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Abstract

We propose an approach for multiple sequence alignment (MSA) derived from the
dynamic time warping viewpoint and recent techniques of curve synchronization de-
veloped in the context of functional data analysis. Starting from pairwise alignments
of all the sequences (viewed as paths in a certain space), we construct a median path
that represents the MSA we are looking for. We establish a proof of concept that our
method could be an interesting ingredient to include into refined MSA techniques. We
present a simple synthetic experiment as well as the study of a benchmark dataset,
together with comparisons with 2 widely used MSA softwares.

Key words and phrases: Alignment; Dynamic time warping; Multiple sequence alignment;
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1 Introduction

Multiple sequence alignment (MSA) is one of the most fundamental tasks in bioinformatics.
While there are many attempts to handle comparative sequence analyses without relying on
MSA, it still represents a starting point for most evolutionary biology methods. Pairwise
sequence alignment has been conceptualized as early as the 1970’s, starting with global
alignments that attempt to align entire sequences [17] and then introducing a decade later
local alignments that focus on the identification of subsequences sharing high similarity [23].
The standard computational formulation of both tasks is to maximize a scoring function ob-
tained as the sum of the score for each aligned pair of residues (nucleotides or amino acids,
the highest scores being attributed to pairs of residues with highest similarity), minus some
gaps penalties. Since these seminal works, an abundant literature has flourished exploring
the topic in many different directions, from the pairwise problem to the more complex task
of aligning more than 3 sequences [one of the very first attempts appearing in 15], from
exact solutions that scale exponentially with sequence lengths to faster heuristic approaches
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used in the most common tools, and from the scoring formulation of the alignment prob-
lem that requires to choose the scoring parameters to probabilistic formulations in which
those parameters are estimated [2, 6]. However, manually refined alignments continue to
be superior to purely automated methods and there is a continuous effort to improve the
accuracy of MSA tools [8]. We refer the reader to the reviews [8, 14, 18, 29] for more details
on MSA.

Dynamic time warping (DTW) is a general version of the dynamic programing algorithm
that solves exactly the pairwise biological sequence alignment problem. It is a well-known
and general technique to find an optimal alignment between two given (time-dependent)
sequences. In time series analysis, DTW is used for constructing an optimal alignment of
two sequences with possible different lengths by stretching or contracting time intervals [12].
In functional data analysis, the time warping approach consists in modeling a set of curves
exhibiting time and amplitude variation with respect to a common continuous process [16].
Thus, time warping techniques are used in many different areas concerned by sequence or
curve comparisons, one of its most famous successes being on human-speech recognition [13].

Here, we propose a simple and fast procedure for MSA, inspired from recent techniques
of curve synchronization developed in the context of functional data analysis [4, 24]. In this
setup, one often observes a set of curves which are modeled as the composition of an ’am-
plitude process’ governing their common behavior, and a ’warping process’ inducing time
distortion among the individuals. Specifically, yi(t) = xi ◦ hi(t), t ∈ [a, b], i = 1, . . . ,K,
are observed, with xi being i.i.d. realisations of the amplitude process X, and hi strictly
monotone functions s.t. hi(a) = a and hi(b) = b being i.i.d. realisations of the warping
process H. Aligning pairs of curves (that is eliminating time variation, which comes to
estimating the warping functions hi) is a first step before estimating the common ampli-
tude process. These authors proposed to first estimate pairwise warping functions between
all possible trajectories pairs which are then used to create estimators of the underlying
individual warping functions in a second step. Sample means or more robust median-based
estimates come into play to solve this second step. This procedure is an alternative to
the widely used approach of template registration, that consists in aligning every observed
curve to some given template, which should be a good estimate of the mean amplitude
process. The drawback of this methodology is that it heavily relies on the choice of the
template, which is not straightforward. Now, in the MSA context, the warping process
is the insertion-deletion (or indel) process that stretches or contracts the initial sequence,
while the amplitude process is the substitution process that modifies the value of the se-
quence base. The equivalent of template registration in the MSA context would be the
alignment of every sequence to some estimate of the ancestral sequence, which is, of course,
not available. However, exploiting the previous ideas, we show how pairwise alignments can
be combined with a simple median-based approach to obtain an estimate of the multiple
alignment of the sequences.

Our aim is to establish a proof of concept that our new method could be an interesting
ingredient to include into refined MSA techniques. Indeed, the method is able to align a
large number K of sequences (that are assumed to share a common ancestor) in a quite
simple and fast manner, although a bit rough w.r.t. accuracy. We would like to stress that
we do not claim to be competitive with actual aligners. Let us recall that there already
exist many competitors to solve the MSA problem whose respective performances have
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been largely explored [see for e.g 21, and the references therein]. Here, we would rather
like to point out to recent developments from curve synchronization that could open the
way to new improvements in MSA. While we do not pretend to propose a most accurate
method, it is important to note that our approach could be used as a starting point in
an iterative refinement strategy [10]. Those strategies, included in many widely used tools
such as ProbCons [5], MUSCLE [7], MAFFT [11] or MUMMALS [22], mostly consists in repeatedly
dividing the set of aligned sequences into two random groups and realign those groups by
optimizing an objective function. Thus, our simple and fast procedure could be combined
with similar refinement strategies that would improve its performance. An advantage of
our method is that it only uses pairwise comparison but (unlike progressive aligners) is
not sensitive to any order on which we consider the sequence pairs. Indeed, progressive
aligners rely on a guiding tree and progressively build K − 1 pairwise alignments from
the union of the initial set of K sequences with consensus sequences built at the internal
nodes of the tree. As such, the consensus sequences heavily depend on the guiding tree and
the sequences ordering which impacts the resulting MSA. Moreover, progressive aligners
are known to tend to propagate errors appearing at the early stages of the method. For
instance, ClustalW [25] is criticized for being responsible of the heuristic rule ”once a gap,
always a gap” that makes errors in pairwise alignments to propagate through MSA. The
method proposed here is not sensitive to that issue because a gap in an alignment pair will
not necessarily be selected for the MSA.

The manuscript is organized as follows. Section 2 first recalls concepts coming from
the pairwise alignment and time warping problems (Section 2.1), sets our framework (Sec-
tion 2.2) and describes our procedure (Section 2.3). Then Section 3 presents our experi-
ments, starting with synthetic datasets (Section 3.1), then relying on a benchmark dataset
(Section 3.2), namely the Balibase dataset [26] and concludes with possible extensions of
our approach (Section 3.3).

2 Framework and procedure

In what follows, we first introduce some ideas around pairwise alignment and the time
warping problem. We then explain how to use these concepts in the context of multiple
sequence alignment.

2.1 Pairwise alignment and time warping

For any two sequences X = X1 · · ·Xn and Y = Y1 · · ·Ym with values in a finite alphabet
A, any (global) pairwise alignment of X and Y corresponds to an increasing path in the
grid [0, n] × [0,m] composed by three elementary steps {(1, 0), (0, 1), (1, 1)}, as shown in
Figure 1. Note that for biological reasons, such path is often restricted to never contain
two consecutive steps in {(1, 0), (0, 1)} (a gap in one sequence may not be followed by a gap
in the other sequence). For notational convenience, we extend the path to [−ε, n]× [−ε,m]
for some small ε > 0. Now, any such path may be viewed as an increasing function
φX,Y : [−ε, n] → [−ε,m] with the convention that it is càd-làg (continuous on the right,
limit on the left). By letting φ(u−) denote the left limit of φ at u, we moreover impose
that φX,Y (0−) = 0 and φX,Y (n) = m. Note that we can define a unique generalized
inverse function φY,X := φ−1X,Y : [−ε,m] → [−ε, n] constrained to be càd-làg and such that
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φX,Y ◦ φ−1X,Y = φ−1X,Y ◦ φX,Y = Id (the identity function). From a graphical point of view,

the path corresponding to φ−1X,Y is obtained as the symmetric of the path corresponding to
φX,Y with respect to the diagonal line y = x (see Figure 1).

(n,m)•

X1 Xn

Y1

Yn

Figure 1: Graphical representation of an alignment between two sequences X1 · · ·Xn and
Y1 · · ·Ym. The blue and thick line corresponds to a càd-làg function φX,Y whose generalized
inverse φY,X = φ−1X,Y is shown in dashed and red.

Functions φX,Y , φ
−1
X,Y may be viewed as time warping functions that describe the ho-

mology (and thus also the indels) between sequences X,Y obtained from their align-
ment. Let us first explain this idea on a simple example. Consider an alignment between
X = ACAGTAGT and Y = CTTAAG given as follows

A C A G T A - G T
- C T - T A A G -

(This alignment corresponds exactly to the thick and blue path depicted in Figure 1). In
this alignment, any character from one sequence may be associated to a unique charac-
ter from the other sequence as follows: when the position corresponds to a match, the
character is associated to the matching character (in the other sequence) while at positions
corresponding to indels, we (arbitrarily) associate it to the character in the previous match-
ing position in the other sequence. In order to deal with the case where no such previous
matching position exists (namely when the alignment begins with an indel), we introduce
extra artificial characters (X0, Y0) at the beginning of each sequence, these two artificial
characters being aligned with each other. In other words, we consider the alignment

X0 A C A G T A - G T
Y0 - C T - T A A G -

The bare alignment (the alignment without specification of nucleotides) of these two se-
quences is as follows

• B B B B B B - B B
• - B B - B B B B -

Here B stands for base and we do not specify to which character it corresponds. The bare
alignment naturally appears to separate the indel process from the substitution process [see
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for e.g. 3, 28]. Given the sequences, the knowledge of the bare alignment is sufficient to
recover the corresponding full alignment. In this context, the time warping process is exactly
the indel process that stretches or contracts an initial sequence, while the amplitude process
is the substitution process that modifies the value of the sequence. We focus on the time
warping process encoded in the bare alignment.

Let→ denote this (asymmetric) relation induced by the bare alignment. In our example,
we have that X1 is associated to the artificial character Y0 and we denote X1 → Y0. In the
same way, X2 → Y1, X3 → Y2, X4 → Y2, X5 → Y3, X6 → Y4, X7 → Y6 and X8 → Y6. Note
that no position of X is associated to Y5. More importantly, these associations are exactly
encoded in the mapping φX,Y as we have Xu → Yv if and only if φX,Y (u−) = v.

More generally, for any real value u ∈ [0, n], letting due denote the smallest integer
larger or equal to u, we set X(u) := Xdue (and similarly for sequence Y ). From the
(bare) pairwise alignment of X,Y , we obtain a time warping function φX,Y such that this
alignment is entirely described by the association X(u) → Y ◦ φX,Y (u). In what follows,
we denote this functional association by X → Y ◦ φX,Y . Note that we equivalently have
Y → X ◦ φ−1X,Y = X ◦ φY,X .

We also mention that when the pairwise alignment between X,Y is extracted from a
multiple sequence alignment containing at least 3 sequences, say X,Y, Z, the above relation
→ should be associative in the sense that whenever X → Y ◦ φ and Y → Z ◦ φ′, we should
also have X → Z ◦ φ′ ◦ φ. This property will be used in the next section.

2.2 Multiple sequence alignment

In this section, we consider a set of sequences S1, . . . , SK with values in a finite alphabet A
and respective lengths n1, . . . , nK and we assume that they all share some latent ancestor
sequence A with values in A and length N . Our goal is to estimate the alignment of each
Si to the ancestor A and thus the global alignment of the set of sequences S1, . . . , SK , by
relying on the set of pairwise alignments of each Si to all the other sequences S1, . . . , SK .
To do this, we will implicitly assume that a) the multiple sequence alignment of all the
sequences Si is well approximated by the alignment we would obtain from all the sequences
{A,Si, 1 ≤ i ≤ K}; b) all the pairwise alignments of Si, Sj are good approximations to the
extracted pair alignments from the multiple alignment of all sequences {A,Si, 1 ≤ i ≤ K}.

First, any sequence Si is derived from the common ancestor sequence A through an
evolutionary process that can be encoded in the alignment of these two sequences. This
alignment induces a time warping process φi := φSi,A : [−ε, ni] → [−ε,N ] such that we
have Si → A ◦ φi. For the moment, we assume that the warping functions φi’s are i.i.d.
realisations of the same random process Φ. For identifiability reasons, we constrain Φ such
that E(Φ) = Id (see for example [4]). Moreover, note that assuming the φi’s are i.i.d.
realisations of the same process boils down to considering a star tree leading from the
ancestor sequence to any observed sequence Si. In the case of an ultra-metric tree, we
would obtain non independent but identically distributed realisations. We will discuss later
how to handle more realistic setups.

Since the ancestral sequence A is not observed, the idea of [4] is to estimate the warping
function φi from all the pairwise alignments of Si with the other sequences. More precisely,
when considering the pairwise alignment of Si with Sj , we obtain a warping function
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gji = φ−1j ◦ φi satisfying

Si → A ◦ φi → Sj ◦ φ−1j ◦ φi = Sj ◦ gji.

As a consequence, relying on the desired associative property of →, we should have Si →
Sj ◦ gji so that we can estimate the warping function gji from a pairwise alignment of
{Si, Sj}. Note that since pairwise alignment of {Si, Sj} does not depend on the order
of the sequences, the proposed estimators satisfy ĝji = ĝ−1ij . Then, we want to combine
these estimates {ĝji, 1 ≤ j ≤ K} to obtain an estimate of φi. In [24], the authors use
the empirical mean and notice that this makes sense since E(gji|φi) = φi and under the
assumption E(Φ) = Id [see also 4]. Let us recall that these works come from functional
data analysis where the functions φi’s are real-valued functions. Here, we are dealing with
discrete sequences and the empirical mean of a set of paths gji would not give a proper
path and thus would not correspond to an alignment of Si to the ancestor A. That is
why instead of using empirical mean, we will rather rely on median values. Note that – in
general – medians have the advantage of being more robust that mean values.

From an algorithmic perspective, a global alignment ofX = X1 · · ·Xn and Y = Y1 · · ·Ym
may be encoded trough the sequence of coordinates Z1, . . . , ZT , where T is the length of
the alignment, Z1 = (0, 0), ZT = (n,m) and for any 1 ≤ t ≤ T − 1, we have Zt+1 − Zt ∈
{(1, 0), (0, 1), (1, 1)}. We let

Zn,m = {(Z1, . . . , ZT ), T ≥ 1, Z1 = (0, 0), ZT = (n,m),

such that ∀1 ≤ t ≤ T − 1, Zt+1 − Zt ∈ {(1, 0), (0, 1), (1, 1)}}, (1)

be the set of possible alignments between X and Y . The link between the path sequence
Z and the warping function φX,Y is as follows

∃t ≥ 1 such that Zt = (k, l) ⇐⇒ φX,Y (k−) = l.

Now, considering a median path boils down to computing median coordinates of points Zt

as explained in the next section.

2.3 The median procedure

In this section, we explain how for each sequence Si, we combine the set of pairwise align-
ments of Si with Sj , 1 ≤ j ≤ K to obtain an estimate of the warping function φi. We
thus fix a sequence Si of length ni and consider its pairwise alignments with all the other
sequences Sj , 1 ≤ j ≤ K, including itself (the alignment path is then the identical function
from [0, ni] to [0, ni]). We first define an estimate of the true number N of homologous po-
sitions in our MSA (that is positions that were present in the ancestral sequence A, which
are the only positions of A that may be recovered), as a median value (constrained to be
an integer number) of the set of lengths {nj , 1 ≤ j ≤ K}, namely

N̂ = median{nj , 1 ≤ j ≤ K}.

More precisely, as a convention and for the rest of this work, we set the median of a sequence
of integers (n1, . . . , nK) with ordered values (n(1), . . . , n(K)) as follows. Whenever K is even
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and the mean value m between the ordered statistics n([K/2]) and n([K/2]+1) is not an integer,
we (arbitrarily) set the median as bmc.

Now, we aim at defining a path from [0, ni] to [0, N̂ ] by using all the estimated paths
ĝji obtained by aligning {Si, Sj}. For any position 1 ≤ u ≤ ni, we consider the character
Si
u throughout all the pairwise alignments. The character Si

u may either be aligned with
another character Sj

v or to a gap after position v in sequence Sj , as may be viewed in Figure 2
(left part). As already explained, each pairwise alignment of Si with Sj corresponds to a
sequence of coordinates Zj = (Zj

1 , . . . , Z
j
Tj

) ∈ Zni,nj as defined above, see Equation (1).

Note that we dropped the index i on which the sequence Zj also depends. Now, for each
value 1 ≤ u ≤ ni, there is a unique time point tju and two integers vju,1 ≤ v

j
u,2 such that

Zj

tju
= (u− 1, vju,1) and Zj

tju+1
= (u, vju,2).

In practice, either vju,2 = vju,1 + 1 when Si
u is aligned to a character or vju,2 = vju,1 when Si

u

is aligned to a gap. We then compute two median points

Z̃1(u) =
(
u− 1,median

1≤j≤K
{vju,1}

)
and Z̃2(u) =

(
u,median

1≤j≤K
{vju,2}

)
, (2)

which gives the part of the median path that concerns character Si
u (Figure 2, left part).

Note that at this step, we did not take into account the possible vertical steps in the
alignments ĝji. We consider this now. Indeed, the concatenation of the positions

(Z̃1(1), Z̃2(1), Z̃1(2), Z̃2(2), . . . , Z̃1(ni), Z̃2(ni))

is almost what we wanted, namely the median path that gives our estimate of the alignment
between Si and ancestral sequence A. However one should notice that for each value
1 ≤ u ≤ ni − 1, we either have

Z̃2(u) = Z̃1(u+ 1) or Z̃2(u) < Z̃1(u+ 1).

In the first case (Z̃2(u) = Z̃1(u+ 1)), one of the two points Z̃2(u) or Z̃1(u+ 1) is redundant
and should be removed to obtain a proper path in Zni,N̂

. Otherwise, vertical movements

are included in the median path and we keep both values Z̃2(u) and Z̃1(u+ 1).
Let us note that at the last position u = ni, we have Z̃2(ni) = median1≤j≤K nj = N̂ so

that the median path correctly ends at (ni, N̂).

2.4 MSA from median warping

We now combine the different steps to obtain our global alignment procedure as explained
in pseudocode in Algorithm 1. This algorithm outputs a set of homologous positions (Hom)
as well as a set of inserted positions (Ins). Let us recall that in each sequence, homologous
positions correspond to positions that are aligned with an ancestor position Au, 1 ≤ u ≤ N̂ .
Then two homologous positions may be separated by insert runs which are not aligned.
Indeed, the choice of how to put the letters in the insert regions is arbitrary and most MSA
implementations simply left-justify insert regions.

Thus, the table Ins used in the algorithm has K rows and N̂ + 1 columns. Each entry
(i, u) with 2 ≤ u ≤ N̂ , of this table contains the number of insertions in Si between two
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Si
u

Z̃1(u)

Z̃2(u)

(ni, N̂)•

Si
1 Si

ni

A1

AN̂

Figure 2: On the left: a set of K = 5 affine vectors (thicked and blue lines) extracted from
the K alignments of Si to the set of sequences Sj , 1 ≤ j ≤ K, considered only at position
Si
u. The median value is shown in dashed and red. On the right: a set of K = 3 paths (in

blue, including diagonal path) standing for the alignment of Si with all other Sj , 1 ≤ j ≤ K,
and the median path (in dashed and red).

homologous positions with respective ancestor positions Au−1 and Au, while entry (i, 1)
(resp. entry (i, N̂ +1)) is the number of insertions before first (resp. after last) homologous
position. The table Hom has K rows and N̂ columns. Each entry (i, u) of this table contains
the position in sequence Si that is homologous to ancestor position Au. When there is no
such position (a deletion in sequence Si), the entry is set to 0.

With respect to the algorithmic complexity of the proposed procedure, we can assume
that the K sequences have average length similar to N . Then, the time complexity of the
MSA from median warping (once the pairwise alignments are given) is O(NK2) since we
need K ·N iterations in which we compute (twice) a median over K values (the complexity
of the median calculation being O(K) relying for e.g. on the Quickselect algorithm [9]).

3 Results

3.1 Synthetic experiments

In this section, we propose a simple synthetic experiment in order to assess the perfor-
mances of our approach. We start with an ancestral sequence A on the set of nucleotides
A = {A,C,G, T} with length N = 100. From this ancestral sequence, we simulate i.i.d.
sequences S1, . . . , SK as follows. We rely on the simple Thorne-Kishino-Felsenstein [28,
hereafter TKF] model that includes an insertion-deletion process and that can be combined
with any substitution process. Here we set parameters for TKF λ = µ = 0.03 and use
the Jukes-Cantor substitution model [see for e.g. 30] with substitution rate α = 0.1 (all
nucleotide frequencies being set to 1/4). That is, we are simulating K nucleotide sequences
related by a star tree and whose branch lengths are set to be equal, as done for instance
in [1]. We repeat this experiment M = 100 times for each K, and we let the number of
sequences vary in {10, 20, 30, 40, 50}.

To obtain multiple alignments with our procedure, we first conduct all the pairwise
alignments between pairs of sequences through the Needleman-Wunsch algorithm for global
alignment [17] as implemented in the pairwiseAlignment function of the R Biostrings
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Algorithm 1: Pseudocode for MSA from median warping

// Pairwise alignments Align(i, j);
For any pair of sequences {Si, Sj}, compute their pairwise alignment Align(i, j).

// Reconstructing alignment Path(i) of each Si with ancestor A;

Z̃2(0) ← ((0, 0));

Ins← table of 0’s with K rows and N̂ + 1 columns;

Hom← table of 0’s with K rows and N̂ columns;
for i = 1 to K do

// Alignment initialization;

Path(i) ← Z̃2(0)
for u = 1 to ni do

Compute the sequence of median values Z̃1(u), Z̃2(u) at position u from
Equation (2);
// Update alignment;

if Z̃1(u) = Z̃2(u− 1) then

Path(i) ← concatenate (Path(i), Z̃2(u))

else

Path(i) ← concatenate (Path(i), Z̃1(u), Z̃2(u))

// Update insertion and homologous positions tables;

if Z̃1(u)[2] = Z̃2(u)[2] then

Ins[i, Z̃1(u)[2] + 1]← Ins[i, Z̃1(u)[2] + 1] + 1

else

Hom[i, Z̃2(u)[2]]← u

// Compute the maximal number of insertions before first, between 2

and after last homologous positions, respectively;
NbIns[·]← max1≤i≤K Ins[i, ·]
// Compute size of multiple alignment;

L← N̂ +
∑N̂+1

j=1 NbIns[j];

// Return the multiple alignment;
T ← table with K rows and L columns filled with gaps symbols;
Insert the homologous positions from table Hom at correct positions in table T ;
Insert the inserted positions from table Ins at correct positions in table T ;
Return(T) ;
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library [20]. We set the parameters for the pairwise alignment as: gap opening penalty
equal to −10, gap extension penalty equal to −0.5, nucleotide substitution matrix with
diagonal values equal to 5 and non-diagonal values equal to −4. These are commonly used
as default parameter values for the global alignment of DNA sequences. That is, we do not
look at optimising the alignment parameters, but just at showing that our procedure can
produce reasonable results under general conditions.

In order to assess the performance of the method, we compute for each alignment two
scores that measure its overall concordance with the simulated one, SP (sum of pairs) and
TC (total column) scores (see next section for details), and we compare them to the scores
obtained by two well established multiple alignment softwares, namely ClustalW [25] in
its 2.1 version and T-coffee [19] in its 10.00.r1613 version. Finally, we also run our
procedure on the reference pairwise alignments, that is, those extracted from the simulated
multiple alignment for each pair of sequences. This is done to assess the performance of the
method in the best case scenario, as a way to validate the proposed algorithm for combining
pairwise alignments.

Results are presented in Figure 3. The first thing to notice is that our method, when
used with the reference pairwise alignments, reaches the maximum score possible in almost
every case. Although these are not realistic results since reference pairwise alignments are
unknown in practice, they confirm the soundness of our method that combines pairwise
alignments from median warping. With respect to the other three methods, in all the
scenarios T-coffee always provides the best performance. In general, TC scores tend to
get worse as the number of sequences increases whereas SP scores are more stable. However,
when comparing our procedure (with estimated pairwise alignments) and ClustalW (which
is a widely used software), we see that ClustalW is better for a small number of sequences,
but from K = 20, the performance of our method is superior.

3.2 Benchmark results

MSA methods are typically benchmarked on sets of reference alignments, the most widely
used being the BAliBASE [26]. It is a large scale benchmark specifically designed for mul-
tiple sequence alignment. It contains test cases based on 3D structural superpositions of
protein sequences that are manually refined to ensure the correct alignment of conserved
residues. It is organized into several reference sets, designed to represent real multiple align-
ment problems. Reference 1 contains alignments of equidistant sequences with 2 different
levels of conservation (RV11 and RV12); Reference 2 (RV20) contains families aligned with
one or more highly divergent ’orphan’ sequences; Reference 3 (RV 30) contains divergent
subfamilies; Reference 4 (RV 40) contains sequences with large N/C-terminal extensions;
and finally Reference 5 (RV 50) contains sequences with large internal insertions. In addi-
tion, three separate Reference Sets (6–8), are devoted to the particular problems posed by
sequences with transmembrane regions, repeats, and inverted domains [26]. These last 3
sets are rarely included in benchmark analyses and we exclude them from ours. For each
reference set among the first five ones, except for RV 40, two versions of the same multiple
alignments are provided: one with the original sequences (which is noted BB), and one
with a shorter version of the sequences contained in the alignment (which is noted BBS).
In general, BBS alignments should be easier to recover than the original ones, since the less
alignable parts of the original sequences have been removed.
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Figure 3: SP and TC scores on the synthetic data sets. Distribution over M=100 simulated
multiple alignments for each value of K.
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The BAliBASE dataset comes with a function called baliscore used to assess the quality
of a MSA. Two different criteria are used to score an alignment: SP (sum of pairs) and TC
(total column) scores [27]. These criteria only use core blocks of the alignment. SP score is
the percentage of the correctly aligned residue pairs in the alignment. It is defined as the
number of correctly aligned residue pairs found in the test alignment divided by the total
number of aligned residue pairs in core blocks of the reference alignment. TC score is the
percentage of the correct columns in the alignment. It is defined as the number of correctly
aligned columns found in the test alignment divided by the total number of aligned columns
in core blocks of the reference alignment.

In order to assess the performance of the method on the Balibase data sets, we proceed
as for the simulated alignments of the preceding section. The only differences being that we
now consider BLOSUM62 as the default substitution matrix for pairwise alignments (since
we now have protein sequences) and that for the last two reference sets (RV40 and RV50)
we consider “overlap” pairwise alignments instead of global ones. Indeed, these two sets
are characterized by large differences in sequences lengths so it is convenient to allow for
gaps at the beginning and the end of pairwise alignments. In this section we also report
the results of ClustalW and T-coffee for reference. We refer to [21] for a full comparison
of available methods on Balibase.

Figure 4 shows that while our method is less performant than ClustalW and T-coffee, it
still provides reasonable results. These results should be put in perspective with the level of
complexity of the method that is exceptionally low (only pairwise alignments are needed as
input and a simple median path is computed). Moreover, as it was the case for the simulated
alignments, the scores based on the reference pairwise alignments are almost always equal
to 1 in all sets for both SP and TC scores. Again, these are not realistic results since the
pairwise alignments extracted from the reference multiple alignment might be far from the
optimal pairwise alignment between the two sequences for which no extra information on
the remaining sequences is available. Nevertheless, these results are encouraging since once
again they serve to validate our method from a theoretical point of view in the sense that
the median warping approach provides sound results.

3.3 Conclusions

In this work, we propose a proof of concept that a simple method derived from recent
techniques of curve synchronization in the context of functional data analysis could be of
potential interest to MSA. Our method is able to align a large number of sequences in a
quite simple and fast manner, although a bit rough w.r.t. accuracy. While we do not claim
to be competitive with actual aligners, we believe that our procedure could be successfully
included (for e.g. as a starting point) in more refined MSA techniques. While it is out of
the scope of the current work to provide such a refined tool, our simulations as well as the
use of the Balibase dataset establish that the method has good potential, particularly when
looking at the almost perfect results obtained by relying on the (unknown) reference pairwise
alignments (that is, the pairwise alignments extracted from the MSA). In particular, while
our experiments rely here on exact scoring alignment with default parameter values, the
method could be combined with more refined pairwise alignments, such as probabilistic
methods that automatically select optimal scoring parameters for the sequences at stake.

While the method implicitly assumes that a star ultra-metric tree describes the evolution



Time warping for MSA 13

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●●●●●

●
●

●●●●● ●●●●● ●●●

●

●

●

●

●
●●●●●● ●●

●

●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
S

A
 fr

om
 P

W
 G

lo
ba

l B
B

C
lu

st
la

lW
 B

B
T

−
C

of
fe

e 
B

B
M

S
A

 fr
om

 P
W

 R
ef

. B
B

M
S

A
 fr

om
 P

W
 G

lo
ba

l B
B

S
C

lu
st

la
lW

 B
B

S
T

−
C

of
fe

e 
B

B
S

M
S

A
 fr

om
 P

W
 R

ef
. B

B
S

●

●●

●

●●●●

M
S

A
 fr

om
 P

W
 G

lo
ba

l B
B

C
lu

st
la

lW
 B

B
T

−
C

of
fe

e 
B

B
M

S
A

 fr
om

 P
W

 R
ef

. B
B

M
S

A
 fr

om
 P

W
 G

lo
ba

l B
B

S
C

lu
st

la
lW

 B
B

S
T

−
C

of
fe

e 
B

B
S

M
S

A
 fr

om
 P

W
 R

ef
. B

B
S

●

●

●●●●●●●●

●

●

●

●

●●●●●●●

M
S

A
 fr

om
 P

W
 G

lo
ba

l B
B

C
lu

st
la

lW
 B

B
T

−
C

of
fe

e 
B

B
M

S
A

 fr
om

 P
W

 R
ef

. B
B

M
S

A
 fr

om
 P

W
 G

lo
ba

l B
B

S
C

lu
st

la
lW

 B
B

S
T

−
C

of
fe

e 
B

B
S

M
S

A
 fr

om
 P

W
 R

ef
. B

B
S

●

●
●
●

●

●●●●
●
●

●

●

●

●

●●

M
S

A
 fr

om
 P

W
 G

lo
ba

l B
B

C
lu

st
la

lW
 B

B
T

−
C

of
fe

e 
B

B
M

S
A

 fr
om

 P
W

 R
ef

. B
B

M
S

A
 fr

om
 P

W
 G

lo
ba

l B
B

S
C

lu
st

la
lW

 B
B

S
T

−
C

of
fe

e 
B

B
S

M
S

A
 fr

om
 P

W
 R

ef
. B

B
S

●

●
●●●●
●●

M
S

A
 fr

om
 P

W
 O

ve
rla

p 
B

B

C
lu

st
la

lW
 B

B

T
−

C
of

fe
e 

B
B

M
S

A
 fr

om
 P

W
 R

ef
. B

B

●

●
●

●

●

●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
S

A
 fr

om
 P

W
 O

ve
rla

p 
B

B
C

lu
st

la
lW

 B
B

T
−

C
of

fe
e 

B
B

M
S

A
 fr

om
 P

W
 R

ef
. B

B
M

S
A

 fr
om

 P
W

 O
ve

rla
p 

B
B

S
C

lu
st

la
lW

 B
B

S
T

−
C

of
fe

e 
B

B
S

M
S

A
 fr

om
 P

W
 R

ef
. B

B
S

T
C

 s
co

re
   

   
   

   
   

   
   

 S
P

 s
co

re

RV 11          RV 12          RV 20          RV 30          RV 40          RV 50

Figure 4: SP and TC scores on the Balibase data sets. Distribution over all the multiple
alignments of each reference set. Reference set RV 40 does not provide a short version of
the sequences (BBS).
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of the sequences from their common ancestor, it could be improved to gain in robustness
w.r.t. this assumption. In particular, let us assume that additional to the sequences one has
access to a non ultra-metric guide tree describing the common evolution of these sequences.
Then, we propose to weight the sequences in a way inversely proportional to their distance
to the root. Let di denote the evolutionary distance (i.e. branch length) from sequence Si

to root and dmax = max1≤i≤K di. We fix ε > 0 and set the weight values to

wi =
1− di/(dmax + ε)∑

1≤k≤K 1− dk/(dmax + ε)
∈ (0, 1).

Then our method could be generalized to the computation of a weighted median path,
namely relying on weighted median values instead of simple ones. In such a way, sequences
farther from the ancestor will have a lower weight in the MSA. We leave this for later
investigation.
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