = 0, σ(.) = 1 and has an explicit distribution as Γi and C
(1)
i,n are

independent.

Lemma 3. Assume (H1)-(H2) and p ≥ 1. Then,

Eϑ

∣∣∣∣∣Si,nn −
S

(1)
i,n

n

∣∣∣∣∣
p

|Φi = ϕ,Ψi = ψ) . ∆p(1 + ψ2p‖ϕ‖2p + ψ4p + ‖ϕ‖2p)

In the sequel, when there is no ambiguity, the subscript n is omitted in notations.
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3 Approximate Likelihoods with random effects.

In this paragraph, we compute the approximate likelihoods in cases (1)-(2). We denote Λn(Xi, θ) the
likelihood associated to the sample path Xi observed with sampling interval T/n and ΛN,n(θ) the likeli-
hood of the N paths in case (1) (resp. Λ̃n(Xi, τ), Λ̃N,n(τ) in case (2)).

Case (1): Φi random , Ψi = ψ = 1/
√
γ deterministic and θ = (γ,µ,Ω).

Let Id denote the identity matrix of Rd and set, for i = 1, . . . , N ,

R−1
i = (Id + ViΩ)−1Vi. (13)

Proposition 1. Assume that for i = 1, . . . , N ,Ψi = γ−1/2 with γ > 0 deterministic and that Φi has
distribution Nd(µ, γ−1Ω). Then, under (H1) and (H3), an explicit approximate likelihood for (Xi,n) is

Λn(Xi,n, γ,µ,Ω) = γn/2(det(Id + ViΩ))−1/2

exp
[
−γ

2

(
Si + (µ− V −1

i Ui)
′R−1
i (µ− V −1

i Ui)− U ′iV −1
i Ui

)]
.

Proof. Assume first that Ω is invertible and define

Σi = (Ω−1 + Vi)
−1, mi = Σi(Ui + Ω−1µ). (14)

Ti,n(µ,Ω) = Ti(µ,Ω) = µ′Ω−1µ−m′iΣ
−1
i mi. (15)

Integrating (8) with respect to the distribution of Φi yields:

Λn(Xi,n, γ,µ,Ω) = γn/2 exp (−γ
2
Si)

γd/2

(2π)d/2(det(Ω))1/2
×∫

Rd

exp (γ(ϕ′Ui −
1

2
ϕ′Viϕ)) exp (−γ

2
(ϕ− µ)′Ω−1(ϕ− µ))dϕ

= γn/2 exp (−γ
2
Si)

(
det(Σi)

det(Ω)

)1/2

exp (−γ
2
Ti(µ,Ω)).

Noting that Σi = Ω(Id+ViΩ)−1, we get det(Σi)
det(Ω) = (det(Id+ViΩ))−1. Some computations using matrices

equalities and (5),(6), (13) yield the other expression for Ti

Ti(µ,Ω) = (µ− V −1
i Ui)

′R−1
i (µ− V −1

i Ui)− U ′iV −1
i Ui. (16)

Now, the formula for Λn(Xi,n, γ,µ,Ω) is valid even for non invertible Ω. So the same conclusion holds
as we can apply the Scheffé theorem to conclude.

Afterwards, the independence of the Xi’s yields that, for the observation (Xi, i = 1, . . . , N),

ΛN,n(γ,µ,Ω) =

N∏
i=1

Λn(Xi,n, γ,µ,Ω). (17)
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Remark 1. When γ is known and Ω invertible, the exact likelihood associated with a continuous obser-
vation of (Xi(t), t ∈ [0, T ], i = 1, . . . , N) is studied in Delattre et al. (2013). Proposition 1 considers the
case of discrete observations and the presence of an unknown parameter γ in the diffusion coefficient;

Case (2): Φi = ϕ unknown deterministic parameter and Ψi = 1/
√

Γi with Γi ∼ G(a, λ) and τ = (λ, a, ϕ).
Integrating (8) with respect to the distribution of Γi yields:

Λ̃n(Xi,n, τ) =
λaΓ(a+ (n/2))

Γ(a)(λ+ 1
2 (Si − 2ϕ′Ui + ϕ′Viϕ))a+(n/2)

, (18)

This expression is always well defined since the denominator is positive by (9). For the N paths, we get
the approximate likelihood,

Λ̃N,n(τ) =

N∏
i=1

Λ̃n(Xi,n, τ). (19)

4 Asymptotic properties of estimators.

In this section, we study the asymptotic behaviour of the estimators based on the approximate likelihood
functions of the previous section. First, a natural question arises here about the comparison with direct
observation of an i.i.d. sample (Φi) or (Γi). The case where ϕ,ψ are both deterministic is detailed at the
end of Section 4.3.

4.1 Direct observation of the random effects

Assume that a sample (Φi, i = 1, . . . , N) or (Γi, i = 1, . . . , N) is observed. Let ˜̀
N (µ, ω2) (resp. `N (λ, a))

denote the likelihood of of the N -sample (Φi) (resp. (Γi)). For the Gaussian observations, we have

∂

∂µ
˜̀
N (µ, ω2)) = γω−2

N∑
i=1

(µ− Φi),
∂

∂ω2
˜̀
N (µ, ω2)) =

γ

2ω4

N∑
i=1

(
(Φi − µ)2 − γ−1ω2

)
.

The Fisher information matrix is J0(µ, ω2) =

(
γ
ω2 0

0 1
2ω4

)
. The parameter γ cannot be estimated (only

γω−2 is identifiable).
If we observe a sample (Γi) with Gamma distribution G(a, λ), setting ψ(a) = Γ′(a)/Γ(a) (the di-Gamma
function), the score function is given by

∂

∂λ
`N (ϑ) =

N∑
i=1

(a
λ
− Γi

)
,

∂

∂a
`N (ϑ) =

N∑
i=1

(−ψ(a) + log λ+ log Γi)

and the Fisher information matrix is

I0(λ, a) =

(
a
λ2 − 1

λ

− 1
λ ψ′(a)

)
. (20)

Using properties of the di-gamma function (aψ′(a)−1 6= 0), I0(a, λ) is invertible for all (a, λ) ∈ (0,+∞)2

(see Section 4.1)).
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4.2 Random effect in the drift and fixed effect in the diffusion coefficient

4.2.1 Univariate random effect in the drift coefficient

We assume d = 1, Φi ∼ N (µ, γ−1ω2), Ψi = γ−1/2 (fixed, unknown). So θ = (γ, µ, ω2) ∈ (0,+∞) × R ×
(0,+∞). The associated approximate likelihoood obtained in Proposition 1 is given by (17) with

Λn(Xi,n, θ) =
γn/2

(1 + ω2Vi,n)1/2
exp

[
−γ

2
(Si + Ti(µ, ω

2))
]
,

where Ui, Vi are defined in (5)-(6) and (see (15) and (16))

Ti(µ, ω
2) =

Vi
(1 + ω2Vi)

(
µ− Ui

Vi

)2

− U2
i

Vi
=
µ2

ω2
− (Ui + ω−2µ)2

(Vi + ω−2)
. (21)

Set `N,n(θ) = log ΛN,n(θ) and define the (pseudo-)score function associated with log ΛN,n(θ)

GN,n(θ) =

(
∂

∂γ
`N,n(θ)

∂

∂µ
`N,n(θ)

∂

∂ω2
`N,n(θ)

)′
. (22)

We study the estimators defined by the estimating equation:

GN,n(θ̃N,n) = 0. (23)

Define the random variables using (5),(6),(2) and (7),

Ai,n = Ai =
Ui,n − µVi,n
1 + ω2Vi,n

and Bi,n = Bi =
Vi,n

1 + ω2Vi,n
, (24)

Ai(T ;µ, ω2) =
Ui(T )− µVi(T )

1 + ω2Vi(T )
and Bi(T ;ω2) =

Vi(T )

1 + ω2Vi(T )
. (25)

In the proofs, we use that Ai,n (resp. Bi,n) converges to Ai(T ;µ, ω2) (resp. Bi(T ;ω2) and control their
differences (see Lemma 4 in the Appendix). The vector (22) is given by:

∂

∂γ
`N,n(θ) =

N n

2γ
− 1

2

N∑
i=1

(
Si + Ti(µ, ω

2)
)
,

∂

∂µ
`N,n(θ) = −γ

2

N∑
i=1

∂

∂µ
Ti(µ, ω

2) = γ

N∑
i=1

Ai,

∂

∂ω2
`N,n(θ) = −γ

2

N∑
i=1

∂

∂ω2
Ti(µ, ω

2)− 1

2

N∑
i=1

Vi
1 + ω2Vi

=
1

2

N∑
i=1

(γA2
i −Bi).

The parameters γ and µ, ω2 have different rates of convergence. Thus, we define the rate matrix DN,n

and the Fisher information matrix I(θ) by

DN,n =


1√
Nn

0 0

0 1√
N

0

0 0 1√
N

 , I(θ) =

(
1

2γ2 0

0 I(θ)

)
where (26)
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I(θ) =

(
γEθB1(T ;ω2) γEθA1(T ;µ, ω2)B1(T ;ω2)

γEθA1(T ;µ, ω2)B1(T ;ω2) Eθ
(
γA2

1(T ;µ, ω2)B1(T ;ω2)− 1
2B

2
1(T ;ω2)

) ) . (27)

It is proved in Delattre et al. (2013) (see Section 8.3) that I(θ) is the covariance matrix of the vector(
γA1(T ;µ, ω2)

1
2 (γA2

1(T, µ, ω2)−B1(T ;ω2))

)
. (28)

The following holds:

Theorem 1. Assume (H1)-(H2) and that I(θ) is invertible. Then, if N,n tend to infinity with N/n→ 0,
with probability tending to 1, there exists a solution to (23), θ̃N,n, which is consistent and such that
D−1
N,n(θ̃N,n − θ) converges in distribution under Pθ to N3(0, I−1(θ)) where I(θ) is defined in (26).

Note that, if the sample paths (Xi(t)), t ∈ [0, T ], i = 1, . . . , N) are continuouly observed throughout [0, T ]

and if γ is known, the strong consistency of the exact maximum likelihood (µ̂N , ω̂
2
N ) of (µ, ω2) is proved

in Delattre et al. (2013) together with the convergence in distribution of
√
N((µ̂N − µ), (ω̂2

N − ω2)) to
N2(0, I−1(θ)). Hence, there is no loss of efficiency due to the discrete observations under the constraint
N/n→ 0.
The parameter γ can be estimated from each trajectory: it is well known that, for each i, (

√
n((n/Si,n)−γ)

converges, as n tends to infinity, in distribution to N (0, 1/2γ2). On the basis of N trajectories, γ̃N,n has
the same asymptotic distribution with rate

√
Nn.

We can also compare the above result to the case of direct observation of (Φi). If ω2 is known, the
asymptotic variance of µ̃N,n is (see (25) and Section 4.1)

(
γEθB1(T ;ω2)

)−1 ≥ ω2

γ
.

So there is a loss of efficiency w.r.t. the direct observation of the random effects.
It is difficult to compare the asymptotic variance of ω̃2

N,n to the corresponding one in case of direct
observation of (Φi) (see the expression in I(θ)). We only do it on a simple example.

Example. Consider the model Xi(t) = Φit + γ−1/2Wi(t) (b = 1, σ = 1). Then, `N,n(θ) is the
exact likelihood, Ui = Xi(T ), Vi = T , the estimation of (µ, ω2) corresponds to the observation of
Xi(T ) = ΦiT + γ−1/2Wi(T ). We have:

∂

∂γ
`N,n(θ) =

N n

2γ
− 1

2

N∑
i=1

[Si +
T

1 + ω2T
(
Xi(t)

T
− µ)2] ,

∂

∂µ
`N,n(θ) =

γ

1 + ω2T

N∑
i=1

(Xi(T )− µT ),

∂

∂ω2
`N,n(θ) =

1

2

N∑
i=1

[γ
(Xi(T )− µT )2

(1 + ω2T )2
− T

1 + ω2T
], I(θ) =

 γ T
1+ω2T 0

0 1
2

(
T

1+ω2T

)2

 .

We can see that 2
(

1+ω2T
T

)2

≥ 2ω4, thus a larger variance than for direct observation.
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4.2.2 Multivariate random effect in the drift coefficient

Let us now consider that Φi ∼ Nd(µ, γ−1Ω), Ψi = γ−1/2 (fixed, unknown) and θ = (γ,µ,Ω) ∈
(0,+∞) × Rd × M(d), where M(d) is the set of nonnegative symmetric matrices of Rd. The associ-
ated approximate likelihood given in Proposition 1 leads to the expression, using (13) and the expression
for Ti(µ,Ω) given in (16)

`N,n(θ) =
Nn

2
log γ − 1

2

N∑
i=1

log det(Id + ViΩ)− γ

2

N∑
i=1

(Si + Ti(µ,Ω)), (29)

Let us introduce the quantities

Bi,n = Bi = R−1
i = (V −1

i + Ω)−1 (30)

Ai,n = Ai = (Id + ViΩ)−1(Ui − Viµ) = Bi(V
−1
i Ui − µ) (31)

They converge as n→∞ to the random variables

Ai(T ;µ,Ω) = Bi(T ; Ω)(Vi(T )−1Ui(T )− µ) and Bi(T ; Ω) = (Vi(T )−1 + Ω)−1 (32)

Denote by ∇µf(.) and ∇Ωf(.) the vector ( ∂
∂µk

f(.))1≤k≤d and the matrix ( ∂
∂ωk,l

f(.))1≤k,l≤d. The (pseudo-
)score function associated with log ΛN,n(θ) is

GN,n(θ) =

(
∂

∂γ
`N,n(θ) ∇µ`N,n(θ) ∇Ω`N,n(θ)

)′
. (33)

In order to avoid multiple indexes, we denote by M lk the (l, k) term of a matrix and (Y 1, . . . , Y d) the
coordinates of a vector Y ∈ Rd . The vector (22) is now , using that ∂ log detRi = Tr(R−1

i ∂Ri),

∂

∂γ
`N,n(θ) =

N n

2γ
− 1

2

N∑
i=1

(Si + Ti(µ,Ω)) ,

∇µ`N,n(θ) = −γ
2

N∑
i=1

∇µTi(µ,Ω) = γ

N∑
i=1

Ai,

∇Ω`N,n(θ) = −1

2

N∑
i=1

Bi +
γ

2

N∑
i=1

AiA
′
i.

Similarly, we define the rate matrix DN,n and the Fisher information matrix I(θ) by

DN,n =


1√
Nn

0 0

0 1√
N
Id 0

0 0 1√
N
Id×d

 , I(θ) =

(
1

2γ2 0

0 I(θ)

)
where

where I(θ) is the covariance matrix of the vector(
γA1(T ;µ,Ω)

1
2 (γA1(T ;µ,Ω)(A1(T ;µ,Ω))′ −B1(T ; Ω))

)
. (34)
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The asymptotic study of the estimators of θ can be done similarly.

4.3 Fixed effect in the drift and random effect in the diffusion coefficient

The Φi’s are deterministic equal to an unknown value ϕ and Ψi = Γ
−1/2
i with Γi ∼ G(a, λ) and τ =

(λ, a, ϕ). For sake of simplicity, we just consider d = 1 (ϕ ∈ R). Let us set ˜̀N,n(τ) = log Λ̃N,n(τ) and

G̃N,n(τ) =

(
∂

∂λ
˜̀
N,n(τ)

∂

∂a
˜̀
N,n(τ)

∂

∂ϕ
˜̀
N,n(τ)

)′
. (35)

We consider the estimators τ̃N,n defined by the estimating equation

G̃N,n(τ̃N,n) = 0. (36)

Recall that ψ(z) = Γ′(z)/Γ(z) and set

ζi(τ) = ζi =
λ+ 1

2

(
Si − 2ϕUi + ϕ2Vi

)
a+ (n/2)

. (37)

∂

∂λ
˜̀
N,n(τ) =

N∑
i=1

(a
λ
− ζ−1

i

)
,

∂

∂a
˜̀
N,n(τ) =

N∑
i=1

(log λ− ψ(a)− log ζi) +N (ψ(a+ (n/2))− log (a+ (n/2))) ,

∂

∂ϕ
˜̀
N,n(τ) =

N∑
i=1

ζ−1
i (Ui − ϕVi).

The following holds.

Theorem 2. Assume (H1)-(H2), a > 5 and that N,n tend to infinity with N/n → 0. Then, a solution
τ̃N,n to (36) exists with probability tending to 1 which is consistent and such that

√
N(τ̃N,n−τ) converges

in distribution under Pτ to N3(0,V−1(τ)) where I0(λ, a) is defined in (20), V (t) in (2) and

V(τ) =

(
I0(λ, a) 0

0 Eτ (ΓV (T ))

)
.

For the first two components of τ̃N,n, the constraint N/n2 → 0 is enough.

Let us stress that the estimator of (λ, a) based on the indirect observations (Xi, i = 1, . . . , N) is asymp-
totically equivalent to the exact maximum likelihood estimator of (λ, a) based on the direct observation
of (Γi) under the constraint N/n2 → 0 (see Section 4.1). This result was obtained for ϕ = 0 (null drift)
in Delattre et al. (2014) under the constraint N/n→ 0 . Proposition 2 thus extends this study, improves
the constraint on N,n and contains the additional result concerning the estimation of ϕ which is new.
Note that, contrary to the previous section, all the components of τ are estimated with the same rate

√
N .
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We can compare this result to the estimation of fixed ϕ, γ when observing the N -sample paths. The
model is dXi(t) = ϕb(Xi(t))dt + γ−1/2σ(Xi(t))dWi(t), Xi(0) = x, i = 1, . . . , N . Using (8), we find the
estimators

ϕ̂N,n =

∑N
i=1 Ui∑N
i=1 Vi

, γ̂N,n =
nN∑N

i=1 Si + ϕ̂2
N,nVi − 2ϕ̂N,nUi

.

The limiting distribution of
√
Nn(γ̂N,n − γ) is N (0, 2γ2). Provided that N/n → 0, the estimator ϕ̂N,n

converges in distribution to N (0, (γEV (T ))−1). The result obtained for ϕ̃N,n in Theorem 2 is thus
not surprising. Note that the estimator ϕ̂N,n can be considered with random effects Γi and satisfies√
N(ϕ̂N,n − ϕ) converges in distribution to N (0,E(Γ−1V (T ))/E2(V (T ))).

5 Simulation study

We investigate both the cases of random effect in the drift and of random effect in the diffusion coefficient.
Several models are simulated in each case. For each SDEME model, 100 data sets are generated. Different
values for N , different numbers of observations per trajectory n and several sets of parameters are used.
Each data set is simulated as follows. First, the random effect is drawn, then, the diffusion sample path
is simulated using a Euler scheme with a very small discretization step-size δ = 0.001. The time interval
between consecutive observations is taken equal to ∆ = 0.01 with a resulting time interval n∆.The
empirical mean and standard deviation of the estimates are computed from the 100 datasets and are
compared with those of the estimates based on a direct observation of the random effects. It follows
from this simulation design that N random effects variables are simulated for each value of n, resulting
in different estimates.

5.1 Random effect in the drift and fixed effect in the diffusion coefficient

We consider models with univariate or bivariate random effect in the drift. Examples 1 and 2 concern a
univariate random effect. Example 3 concerns a bivariate random effect with one deterministic component
whereas Example 4 has a bivariate random effect with two random components. The value of γ is either
4 or 10 which respectively corresponds to γ−1/2 = 0.5, or γ−1/2 ' 0.32.
Example 1. dXi(t) = ΦiXi(t)dt+ 1√

γ dWi(t), Xi(0) = 0 , Φi ∼
i.i.d
N (µ, ω

2

γ )

Example 2. dXi(t) = ΦiXi(t)
2/(1 +Xi(t)

2)dt+ 1√
γ dWi(t), Xi(0) = 0 , Φi ∼

i.i.d
N (µ, ω

2

γ )

Example 3. dXi(t) = (ρXi(t) + Φi)dt+ 1√
γ dWi(t), Xi(0) = 0 , Φi ∼

i.i.d
N (µ, ω

2

γ )

Example 4. dXi(t) = (Φi1Xi(t)+Φi2)dt+ 1√
γ dWi(t), Xi(0) = 0 , Φi1 ∼

i.i.d
N (µ1,

ω2
1

γ ) , Φi2 ∼
i.i.d
N (µ2,

ω2
2

γ )

with Φi1,Φi2 independent random variables.
Note that, in Examples 1 and 3, which are classical, assumption (H1) is not satisfied. Nevertheless, the
numerical results are quite good giving evidence that the method can be successfully applied even in
these cases.
The results are given in Tables 1 to 4. For the three considered experimental designs (N = 50, n = 500),
(N = 100, n = 500) and (N = 100, n = 1000), the model parameters are estimated with very little
bias, especially γ̃. This is consistent with the theoretical result that γ̃ has rate

√
Nn (Theorem 1). The

estimates of (µ̃, ω̃2) are almost as good as the estimations based on a direct observation of the random

12



N = 50 N = 100
n = 500 n = 1000 n = 500 n = 1000

(µ0 = 0, ω2
0 = 0.1, γ0 = 4)

X µ̃ 0.00 (0.07) 0.00 (0.04) 0.00 (0.04) 0.00 (0.03)
ω̃2 0.09 (0.08) 0.10 (0.04) 0.09 (0.05) 0.10 (0.03)
γ̃ 4.00 (0.03) 4.00 (0.03) 4.00 (0.02) 4.00 (0.02)

Φ µ̂ 0.00 (0.02) 0.00 (0.02) 0.00 (0.01) 0.00 (0.02)
ω̂2 0.10 (0.02) 0.10 (0.02) 0.10 (0.01) 0.10 (0.01)

Table 1: (Example 1) Empirical mean and standard deviation (in brackets) of the parameter estimates
from 100 datasets for different values of N and n. X: Estimates based on the (Xi,n)’s; Φ: estimates
based on direct observation of the Φi’s.

N = 50 N = 100
n = 500 n = 1000 n = 500 n = 1000

(µ0 = 0, ω2
0 = 0.1, γ0 = 4)

X µ̃ 0.00 (0.10) 0.00 (0.06) 0.00 (0.06) 0.01 (0.03)
ω̃2 0.10 (0.15) 0.07 (0.06) 0.10 (0.12) 0.09 (0.04)
γ̃ 4.00 (0.03) 4.01 (0.03) 4.00 (0.03) 4.00 (0.02)

Φ µ̂ 0.00 (0.02) 0.00 (0.02) 0.00 (0.01) 0.00 (0.02)
ω̂2 0.10 (0.02) 0.10 (0.02) 0.10 (0.01) 0.10 (0.01)

Table 2: (Example 2) Empirical mean and standard deviation (in brackets) of the parameter estimates
from 100 datasets for different values of N and n. X: Estimates based on the (Xi,n)’s; Φ: estimates
based on direct observation of the Φi’s.

effects. Increasing N and n reduces the bias and the standard deviation of the estimates. Note that the
results are also very satisfactory in Example 3, where there are both random and fixed effects in the drift,
showing the validity of our method even in situations where the covariance matrix of the random effects
is not invertible.

5.2 Fixed effect in the drift and random effect in the diffusion coefficient

The following models are studied:
Example 5. dXi(t) = ρdt+ Γ

−1/2
i dWi(t), Xi(0) = 0 , Γi ∼

i.i.d
G(a, λ)

Example 6. dXi(t) = ρXi(t)dt+ Γ
−1/2
i dWi(t), Xi(0) = x , Γi ∼

i.i.d
G(a, λ)

Example 7. dXi(t) = ρXi(t)dt+ Γ
−1/2
i

√
1 +Xi(t)2dWi(t), Xi(0) = x , Γi ∼

i.i.d
G(a, λ)

The results are given in Tables 5 to 7. Estimations based on the processes and estimations based on
direct observations of the random effects are compared. The maximisation of the likelihood of Gamma
distributed random variables may be numerically difficult, which may explain that the results are a
little bit biased with relatively large standard deviation. Moreover, the estimates vary according to the
successive N -samples corresponding to each n. The quality of the estimations based on the processes
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N = 50 N = 100
n = 500 n = 1000 n = 500 n = 1000

(µ0 = 1, ω2
0 = 1, γ0 = 10, ρ0 = −0.1)

X µ̃ 1.00 (0.05) 1.01 (0.05) 1.00 (0.03) 1.00 (0.04)
ω̃2 0.99 (0.26) 1.01 (0.26) 1.00 (0.21) 0.97 (0.15)
γ̃ 10 (0.10) 10.03 (0.06) 10.00 (0.05) 10.01 (0.05)
ρ̃ -0.10 (0.02) -0.10 (0.01) -0.10 (0.01) -0.10 (0.01)

φ µ̂ 1.00 (0.04) 1.00 (0.05) 1.00 (0.03) 1.00 (0.03)
ω̂2 1.00 (0.21) 1.00 (0.22) 1.00 (0.15) 0.99 (0.14)

(µ0 = 1, ω2
0 = 0.4, γ0 = 4, ρ0 = −0.1)

X µ̃ 1.01 (0.08) 1.02 (0.06) 1.01 (0.06) 1.00 (0.05)
ω̃2 0.40 (0.14) 0.40 (0.12) 0.41 (0.10) 0.40 (0.09)
γ̃ 4.01 (0.04) 4.01 (0.02) 4.01 (0.03) 4.01 (0.02)
ρ̃ -0.11 (0.02) -0.10 (0.01) -0.10 (0.02) -0.10 (0.01)

Φ µ̂ 1.00 (0.05) 1.00 (0.04) 1.00 (0.03) 1.00 (0.03)
ω̂2 0.39 (0.06) 0.41 (0.09) 0.41 (0.07) 0.40 (0.06)

Table 3: (Example 3) Empirical mean and standard deviation (in brackets) of the parameter estimates
from 100 datasets for different values of N and n. X: Estimates based on the (Xi,n)’s; Φ: estimates
based on direct observation of the Φi’s.

is not always satisfactory, even for N = 100. Indeed, the value of N seems to have little impact while
increasing n highly improves the estimation of (λ, a). On the whole, parameters a and λ are highly
underestimated when n is small (n = 500 and n = 1000), and a high number of observations per
trajectory (here n = 10000) is required to get unbiased estimations of parameters a and λ. When n

is large, the variances of the parameter estimates is close to the variances of the estimates based on
a direct observation of the random effects. The theoretical asymptotic variances of the estimators are
explicit in Example 5, and we see from table 5 that the variances of the parameter estimates are also
close to the theoretical variances when n = 10000. Nevertheless, let us point out that the estimates of
EΨ2

i = EΓ−1
i = λ/(a − 1) and (S.D.)Ψ2

i = λ/((a − 1)
√
a− 2) are always satisfactory even for small n.

Parameter ρ is correctly estimated in all (N,n) configurations. The standard deviation of the estimations
decreases when n becomes larger, which is in accordance with the theory (see table 5 where the true
theoretical values are known).

6 Concluding remarks

In this paper, we consider N SDEMEs ruled by (1) which are discretely observed on a fixed time interval.
We study the parametric inference for the mixed effects when N and the number n of observations per
sample path grow to infinity. We investigate the two cases of random effect in the drift and fixed effect
in the diffusion coefficient or fixed effect in the drift and random effect in the diffusion coefficient. For
specific distributions of the random effects, we obtain explicit approximation of the likelihood functions
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N = 50 N = 100
n = 500 n = 1000 n = 500 n = 1000

(µ1,0 = −0.1, µ2,0 = 1, ω2
1,0 = 0.1, ω2

1,0 = 1, γ0 = 10, ρ0 = −0.1)

X µ̃1 -0.10 (0.03) -0.10 (0.02) -0.10 (0.02) -0.10 (0.01)
ω̃2

1 0.10 (0.04) 0.10 (0.02) 0.10 (0.03) 0.10 (0.02)
µ̃2 1.00 (0.07) 1.00 (0.05) 1.00 (0.04) 1.00 (0.04)
ω̃2

2 0.96 (0.28) 0.97 (0.28) 0.94 (0.19) 0.99 (0.20)
γ̃ 10.03 (0.09) 10.02 (0.07) 10.03 (0.07) 10.02 (0.05)

Φ µ̂1 -0.10 (0.02) -0.10 (0.01) -0.10 (0.01) -0.10 (0.01)
ω̂2

1 0.10 (0.02) 0.10 (0.02) 0.10 (0.01) 0.10 (0.02)
µ̂2 1.00 (0.05) 1.00 (0.04) 1.00 (0.03) 1.00 (0.03)
ω̂2

2 1.00 (0.21) 1.01 (0.23) 0.98 (0.13) 1.00 (0.14)

(µ1,0 = −0.1, µ2,0 = 1, ω2
1,0 = 0.04, ω2

2,0 = 0.4, γ0 = 4)

X µ̃1 -0.10 (0.04) -0.11 (0.02) -0.10 (0.02) -0.10 (0.01)
ω̃2

1 0.04 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
µ̃2 0.98 (0.08) 1.01 (0.06) 1.00 (0.05) 1.00 (0.05)
ω̃2

2 0.37 (0.15) 0.37 (0.13) 0.39 (0.11) 0.41 (0.10)
γ̃ 4.02 (0.03) 4.00 (0.03) 4.01 (0.02) 4.00 (0.08)

Φ µ̂1 -0.10 (0.02) -0.10 (0.01) -0.10 (0.01) -0.10 (0.01)
ω̂2

1 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
µ̂2 1.00 (0.04) 1.00 (0.04) 1.00 (0.03) 1.00 (0.03)
ω̂2

2 0.40 (0.07) 0.41 (0.07) 0.40 (0.07) 0.42 (0.06)

Table 4: (Example 4) Empirical mean and standard deviation (in brackets) of the parameter estimates
from 100 datasets for different values of N and n. X: Estimates based on the (Xi,n)’s; Φ: estimates
based on direct observation of the Φi’s.
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N = 50 N = 100
n = 500 n = 1000 n = 10000 n = 500 n = 1000 n = 10000

(a0 = 8, λ0 = 2, ρ0 = −1)

X ã 6.03 7.03 8.32 6.05 6.88 8.14
(0.73 - 1.57) (0.91 - 1.57) (1.80 - 1.57) (0.44 - 1.11) (0.73 - 1.11) (1.11 - 1.11)

λ̃ 1.50 1.76 2.08 1.51 1.71 2.04
(0.20 - 0.40) (0.24 - 0.40) (0.44 - 0.40) (0.12 - 0.29) (0.19 - 0.29) (0.30 - 0.29)

ρ̃ -0.99 -1.00 -1.00 -1.00 -1.00 -1.00
(0.03 - 0.03) (0.02 - 0.02) (0.01 - 0.01) (0.02 - 0.02) (0.02 - 0.02) (0.01 - 0.01)

Ψ â 8.23 8.57 8.42 8.38 8.32 8.27
(1.77 - 1.57) (1.76 - 1.57) (2.15 - 1.57) (1.16 - 1.11) (1.35 - 1.11) (1.31 - 1.11)

λ̂ 2.06 2.14 2.10 2.09 2.07 2.07
(0.46 - 0.40) (0.45 - 0.40) (0.53 - 0.40) (0.30 - 0.29) (0.34 - 0.29) (0.34 - 0.29)

Table 5: (Example 5) Empirical mean and, in brackets, (empirical standard deviation - theoretical stan-
dard deviation) of the parameter estimates from 100 datasets for different values ofN and n. X: Estimates
based on the (Xi,n)’s; Ψ: Estimates based on the Ψi’s.

N = 50 N = 100
n = 500 n = 1000 n = 10000 n = 500 n = 1000 n = 10000

(a0 = 8, λ0 = 2, ρ0 = −1)

X ã 6.18 (0.66) 6.79 (0.99) 8.20 (1.61) 6.02 (0.50) 6.70 (0.63) 7.91 (1.04)
λ̃ 1.52 (0.17) 1.69 (0.27) 2.03 (0.42) 1.49 (0.14) 1.66 (0.16) 1.96 (0.25)
ρ̃ -1.00 (0.10) -1.01 (0.06) -0.99 (0.02) -1.00 (0.06) -1.00 (0.04) -1.00 (0.01)

Ψ â 8.71 (1.80) 8.12 (1.94) 8.20 (1.61) 8.16 (1.30) 8.10 (1.19) 8.10 (1.16)
λ̂ 2.16 (0.45) 2.04 (0.51) 2.07 (0.47) 2.04 (0.33) 2.02 (0.30) 2.03 (0.29)

Table 6: (Example 6) Empirical mean and standard deviation (in brackets) of the parameter estimates
from 100 datasets for different values of N and n. X: Estimates based on the (Xi,n)’s; Ψ: Estimates
based on the Ψi’s.

and prove that the corresponding estimators are asymptotically Gaussian. The estimation method yields
very good results on various simulated data sets. When the random effect is in the drift, N influences the
quality of estimates. When the random effect is in the diffusion coefficient, we observe that the estimates
are more depedent on the number n of observations per trajectory.
The case where functions b, σ depend on time (b(t, x), σ(t, x)) can be studied with little change. Multi-
dimensional SDEMEs with linear random effects are often encountered in applications (see e.g. Leander
et al. (2015), Berglund et al. (2001)) and could be studied by the same approach .
In a forthcoming paper, we complete this study and investigate the case where both Φi and Ψi are ran-
dom.
An interesting extension is to include another source of variability by considering measurement errors in
the observations. This requires an additional step of filtering which is not immediate.
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N = 50 N = 100
n = 500 n = 1000 n = 10000 n = 500 n = 1000 n = 10000

(a0 = 8, λ0 = 2, ρ0 = −1)

X ã 6.06 (0.73) 6.90 (0.92) 8.03 (1.61) 6.00 (0.47) 6.81 (0.65) 8.08 (1.16)
λ̃ 1.50 (0.20) 1.70 (0.25) 2.01 (0.41) 1.49 (0.12) 1.68 (0.17) 2.03 (0.30)
ρ̃ -1.01 (0.11) -1.00 (0.07) -1.00 (0.02) -1.00 (0.08) -0.99 (0.05) -1.00 (0.02)

ψ â 8.44 (1.77) 8.41 (1.81) 8.17 (1.79) 8.16 (1.24) 8.25 (1.18) 8.08 (1.16)
λ̂ 2.10 (0.45) 2.10 (0.47) 2.06 (0.45) 2.05 (0.32) 2.05 (2.31) 2.07 (0.37)

Table 7: (Example 7) Empirical mean and standard deviation (in brackets) of the parameter estimates
from 100 datasets for different values of N and n. X: Estimates based on the (Xi,n)’s; Ψ: Estimates
based on the Ψi’s.
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7 Appendix

7.1 Proofs of Section 2

In what follows, we use the notation ϕ.b =
∑d
`=1 ϕ`b` to avoid confusion with the derivatives.

Proof of Lemma 1. Using the Hölder inequality, we have:

|X(t)−X(s)|p ≤ 2p−1

(
‖Φ‖p(

∫ t

s

‖b(X(u))‖d)p + Ψp|
∫ t

s

σ(X(u))dW (u)|p
)
.

Using (H2) and the Burkholder-Davis-Gundy (B-D-G) inequality, we obtain the result.�
Proof of Lemma 2.
We only prove (10)-(11). Denote Lf the Lipschitz constant of f . Applying the Hölder innequality twice,
we get

(V (f ;T )− Vn(f)))2p ≤ L2p
f T

2p−1
n∑
j=1

∫ j∆

(j−1)∆

(X(s)−X((j − 1)∆))2pds.

Taking the conditional expectation w.r.t. Φ,Ψ, we obtain the first inequality using Lemma 1.
We split U(g;T )− Un(g)) = T1 + T2 with

T1 =

n∑
j=1

∫ j∆

(j−1)∆

(g(X(s))− g(X((j − 1)∆)))Φ.b(X(s)ds

T2 = Ψ

n∑
j=1

∫ j∆

(j−1)∆

(g(X(s))− g(X((j − 1)∆)))σ(X(s)dW (s).

The term T1 can be treated as above and we find

Eϑ(T 2p
1 |Φ = ϕ,Ψ = ψ) . ‖ϕ‖2p(‖ϕ‖2p + ψ2p)∆p.

The Ito formula yields, setting LΦ,Ψg = Φ.bg′ + 1
2Ψ2σ2g′′

g(X(s))− g(X((j − 1)∆)) =

∫ s

(j−1)∆

LΦ,Ψg(X(u))du

+

∫ s

(j−1)∆

g′(X(u)Ψσ(X(u))dW (u).

Therefore, T2 is split into T2 = T2,1 + T2,2 with

T2,1 = Ψ

n∑
j=1

∫ j∆

(j−1)∆

∫ s

(j−1)∆

LΦ,Ψg(X(u))duσ(X(s))dW (s)

T2,2 = Ψ2
n∑
j=1

∫ j∆

(j−1)∆

∫ s

(j−1)∆

g′(X(u))σ(X(u))dW (u)σ(X(s)dW (s).
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We write T2,1 = Ψ
∫ T

0
Hn
s dW (s) with

Hn
s =

n∑
j=1

1((j−1)∆,j∆](s)σ(X(s))

∫ s

(j−1)∆

LΦ,Ψg(X(u))du.

By the assumptions, |Hn
s | . ∆(‖Φ‖+Ψ2). By the B-D-G inequality, Eϑ(T 2p

2,1|Φ,Ψ) . ∆pΨ2p(‖Φ‖+Ψ2)2p.
Analogously, T2,2 = Ψ2

∫ T
0
Kn
s dW (s) where

Kn
s =

n∑
j=1

1((j−1)∆,j∆](s)σ(X(s))

∫ s

(j−1)∆

g′(X(u))σ(X(u))dW (u).

Applying the Hölder inequality, we obtain(∫ T

0

(Kn
s )2ds

)p
.

n∑
j=1

∫ j∆

(j−1)∆

ds

(∫ s

(j−1)∆

g′(X(u))σ(X(u))dW (u)

)2p

.

The B-D-G inequality implies Eϑ(T 2p
2,2|Φ,Ψ) . ∆pΨ4p. Joining all terms, we get (11). �

Proof of Lemma 3.
For the proof, we omit the index i and first consider the case of exponent 2p with p ≥ 1. We have

S
(1)
n

n
= Ψ2 + ν(1)

n (W ) = Ψ2 + Ψ2
n−1∑
j=0

1

n∆

[(
W(j+1)∆ −Wj∆

)2 −∆
]

= Ψ2 + Ψ2
n−1∑
j=0

2

n∆

∫ (j+1)∆

j∆

(W (s)−W (j∆))dW (s).

Next, we decompose Sn/n using the following classical development (see Comte et al. 2007, p.522):

(X((j + 1)∆))−X(j∆))2

∆
= Ψ2σ2(X(j∆)) + Ψ2V

(1)
j∆ (X) + 2Ψ3V

(2)
j∆ (X)

+ 2ΨV
(3)
j∆ (X) +Rj∆(Φ,Ψ, X),

where

V
(1)
j∆ (X) =

1

∆

(∫ (j+1)∆

j∆

σ(X(s))dW (s)

)2

−
∫ (j+1)∆

j∆

σ2(X(s))ds

 (38)

V
(2)
j∆ (X) =

1

∆

∫ (j+1)∆

j∆

((j + 1)∆− u)σ′(X(u))σ2(X(u)dW (u) (39)

V
(3)
j∆ (X) = Φ.b(X(j∆))

∫ (j+1)∆

j∆

σ(X(s))dW (s) (40)
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Rj∆(Φ,Ψ, X) =
1

∆

(∫ (j+1)∆

j∆

Φ.b(X(s))ds

)2

(41)

+
2Ψ

∆

∫ (j+1)∆

j∆

Φ.(b(X(s)− b(X(j∆)))ds

∫ (j+1)∆

j∆

σ(X(s))dW (s)

+
1

∆

∫ (j+1)∆

j∆

((j + 1)∆− u)KΦ,Ψ(X(u))du

where KΦ,Ψ(.)) = Ψ2[2Φ.bσσ′ + Ψ2σ2(σ2)′′]. So, Sn

n = Ψ2 + ν
(1)
n + ν

(2)
n + ν

(3)
n + ν

(4)
n , with

ν(1)
n = Ψ2 1

n

n−1∑
j=0

V
(1)
j∆ (X)

σ2(X(j∆))
, ν(2)

n =
Ψ3

n

∫ n∆

0

Hn(s)dW (s),

ν(3)
n =

Ψ

n

∫ n∆

0

Kn(s)dW (s), ν(4)
n =

1

n

n−1∑
j=0

Rj∆(Φ,Ψ, X)

σ2(X(j∆))
with

Hn(s) =

n−1∑
j=0

((j + 1)∆− s)σ′(X(s))σ2(X(s))

∆σ2(X(j∆))
1(j∆,(j+1)∆](s), |Hn(s)| ≤ LK2

σ2
0

,

Kn(s) =

n−1∑
j=0

1(j∆,(j+1)∆](s)
2Φ.b(X(j∆))σ(X(s))

σ2(X(j∆))
, |Kn(s)| ≤ 2‖Φ‖K

2

σ2
0

.

Thus,
Sn
n
− S

(1)
n

n
= ν(1)

n − ν(1)
n (W ) + ν(2)

n + ν(3)
n + ν(4)

n .

For Mt =
∫ t

0
σ(X(s))dW (s), we have

(
M(j+1)∆ −Mj∆

)2 − ∫ (j+1)∆

j∆

σ2(X(s))ds = 2

∫ (j+1)∆

j∆

(Ms −Mj∆)dMs.

Therefore, (see (38)),

V
(1)
j∆ (X)

σ2(X(j∆)
=

2

∆σ2(X(j∆)

∫ (j+1)∆

j∆

∫ s

j∆

(σ(X(u))− σ(X(j∆)) + σ(X(j∆)))dW (u)

(σ(X(s))− σ(X(j∆)) + σ(X(j∆)))dW (s)

= T1,j + T2,j + T3,j +
2

∆

∫ (j+1)∆

j∆

(W (s)−W (j∆))dW (s).

It follows that: ν(1)
n − ν(1)

n (W ) = 2Ψ2(n∆)−1
∫ n∆

0
Ln(s)dW (s) where

Ln(s) =

n−1∑
j=0

1(j∆,(j+1)∆](s)
(σ(X(s))− σ(X(j∆))

σ2(X(j∆))

∫ s

j∆

(σ(X(u))− σ(X(j∆)))dW (u)

+
(σ(X(s)− σ(X(j∆)))(W (s)−W (j∆))

σ(X(j∆))

+
1

σ(X(j∆))

∫ s

j∆

(σ(X(u)− σ(X(j∆))dW (u).
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We have:
(∫ n∆

0
L2
n(s)ds

)p
≤ (n∆)p−1

∫ n∆

0
L2p
n (s)ds with

∫ n∆

0

L2p
n (s)ds .

n−1∑
j=0

∫ (j+1)∆

j∆

ds (X(s)−X(j∆))2p

(∫ s

j∆

(σ(X(u))− σ(X(j∆)))dW (u)

)2p

+

n−1∑
j=0

∫ (j+1)∆

j∆

ds (X(s)−X(j∆))2p(W (s)−W (j∆))2p

+

n−1∑
j=0

∫ (j+1)∆

j∆

ds

(∫ s

j∆

(σ(X(u)− σ(X(j∆))dW (u)

)2p

.

We apply Lemma 1, the Cauchy-Schwarz, the Hölder and the B-D-G inequalities to obtain:

Eϑ(

∫ n∆

0

L2p
n (s)ds|Φi = ϕ,Ψi = ψ)) . ∆3p(‖ϕ‖4p + ψ4p) + 2∆2p(‖ϕ‖2p + ψ2p).

Consequently,

Eϑ(
(
ν(1)
n − ν(1)

n (W )
)2p

|Φi = ϕ,Ψi = ψ) . ψ4p∆2p(‖ϕ‖2p + ψ2p + ‖ϕ‖4p + ψ4p).

For ν(2)
n , ν

(3)
n , we have Eϑ((ν(2)

n )2p|Φi = ϕ,Ψi = ψ) . ψ6pn−2p and Eϑ((ν(3)
n )2p|Φi = ϕ,Ψi = ψ) .

ψ2p‖ϕ‖2pn−2p.
For ν(4)

n , we have: R2
j∆(Φ,Ψ, X) . ∆2

(
‖Φ‖4 + (‖Φ‖Ψ2 + Ψ4)2

)
+ ∆−24Ψ2I2

j and

Ij =

∫ (j+1)∆

j∆

Φ.(b(X(s)− b(X(j∆)))ds

∫ (j+1)∆

j∆

σ(X(s))dW (s) (42)

Using Lemma 1, we find Eϑ0(I2
j |Φ = ϕ,Ψ = ψ) . ∆4(‖ϕ‖4 + ψ2).

Eϑ((ν(4)
n )2p|Φi = ϕ,Ψi = ψ) . ∆2p

[
‖ϕ‖4p + ψ2p(‖ϕ‖+ ψ2)2p + (‖ϕ‖ψ)2p(‖ϕ‖2p + ψ2p)

]
.

Joining terms, we finally get the inequality with exponent 2p ≥ 2. We conclude by application of the
Cauchy-Schwarz inequality.�

7.2 Proofs of Section 4.2

Now, we assume for sake of clarity that d = 1. The following lemma is easily obtained using Lemma 2.

Lemma 4. Recall notations (24)-(25). Under (H1)-(H2),

Eϑ(|Bi,n −Bi(T ;ω2)|p|Φi = ϕ,Ψi = ψ) . ∆p/2(|ϕ|p + ψp)

Eϑ(|Ai,n −Ai(T ;µ, ω2)|p|Φi = ϕ,Ψi = ψ) . ∆p/2(ϕ2p + ψ3p)

Eϑ(|Ai(T ;µ, ω2)|p|Φi = ϕ,Ψi = ψ)) . (|ϕ|p + ψp).

Proof of Theorem 1
We follow the classical scheme (see e.g. Kessler et al. (2012), Theorem 1.58-1.60, p.86-88). Let us set
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θ = (θ1, θ2, θ3) = (γ, µ, ω2) and denote by

−IN,n(θ) =

(
∂2

∂θi∂θj
`N,n(θ)

)
1≤i,j≤3

(43)

the Hessian matrix (opposite of the pseudo Fisher information matrix) containing the second order
derivatives of `N,n(θ) with respect to θ. The classical framework to study the asymptotic behaviour of
the estimator θ̃N,n relies on the following remarks. By the Taylor formula, we write for some θ∗ ∈ (θ, θ̃N,n),
GN,n(θ̃N,n) = 0 = GN,n(θ)− IN,n(θ∗)(θ̃N,n − θ). This yields

DN,nGN,n(θ) = DN,nIN,n(θ∗)DN,n D
−1
N,n(θ̃N,n − θ).

Therefore, due to different rates of convergence, the limiting distribution of D−1
N,n(θ̃N,n−θ) is obtained via

the studies of the convergence in probability of DN,nIN,n(θ∗)DN,n and the convergence in distribution
of DN,nGN,n(θ).
We first prove that, as N,n go to infinity, DN,nIN,n(θ)DN,n converges in probability under Pθ to the
3× 3 matrix I(θ). The terms of DN,nIN,n(θ)DN,n are (see (22) and (24)):

− 1

Nn

∂2

∂γ2
`N,n(θ) =

1

2γ2
; − 1

N

∂2

∂µ2
`N,n(θ) =

γ

N

N∑
i=1

Bi,n ;

− 1

N

∂2

(∂ω2)2
`N,n(θ) =

1

2N

N∑
i=1

(
2γA2

i,nBi,n −B2
i,n

)
;

− 1

N

∂2

∂µ∂ω2
`N,n(θ) =

1

N

N∑
i=1

γAi,nBi,n ;

− 1

N
√
n

∂2

∂γ∂µ
`N,n(θ) = − 1√

n

1

N

N∑
i=1

Ai,n ; − 1

N
√
n

∂2

∂γ∂ω2
`N,n(θ) = − 1

2
√
n

1

N

N∑
i=1

A2
i,n.

− 1

Nn

∂2

∂γ2
`N,n(θ) =

1

2γ2
; − 1

N

∂2

∂µ2
`N,n(θ) =

γ

N

N∑
i=1

Bi,n ;

− 1

N

∂2

(∂ω2)2
`N,n(θ) =

1

2N

N∑
i=1

(
2γA2

i,nBi,n −B2
i,n

)
;

− 1

N

∂2

∂µ∂ω2
`N,n(θ) =

1

N

N∑
i=1

γAi,nBi,n ;

− 1

N
√
n

∂2

∂γ∂µ
`N,n(θ) = − 1√

n

1

N

N∑
i=1

Ai,n ; − 1

N
√
n

∂2

∂γ∂ω2
`N,n(θ) = − 1

2
√
n

1

N

N∑
i=1

A2
i,n.

In the above terms, replace Ai,n, Bi,n respectively by Ai(T ;µ, ω2), Bi(T ;ω2). Denote the resulting matrix
by I(T )

N . As the random variables appearing in the sums are i.i.d. and have finite moments (see Section
8.3), we apply the large law of numbers and obtain that, as N tends to infinity, I(T )

N converges a.s. to
I(θ).
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First note that the Φi’s have moments of any order. Therefore, using Lemma 4, all terms

Eθ|Bi,n −Bi(T ;ω2)|,Eθ|2γA2
i,nBi,n −B2

i,n − (2γA2
i (T ;µ, ω2)Bi(T ;µ, ω2)−B2

i (T ;µ, ω2))|, . . . ,

tend to 0. Hence, DN,nIN,n(θ)DN,n converges in probability to I(θ).
Similarly, for the multidimensional case, we have:

∂2

∂γ2
`N,n(θ) = −Nn

2γ2
,

∂2

∂γ∂µk
`N,n(θ) =

N∑
i=1

Aki,n,

∂2

∂γ∂ωkl
`N,n(θ) =

N∑
i=1

Aki,n A
l
i,n,

∂2

∂µk∂µl
`N,n(θ) = −γ

N∑
i=1

Blki,n,

∂2

∂µj∂ωkl
`N,n(θ) =

γ

2

N∑
i=1

∂

∂µj
(Aki,nA

l
i,n) = −γ

N∑
i=1

Bjki,n A
l
i,n,

∂2

∂ωkl∂ωk′l′
`N,n(θ) =

1

2

N∑
i=1

Bl
′k
i,nB

lk′

i,n − γ
N∑
i=1

Ali,n A
l′

i,nB
kk′

i,n .

The second step is to prove that, under Pθ,

DN,nGN,n(θ)→ N3(0, I(θ)) in distribution. (44)

We can write (see Lemma 3 with Γi = γ deterministic)

1√
Nn

∂

∂γ
`N,n(θ) =

√
Nn

(
1

2γ
− 1

2N

N∑
i=1

S
(1)
i,n

n

)
+R1 =

N∑
i=1

χ
(1)
i,n,N +R1,

1√
N

∂

∂µ
`N,n(θ) =

1√
N

N∑
i=1

γAi(T ;µ, ω2) +R2 =

N∑
i=1

χ
(2)
i,N +R2,

1√
N

∂

∂ω2
`N,n(θ) =

1

2
√
N

N∑
i=1

(γA2
i (T ;µ, ω2)−Bi(T, ω2)) +R3 =

N∑
i=1

χ
(3)
i,N +R3,

with

χ
(1)
i,n,N =

√
n/N

1

2γ

1− 1

n

n∑
j=1

(Wi(tj)−Wi(tj−1))2

∆

 , R1 =
√
Nn

1

2N

N∑
i=1

S
(1)
i,n − Si,n − Ti(µ, ω2)

n
,

χ
(2)
i,N =

1√
N
γAi(T ;µ, ω2), R2 =

γ√
N

N∑
i=1

(Ai,n −Ai(T ;µ, ω2)),

χ
(3)
i,N =

1

2
√
N

(γA2
i (T ;µ, ω2)−Bi(T, ω2)),

R3 =
1

2
√
N

N∑
i=1

(
(γA2

i,n −Bi,n)− (γA2
i (T ;µ, ω2)−Bi(T, ω2))

)
.

By the central limit theorem and the results recalled in Section 8.3, (
∑N
i=1 χ

(2)
i,N ,

∑N
i=1 χ

(3)
i,N )′ converges in
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distribution to N2(0, I(θ)). Moreover,
∑N
i=1 χ

(1)
i,N converges in distribution to N (0, 1/(2γ2)). Now, let us

prove that
∑N
i=1 Eθχ

(1)
i,Nχ

(2)
i,N ,

∑N
i=1 Eθχ

(1)
i,Nχ

(3)
i,N both tend to 0. We only treat the first term as the second

one is analogous. We have

N∑
i=1

Eθχ(1)
i,Nχ

(2)
i,N = Eθ

γA1(T ;µ, ω2)
√
n

1

2γ
(1− 1

n

n∑
j=1

(W1(tj)−W1(tj−1))2

∆
)

 .

According to a theorem for stable convergence for discretized processes ( see Genon-Catalot and Jacod
(1993),Jacod (1997)), for all random variable Y , FT -measurable,

(Y,
√
n(1− 1

n

n∑
j=1

(W1(tj)−W1(tj−1))2

∆
))→D (Y, η)

with η, Y independent and η ∼ N (0, 2). We can apply this result for Y = A1(T ;µ, ω2). As A1(T ;µ, ω2)

has moments of any order (see Section 8.3), we easily obtain that the sequence (A1(T ;µ, ω2)
√
n(1 −

1
n

∑n
j=1

(W1(tj)−W1(tj−1))2

∆ )) is uniformly integrable. Thus,

EθA1(T ;µ, ω2)
√
n(1− 1

n

n∑
j=1

(W1(tj)−W1(tj−1))2

∆
)→ EθA1(T ;µ, ω2)E(η) = 0.

Hence, (
∑N
i=1 χ

(`)
i,N , ` = 1, 2, 3)′ converges in distribution to N3(0, I(θ)).

By Lemma 4, as Φi is Gaussian and Ψi = 1/
√
γ is fixed, we have Eθ|Ai,n − Ai(T ;µ, ω2)| = O(1/

√
n),

thus Eθ|R2| = O(
√
N/n). The same holds for R3. By Lemma 3, Eθ|(S(1)

i,n − Si,n)/n| = O(1/n) and
Eθ|Ti(µ, ω2)/n| = O(1/n). Therefore, Eθ|R1| = O(

√
N/n).

Hence, (44) is proved.
The last step to obtain weak consistency and asymptotic normality is to prove a uniformity condition, the
convergence under Pθ of −DN,nIN,n(θ∗)−IN,n(θ)DN,n to 0 uniformly for θ∗ such that |θ∗− θ| ≤ c/

√
N .

This last step can be obtained easily by standard computations.

7.3 Proofs of Section 4.3

We first state a lemma useful for the sequel.

Lemma 5. We have (see (37)):

Eτ [|ζi −
S

(1)
i,n

n
|p|Ψi] .

1

np
(1 + Ψp

i + Ψ2p
i + Ψ4p

i ) =
1

np
(1 + Γ

−p/2
i + Γ−pi + Γ−2p

i )),

Eτ [|ζ−1
i −

n

S
(1)
i,n

|p|Ψi] .
1

np

(
1 + Ψ−2p

i + Ψ−3p
i + Ψ−4p

i + Ψ4p
i

)
.

1

np

(
1 + Γpi + Γ

3p/2
i + Γ2p

i + Γ−2p
i

)
and Eτ [|ζi|−p|Ψi] .

(
1 + Γpi + Γ

3p/2
i + Γ2p

i + Γ−2p
i

)
∧
(
a+(n/2)

λ

)p
.
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Proof of Lemma 5.
We can write

ζi −
S

(1)
i,n

n
=

(
Si,n
n
−
S

(1)
i,n

n

)
n

2a+ n
−
S

(1)
i,n

n

2a

2a+ n
+

2λ

2a+ n
+

2(ϕ2Vi − 2ϕUi)

2a+ n
. (45)

By (12),

Eτ

[(
S

(1)
i,n

n

)p
|Ψi

]
= Ψ2p

i Eτ

(
C

(1)
i,n

n

)p
= Ψ2p

i 0(1) = Γ−pi O(1).

Due to (H1)-(H2), Vi is bounded and by Lemma 2,

Eτ (|Ui|p|Ψi) . (1 + Ψp
i ) = (1 + Γ

−p/2
i ).

Using Lemma 3 yields, as ϕ is deterministic, that :

Eτ

[∣∣∣∣∣Si,nn −
S

(1)
i,n

n

∣∣∣∣∣
p

|Ψi

]
.

1

np
(1 + Ψ2p

i + Ψ4p
i )) =

1

np
(1 + Γ−pi + Γ−2p

i ).

Thus,

Eτ

[∣∣∣∣∣ζi − S
(1)
i,n

n

∣∣∣∣∣
p

|Ψi

]
.

1

np
(1 + Ψp

i + Ψ2p
i + Ψ4p

i ) =
1

np
(1 + Γ

−p/2
i + Γ−pi + Γ−2p

i ). (46)

Now, we write:

ζ−1
i −

n

S
(1)
i,n

= (
S

(1)
i,n

n
− ζi)

1

S
(1)
i,n

n

(
1

ζi
− 1

S
(1)
i,n

n

+
1

S
(1)
i,n

n

).

Thus,

ζ−1
i −

n

S
(1)
i,n

=

(
n

S
(1)
i,n

)2

ζ−1
i

(
S

(1)
i,n

n
− ζi

)2

+

(
n

S
(1)
i,n

)2(
S

(1)
i,n

n
− ζi

)
.

Using that ζi ≥ λ/(a+ (n/2)) yields

|ζ−1
i −

n

S
(1)
i,n

| ≤

(
n

C
(1)
i,n

)2
a+ (n/2)

λ
Ψ−4
i

(
S

(1)
i,n

n
− ζi

)2

+ Ψ−4
i

∣∣∣∣∣S
(1)
i,n

n
− ζi

∣∣∣∣∣
 . (47)

Therefore,

|ζ−1
i −

n

S
(1)
i,n

|p .

(
n

C
(1)
i,n

)2p
(a+ (n/2)

λ

)p
Ψ−4p
i

(
S

(1)
i,n

n
− ζi

)2p

+ Ψ−4p
i |

S
(1)
i,n

n
− ζi|p

 . (48)

For all p < n/8 (see Section 8.2),

Eτ

(
n

C
(1)
i,n

)4p

= O(1). (49)
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We apply the Cauchy-Schwarz inequality and (46) to obtain:

Eτ

[∣∣∣∣∣ζ−1
i −

n

S
(1)
i,n

∣∣∣∣∣
p

|Ψi

]
.

1

np

(
1 + Ψ−4p

i + Ψ−6p
i + Ψ−8p

i + Ψ8p
i

)1/2

.
1

np

(
1 + Ψ−2p

i + Ψ−3p
i + Ψ−4p

i + Ψ4p
i

)
.

1

np

(
1 + Γpi + Γ

3p/2
i + Γ2p

i + Γ−2p
i

)
.

We deduce Eτ (|ζi|−p|Ψi) . 1 + Ψ−2p
i + Ψ−3p

i + Ψ−4p
i + Ψ4p

i . �
Proof of Theorem 2
We again follow the classical scheme. First, we study the convergence in distribution of N−1/2G̃N,n(τ)

(see (35)). We can write (see (37)):

N−1/2 ∂

∂λ
˜̀
N,n(τ) = N−1/2

N∑
i=1

(a
λ
− Γi

)
+ r1, r1 = N−1/2

N∑
i=1

(
Γi − ζ−1

i

)
N−1/2 ∂

∂a
˜̀
N,n(τ) = N−1/2

N∑
i=1

(log λ− ψ(a) + log Γi) + r2 + r′2, r2 = N−1/2
N∑
i=1

(
log (Γ−1

i )− log ζi
)

N−1/2 ∂

∂ϕ
˜̀
N,n(τ) = N−1/2

N∑
i=1

Γi(Ui(T )− ϕVi(T )) + r3 + r′3, r3 = N−1/2
N∑
i=1

(Γi − ζ−1
i )(Ui − ϕVi),

r′2 = N1/2 (ψ(a+ (n/2))− log (a+ (n/2))) , r′3 = N−1/2
N∑
i=1

Γi (Ui − Ui(T )− ϕ(Vi − Vi(T ))) . (50)

We will check that all r, r′-terms are negligible.
Before, we look at the main term of the decomposition of N−1/2G̃N,n(τ). The first two components
are exactly the score function associated with the observation of (Γi, i = 1, . . . , N) (see Section 4.1).
The whole vector is ruled by the standard central limit theorem. We only need to check that the third
component is not correlated to the first two ones. This follows from the fact that:

Eτ ((Ui(T )− ϕVi(T ))|Γi) = 0.

Hence, the vector N−1/2G̃N,n(τ) converges in distribution to N3(0,V(τ)) provided that all remainder
terms are negligible.
Now we look at the r, r′ terms. For the term r′2, we use that (ψ(a+ (n/2))− log (a+ (n/2))) = O(n−1)

(see (58)). Thus r′2 = O(
√
Nn−1) tends to 0 under the constraint N/n2 → 0. For r′3, we use

Eτ |r′3| ≤
√
NEτ [Γi(|Ui − Ui(T )|+ |ϕ(Vi − Vi(T )|)]

By Lemma 2, as ϕ is deterministic,

Eτ [[Γi(|Ui − Ui(T )|+ |ϕ(Vi − Vi(T )|)]|Ψi] . Γi(∆
1/2(1 + Ψi + Ψ2

i + Ψ3
i ) + ∆1/2(1 + Ψi)

.
1√
n

(1 + Γi + Γ
1/2
i + Γ

−1/2
i ).
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Note that Γi has moments of any order. Provided that EτΓ
−1/2
i < +∞,

Eτ |r′3| .
√
N

n
.

Thus, r′3 = OP (
√
N/n) tends to 0 under the constraints N/n→ 0 and a > 1/2.

Now, r1, r2 can be written as follows:

r1 =
1√
N

N∑
i=1

(
Γi −

n

S
(1)
i,n

)
+

1√
N

N∑
i=1

(
n

S
(1)
i,n

− ζ−1
i

)
:= r1,1 + r1,2, (51)

r2 =
1√
N

N∑
i=1

(
log Γ−1

i − log
S

(1)
i,n

n

)
+

1√
N

N∑
i=1

(
log

S
(1)
i,n

n
− log (ζi)

)
:= r2,1 + r2,2. (52)

For r1,1, r2,1, we use that (see (12))

S
(1)
i,n

n
= Γ−1

i

C
(1)
i,n

n
where C

(1)
i,n =

n∑
j=1

∆−1(Wi(tj)−Wi(tj−1))2

is independent of Γi and has distribution χ2(n) = G(n/2, 1/2). By exact computations, using Gamma
distributions (see Section 8)), we obtain, for n > 4,

E

(
n

C
(1)
i,n

− 1

)
=

2

n− 2
, E

(
n

C
(1)
i,n

− 1

)2

=
2n+ 8

(n− 2)(n− 4)
= O(n−1),

E logC
(1)
i,n/2− log (n/2) = ψ(n/2)− log (n/2) = O(n−1),Var(logC

(1)
i,n/2) = ψ′(n/2) = O(n−1).

Thus, Er2
1,1 = O(N/n2) and Er2

1,2 = O(N/n2) which implies

r1,1 =
1√
N

N∑
i=1

(
Γi −

n

S
(1)
i,n

)
= OP (

√
N

n
), r2,1 =

1√
N

N∑
i=1

(
log Γ−1

i − log
S

(1)
i,n

n

)
= OP (

√
N

n
).

Next, for r1,2, r2,2, we need to study (see (51) and (52))

Eτ

∣∣∣∣∣ n

S
(1)
i,n

− ζ−1
i

∣∣∣∣∣ , Eτ

∣∣∣∣∣log
S

(1)
i,n

n
− log (ζi)

∣∣∣∣∣ (53)

By Lemma 5,

Eτ (|ζ−1
i −

n

S
(1)
i,n

||Ψi) .
1

n
(1 + Γi + Γ2

i + Γ
3/2
i + Γ−2

i ).

Finally, as Γi has moments of any order, if EτΓ−2
i < +∞, i.e. a > 2,

Eτ (|r1,2|) ≤
√
NEτ (|ζ−1

i −
n

S
(1)
i,n

| = O(
√
N/n).
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For the second term of (53), we write

log (ζi)− log
S

(1)
i,n

n
= (ζi −

S
(1)
i,n

n
)

∫ 1

0

ds

 1

s
S

(1)
i,n

n + (1− s)ζi
− 1

S
(1)
i,n

n

+
1

S
(1)
i,n

n


=

1

S
(1)
i,n

n

(ζi −
S

(1)
i,n

n
)− 1

S
(1)
i,n

n

(ζi −
S

(1)
i,n

n
)2

∫ 1

0

ds
(1− s)

s
S

(1)
i,n

n + (1− s)ζi
.

This yields ∣∣∣∣∣log ζi − log
S

(1)
i,n

n

∣∣∣∣∣ ≤ n

C
(1)
i,n

Γi

∣∣∣∣∣ζi − S
(1)
i,n

n

∣∣∣∣∣+
a+ (n/2)

λ
Γi

(
ζi −

S
(1)
i,n

n

)2
 . (54)

Therefore, we get, applying the Cauchy-Swarz inequality and Lemma 37,

Eτ | log ζi − log
S

(1)
i,n

n
)| . 1

n
(1 + EτΓ−1

i + EτΓ−3
i ).

We thus obtain that for a > 3,
Eτ (|r2,2|) = O(

√
N/n).

Analogously, in r3, we split Γi − ζ−1
i = Γi − n

S
(1)
i,n

+ n

S
(1)
i,n

− ζ−1
i . This yields

r3 = r3,1 + r3,2 = N−1/2
N∑
i=1

(Γi −
n

S
(1)
i,n

)(Ui − ϕVi) +N−1/2
N∑
i=1

(
n

S
(1)
i,n

− ζ−1
i )(Ui − ϕVi).

We proceed as above for r1, r2. Using Lemma 2 yields

Eτ (|(Γi −
n

S
(1)
i,n

)(Ui − ϕVi)|Ψi) ≤ Γi

(
Eτ (1− n

C
(1)
i,n

)2Eτ (Ui − ϕVi)2|Ψi)

)1/2

. Γi 0(
1√
n

)(1 + Γ−1
i )1/2 . 0(

1√
n

)(Γi + Γ
1/2
i ).

Hence, Eτ (|r3,1|) = O(
√
N/n).

In the same way, using Lemma 37,

Eτ (|( n

S
(1)
i,n

− ζ−1
i )(Ui − ϕVi)|Ψi) ≤

(
Eτ ((

n

S
(1)
i,n

− ζ−1
i )2|Ψi) Eτ (Ui − ϕVi)2|Ψi)

)1/2

.
1

n
(1 + Γi + Γ2

i + Γ
3/2
i + Γ−2

i )(1 + Γ
−1/2
i )

.
1

n
(1 + Γ

1/2
i + Γi + Γ2

i + Γ
3/2
i + Γ−2

i + Γ
−5/2
i ).

Hence, Eτ (|r3,2|) = O(
√
N/n) provided that EτΓ

−5/2
i < +∞, i.e. a > 5/2. We thus obtain Eτ (|r3|) =

O(
√
N/n) instead of O(

√
N/n) as for r1, r2.

Finally, N−1/2G̃N,n(τ) converges in distribution to N3(0,V(τ)) if N/n→ 0 and a > 3. For the first two

29



components, the constraints
√
N/n→ 0 and a > 3 are enough.

Let us set τ = (τ1, τ2, τ3) = (λ, a, ϕ) and denote by

−VN,n(τ) =

(
∂2

∂τi∂τj
˜̀
N,n(τ)

)
1≤i,j≤3

(55)

the Hessian matrix ˜̀N,n(τ). By computations analogous to the ones above using assumptions (H1)-(H2),
Lemma 2, Lemma 4 and 5, we prove that −VN,n(θ)/N converges in probability to V(τ) as N,n tend to
infinity under the constraint a > 5.
The last step of the proof of weak consistency is standard and omitted. �

8 Auxiliary results

8.1 Discussion on Assumption (H2)

Assumption (H2) may appear strong. Usually, one would only assume that the functions bk, σ have
linear growth and impose moment assumptions on X(0). When there are no random effects, as X(0) is
supposed to be deterministic, this implies that Xi(t) has moments of any order. In the case of model(1),
with unbounded random effects, the assumption of linear growth for drift and diffusion coefficient is not
enough to ensure that Xi(t) has finite moments. Let us illustrate this property on the example of the
mixed effects Ornstein-Uhlenbeck process:

dX(t) = ΦX(t)dt+ ΨdW (t), X(0) = x. (56)

It has the explicit solution: X(t) = xeΦt + Y (t), Y (t) = ΨeΦt
∫ t

0
e−ΦsdW (s).

Hence E|X(t)| < +∞ if E exp (Φt) < +∞ and E(|Y (t)|) < +∞. If Φ is random, and Ψ deterministic,
the conditions hold for Φ Gaussian but may not hold for another distribution. If Φ is deterministic and
Ψ random, the second condition requires E|Ψ| < +∞. In the case of Ψ = Γ−1/2 with Γ ∼ G(a, λ), this
holds only for a > 1/2.
Nevertheless, on some models that we have implemented, Assumption (H2) is not verified and this does
not seem to deteriorate results.

8.2 Properties of the Gamma distribution

The digamma function ψ(a) = Γ′(a)/Γ(a) admits the following integral representation: ψ(z) = −γ +∫ 1

0
(1 − tz−1)/(1 − t)dt. (where γ = ψ(1) = Γ′(1)). For all positive a, we have ψ′(a) = −

∫ 1

0
log t
1−t t

a−1dt.
Consequently, using an integration by part, −aψ′(a) = −1−

∫ 1

0
tag(t)dt, where g(t) = (log t/(1− t))′. A

simple study yields that tag(t) integrable on (0, 1) and positive except at t = 1. Thus, 1 − aψ′(a) 6= 0.
The following asymptotic expansions as a tends to infinity hold:

log Γ(a) = (a− 1

2
) log a− a+

1

2
log 2π +O(

1

a
), (57)
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ψ(a) = log a− 1

2a
+O(

1

a2
), ψ′(a) =

1

a
+O(

1

a2
). (58)

The following results are classical.
If X has distribution G(a, λ), then λX has distribution G(a, 1). For all integer k, E(λX)k = Γ(a+k)

Γ(a) . For

a > k, E(λX)−k = Γ(a−k)
Γ(a) . Moreover, E log (λX) = ψ(a), Var [log (λX)] = ψ′(a).

In particular, if X =
∑n
j=1 ε

2
i where the εi’s are i.i.d. N (0, 1), then X ∼ χ2(n) = G(n/2, 1/2). Therefore,

EX−p < +∞ for n > 2p and as n→ +∞,

E
(
X

n

)p
= O(1), E

( n
X

)p
= O(1). (59)

Using the Rosenthal inequality, for all p ≥ 1

E|X
n
− 1|p ≤ cpn−p

(
nE|ε2

i − 1|p + (nE(ε2
i − 1)2)p/2

)
. O(

1

np−1
+

1

np/2
), (60)

and for n > 4p, and p ≥ 2,

E| n
X
− 1|p ≤

(
E
( n
X

)2p

E
(
X

n
− 1

)2p
)1/2

. O(
1

np/2
). (61)

8.3 Continuous observations of the sample paths

Assume that Ψi = γ−1/2 is deterministic and known, that Φi ∼ N (µ, γ−1ω2) and that the sample
paths (Xi(t), t ∈ [0, T ]), i = 1, . . . , N are continuously observed throughout [0, T ]. The exact likelihood
associated with these observations is explicit and was studied in Delattre et al. (2013) together with the
consistency and asymptotic normality of the maximum likelihood estimator of (µ, ω2). Moment properties
of the random variables Ui(T ), Vi(T ) were derived (see Section 4.2 p.327 and Section 5, p.329). We recall
those needed in the present paper. We use notations (7)-(2) with d = 1 and (25). The random variable
Ai(T ;µ, ω2) has moments of any order, Bi(T ;µ, ω2) also as it is bounded and the following relations
holds:

Eθ(Ai(T ;µ, ω2)) = 0, Eθ(γ A2
i (T ;µ, ω2))−Bi(T ;µ, ω2)) = 0,

Eθ(Ai(T ;µ, ω2)Bi(T ;µ, ω2)) =
1

2
Eθ(Ai(T ;µ, ω2)

(
γ A2

i (T ;µ, ω2))−Bi(T ;µ, ω2)
)

1

4
Eθ
(
γ A2

i (T ;µ, ω2)−Bi(T ;µ, ω2)
)2

=
1

2
Eθ(2γ A2

i (T ;µ, ω2)Bi(T ;µ, ω2)−B2
i (T ;µ, ω2)).

This shows that the matrix (27) is positive and is the covariance matrix of (28).
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