
HAL Id: hal-01332529
https://hal.science/hal-01332529v1

Submitted on 16 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybridization as Cooperative Parallelism
for the Quadratic Assignment Problem

Danny Munera, Daniel Diaz, Salvador Abreu

To cite this version:
Danny Munera, Daniel Diaz, Salvador Abreu. Hybridization as Cooperative Parallelism
for the Quadratic Assignment Problem. 10th International Workshop on Hybrid Metaheuristics,
Jun 2016, Plymouth, United Kingdom. �10.1007/978-3-319-39636-1_4�. �hal-01332529�

https://hal.science/hal-01332529v1
https://hal.archives-ouvertes.fr

Hybridization as Cooperative Parallelism for the
Quadratic Assignment Problem

Danny Munera1, Daniel Diaz1 and Salvador Abreu2,1

1 University of Paris 1-Sorbonne/CRI, France
danny.munera@malix.univ-paris1.fr, daniel.diaz@univ-paris1.fr

2 Universidade de Évora/LISP, Portugal
spa@di.uevora.pt

Abstract. The Quadratic Assignment Problem is at the core of several
real-life applications. Finding an optimal assignment is computationally
very difficult, for many useful instances. The best results are obtained
with hybrid heuristics, which result in complex solvers. We propose an
alternate solution where hybridization is obtain by means of parallelism
and cooperation between simple single-heuristic solvers. We present ex-
perimental evidence that this approach is very efficient and can effectively
solve a wide variety of hard problems, often surpassing state-of-the-art
systems.

Keywords: QAP, heuristics, parallelism, cooperation, hybridization, portfolio

1 Introduction

The Quadratic Assignment Problem (QAP) was introduced in 1957 by Koop-
mans and Beckmann [1] as a model of a facilities location problem. This problem
consists in assigning a set of n facilities to a set of n specific locations minimizing
the cost associated with the flows of items among facilities and the distance be-
tween them. This combinatorial optimization problem has many other real-life
applications: scheduling, electronic chipset layout and wiring, process communi-
cations, turbine runner balancing, data center network topology, to cite but a
few [2,3]. This problem is known to be NP-hard and finding effective algorithms
to solve it has attracted a lot of research in recent years. To tackle problems of
medium or large size (n > 30) one must resort to incomplete methods which are
designed to quickly provide good, albeit potentially sub-optimal, solutions. This
is the case of metaheuristics. Since the mid-1980s several metaheuristics have
been successfully applied to the QAP: tabu search, simulated annealing, genetic
algorithms, GRASP, ant-colonies [3]. For solving the hardest instances, the cur-
rent trend is to specialize existing heuristics [4,5] often by combining different
metaheuristics (hybrid procedures) [6,7] and/or to resort on parallelism [8,9].

We recently proposed a sequential Extremal Optimization (EO) procedure
for QAP which performs well on the QAPLIB instances [10]. We developed a
cooperative parallel version of this method, a process which was eased thanks to

our Cooperative Parallel Local Search (CPLS) framework [11,12] for which we
developed an implementation in the X10 programming language [13,14]. This
solver (called ParEO) behaves very well on the set of 33 hardest and largest
instances of QAPLIB. Using 128 cores and within a short time limit of 5 minutes,
ParEO is able to find the best known solution (BKS) in each replication for 15
problems. Only for 8 instances is the BKS never reached. Recent research shows
that the most promising way to improve QAP resolution is to resort to hybrid
procedures, in order to benefit from the strengths of different classes of heuristics.
Such is the case of hybrid genetic algorithms (a.k.a memetic algorithms) [7]. The
price to pay for this improvement is a significant increase in the complexity of
the resulting solver code. In any case, many of the best known existing methods
can be easily parallelized thanks to our CPLS framework.

In this paper we propose an alternative approach for hybridization: we resort
to cooperation and parallelism to get “the best of both worlds”. To this end, the
parallel instances of different heuristics communicate their best solutions during
execution, and are able to forgo the current computation and adopt a better
solution (hoping it will converge faster). The expected behavior is that a solution
which appears to be stagnating inside one solver can be improved by another
heuristic. When the second solver can no longer improve on this (imported)
solution, maybe the original one can, once again, improve the solution yet a bit
more, and so on. It is worth noticing that when the first solver sends its current
solution, it continues to work on it until it adopts an external solution, itself.
This cooperative portfolio approach behaves like a hybrid solver while retaining
the original simplicity of each solver. This is particularly true inside the CPLS
framework since solvers need not be aware about the (nature of) other solvers.

We implemented such a hybrid solver on top of the X10 version of CPLS, com-
bining two different solvers: Taillard’s robust tabu search (RoTS) [15] and our
EO-QAP [10] method. We have chosen these two solvers because they are sim-
ple and also because it turned out that they present complementary strengths:
roughly speaking RoTS is stronger in intensifying the search in a given region
while EO-QAP is better at widely diversifying the search. The resulting hybrid
cooperative solver (called ParEOTS) displays very good performance, as we shall
see further. We show that it scales very well, exhibiting a linear speedup when
increasing the number of cores. This solver behaves much better than the coop-
erative versions of both EO-QAP and RoTS alone. On the 33 hardest instances
of QAPLIB, using 128 cores and a time limit of 5 minutes, ParEOTS is able to
find the BKS for 26 problems at each replication. Even for the 7 other problems,
the quality of returned solutions (measured as a percentage of average solution
over the BKS), is significantly improved. We also test ParEOTS on Palubeckis’
InstXX instances and on Drezners dreXX instances. Moreover we provide opti-
mal solutions for several InstXX instances and for dre90, dre100 and dre132.

The rest of the paper is organized as follows: section 2 discusses QAP, RoTS
and EO-QAP. Section 3 presents our parallel hybrid solver. Several experimental
results are laid out and discussed in section 4 and we conclude in Section 5.

2 Background

In this section we recall some background topics: the Quadratic Assignment
Problem (QAP) and the two heuristics we plan to combine: RoTS and EO-QAP.

2.1 QAP

Since its introduction in 1957, QAP has been widely studied and several surveys
are available [16,2,17,3]. A QAP problem of size n consists of two n×n matrices
(aij) and (bij). Solving such a problem consists in finding a permutation π of
{1, 2, . . . n}, minimizing the objective function: F (π) =

∑n
i=1

∑n
j=1 aij · bπiπj

.
In facility location problems, the a matrix represents inter-facility flows and b
encodes the inter-location distances. Moreover, QAP can be also used to model
scheduling, chip placement and wiring on a circuit board, to design typewriter
keyboards, for process communications, for turbine runner balancing among
many other applications [2,18].

QAP is computationally very difficult: it is a discrete problem, the objective
function contains products of variables and the theoretical search space of an
instance of size n has a size n!. QAP has been proved to be NP-hard [19] (the
traveling salesman problem can be formulated as a QAP) and there is no ε-
approximation algorithm for QAP (unless P=NP). In practice, this means that
QAP is one of the toughest combinatorial optimization problems, and one with
several real-life applications.

QAP can be (optimally) solved with exact methods like dynamic program-
ming, cutting plane techniques and branch & bound algorithms for medium sizes,
e.g. n ≤ 30. For larger problems, (meta)heuristics are the most efficient tool.
Over the last decades several metaheuristics were successfully applied to QAP:
tabu search, simulated annealing, genetic algorithms, GRASP, ant-colonies [20].

2.2 RoTS : a Tabu Search Procedure for QAP

Tabu search as proposed by Glover [21] has been widely used since the 1990
to tackle QAP. Unquestionably, one of the most important algorithms for QAP
is Taillard’s robust tabu search [15] (RoTS). This algorithm uses an adaptive
short-term memory for the tabu list by recording the value assigned to a vari-
able for a while (in order to prevent “reverse assignments”). It also uses a clever
aspiration criterion (needed to authorize a tabu move to be performed in special
circumstances, e.g. if it improves on the best solution found so far). RoTS also
incorporates a long-term memory to ensure a form of diversification, by encour-
aging moves towards to not yet visited regions. RoTS only requires two user
parameters to be tuned: the tabu tenure factor (controlling the time an element
remains tabu) and the aspiration factor both of which influence the adaptive
memory ([22] provides good references values for these parameters). In practice
RoTS is tremendously effective on a wide variety of QAP instances, being able
to quickly find high quality solutions. Several BKS for QAPLIB instances have
been discovered and/or improved by RoTS. A key feature explaining its speed is

that the cost of a solution resulting from a swap can be computed incrementally
and further optimized using a tabling mechanism. This results in an evaluation
in O(n2), while the näıve algorithm is in O(n3). In addition, Taillard put the
source code in the public domain. All these reasons explain the fact that RoTS
is directly or indirectly at the root of many other methods to solve QAP [4,23].

2.3 EO-QAP : an Extremal Optimization procedure for QAP

Extremal Optimization (EO) is a metaheuristics inspired by self-organizing pro-
cesses often found in nature [24,25,26]. EO is based on the concept of Self-
Organized Criticality (SOC) initially proposed by Bak and on the Bak-Sneppen’s
model [27]. In this model of biological evolution, species have a fitness ∈ [0, 1] (0
representing the worst degree of adaptation). At each iteration, the species with
the worst fitness is eliminated (or forced to mutate). This change affects its fit-
ness but also the fitness of all other species connected to this “culprit” element.
This results in an extremal process which progressively eliminates the least fit
species (or forces them to mutate). Repeating this process eventually leads to
a state where all species have a good fitness value, i.e. a SOC. EO follows this
line: it inspects the current configuration (assignment of variables), selects one
of the worst variables (according to their fitness) to mutate. For this, it ranks the
variables in increasing order of fitness (the worst variable has thus a rank k = 1)
and then resorts to a Probability Distribution Function (PDF) over the ranks
k to chose the culprit element. This PDF introduces uncertainty in the search
process. The original EO proposes a power-law: P (k) = k−τ (1 ≤ k ≤ n).
This PDF takes a single parameter τ which is problem-dependent. Depending
on the value of τ , EO provides different search strategies from pure random walk
(τ = 0) to deterministic (greedy) search (τ → ∞). With an adequate value for
τ , EO cannot be trapped in local minima since any variable is susceptible to
mutate (even if the worst are privileged). This parameter can be tuned by the
user (a default value is τ = 1 + 1

ln(n)).

EO displays several a priori advantages: it is a simple metaheuristic, it is con-
trolled by only one free parameter (a fine tuning of several parameters becomes
quickly tedious) and it does not need to be aware about local minima. Neverthe-
less, EO has been successfully applied to large-scale optimization problems like
graph bi-partitioning, graph coloring or the traveling salesman problem [25].

Recently, we proposed EO-QAP: an EO procedure for QAP [10]. One notable
extension we brought to the original EO is to propose different PDFs and to allow
the user to chose the most adequate one for a given problem. The sequential
procedure performs well on the whole set of QAPLIB instances: 68 instances
are solved (i.e. the BKS could be reached) at each execution, 41 are solved at
least once and 25 never. The independent parallel version improves the situation
significantly: 33 additional instances are systematically solved, 14 are partially
solved and 19 remain unsolved. To tackle this remaining set of 33 instances
(14+19) we experimented with cooperative parallelism (this version is called
ParEO). In the same time limit, ParEO is able to systematically solve 15 new
instances and 18 are solved at least once (8 remain unsolved).

3 A Cooperative Parallel Hybrid Method

We propose an alternative approach for constructing hybrid search methods,
resorting on our Cooperative Parallel Local Search Framework (CPLS) [12,11],
to provide the hybridization. In a nutshell, the procedure amounts to having
several workers, each following its own strategy, some of which are significantly
different from others. The cooperative framework oversees every worker, and
makes it possible for it to contribute and benefit from the global effort, by
managing a pool of best solution candidates (the elite pool). The fact that the
framework is parallel entitles it to obtain performance benefits by just increasing
the count of compute units (cores.) Moreover, the workers themselves need to
have little or no knowledge of the environment they are running under.

To test these ideas, we experimented with a solver for QAP – an admittedly
difficult problem – for which the individual metaheuristic we chose are our EO-
QAP algorithm and the RoTS method.

3.1 Cooperative Parallel Local Search

Parallel local search methods have been proposed in the past [28,29,30]. Here we
focus on multi-walk methods (also called multi-start) which consist in a concur-
rent exploration of the search space, either independently or cooperatively, the
latter being achieved with communication between processes. The Independent
Multi-Walks method (IW) [31] is easiest to implement since the solver instances
need not communicate with each other. However, the resulting gain tends to
flatten when scaling beyond about a hundred processors [32], largely because
the inherent diversity which brings about the speedups is not sufficient. In the
Cooperative Multi-Walks (CW) method [33], the solver instances exchange infor-
mation (through communication), hoping to hasten the search process. However,
the design and implementation of an efficient such method is a very challenging
task: choices abound concerning the communication which impact each other,
many of which are problem-dependent [33].

We designed the Cooperative Parallel Local Search (CPLS) framework [12,11].
This framework, available as an open source library in the X10 programming lan-
guage, allows the programmer to tune the search process through an extensive
set of parameters which, at present, statically condition the execution. CPLS
augments the IW strategy with a tunable communication mechanism, which al-
lows for the cooperation between the multiple solver instances to seek either
an intensification or diversification strategy in the search. At present, the tun-
ing process is done manually: we have not yet experimented with parameter
self-adaptation in the CPLS framework (still an experimental feature).

The basic component of CPLS is the explorer node which consists in a local
search-based solver instance. The point is to use all the available processing units
by mapping each explorer node to a physical core. Explorer nodes are grouped
into teams, of size NPT (see Figure 1). This parameter is directly related to the
trade-off between intensification and diversification. NPT can take values from
1 to the maximum number of cores. When NPT is equal to 1, the framework

coincides with the IW strategy, it is expected that each 1-node team be working
on a different region of the search space, without any effort to seek parallel
intensification. When NPT is equal to the maximum number of nodes (creating
only 1 team in the execution), the framework is mainly geared towards parallel
intensification (however a certain amount of diversification is inherently provided
by parallelism, between 2 cooperation actions).

Intensify

Team 2 Diversify

Explorers

Intensify

Explorers

Intensify

Explorers

Diversify

Diversify Team 1

Team 3
Explorer

n

Elite Pool

HeadConf. 1
…
Conf. k

Report current conf.
to Head

Update elite conf.
from Head

Explorer
1

Explorer
2

Fig. 1: CPLS framework structure

Each team seeks to intensify the search in the most promising neighborhood
found by any of its members. The parameters which guide the intensification
are the Report Interval (R) and Update Interval (U): every R iterations, each
explorer node sends its current configuration and the associated cost to its head
node (report event). The head node is the team member which collects and pro-
cesses this information, retaining the best configurations in an Elite Pool (EP)
whose size |EP | is parametric. Every U iterations, explorer nodes randomly
retrieve a configuration from the EP , in the head node (update event). An ex-
plorer node may adopt the configuration from the EP , if it is “better” than
its own current configuration, with a probability pAdopt. Simultaneously, the
teams implement a mechanism to cooperatively diversify the search, i.e. they
try to extend the search to different regions of the search space.

Typically, each problem benefits from intensification and diversification to
some extent. Therefore, the tuning process of the CPLS parameters seeks to
provide an appropriate balance between the use of the intensification and di-
versification mechanisms, in hope of reaching better performance than the non-
cooperative parallel solvers (i.e. independent multi-walks). A detailed description
of this framework may be found in [11].

3.2 Using the CPLS Framework for Hybridization

The current X10 implementation of the CPLS framework already supports the
use of multiple metaheuristics. Adding a new one is simple because CPLS pro-
vides useful abstraction layers and handles communication. Adding a new meta-
heuristic comes down to slightly adapt the sequential algorithm: every R iter-
ations it has to send its current configuration to the Elite Pool and, every U

iterations, it needs to retrieve a configuration from the pool, which it may sub-
sequently adopt (with probability pAdopt), should it be better than the current
one. The overall resulting solver is thus composed of several instances of the same
metaheuristic running in parallel, which cooperate by communicating in order to
faster converge to a solution. To date, CPLS includes cooperative parallel ver-
sions of three different methods: Adaptive Search, Extremal Optimization and
Tabu Search. In the present work, we go one step beyond and propose a new us-
age of the CPLS framework in order to obtain an hybrid parallel solver. For this,
individual workers run instances of different metaheuristics, while still collabo-
rating by communicating with the head node. The basic idea of running different
metaheuristics in parallel exchanging elite solutions has been proposed [28,34]
but only from a general and theoretical point of view. This can also be viewed
as a portfolio approach [35] augmented with cooperation.

We chose to experiment with this form of hybridization on QAP combining
two metaheuristics: our EO-QAP procedure and the RoTS method, resulting
in a solver we call ParEOTS. The communication strategies of CPLS remain
unchanged, ensuring cooperation between the explorers which now happen to
be running different methods. Figure 2 presents possible interactions due to
cooperation and the implementation of the hybrid strategy. The team’s EP will
now contain configurations stemming from explorers running different heuristics.

Report Event

Head
E-1
EO

E-2
EO

E-3
RTS

E-4
RTS

RTS3

Elite Pool

Head
E-1
EO

E-2
EO

E-3
RTS

E-4
RTS

Elite Pool

Update Event

RTS4

EO2

EO1 EO1

RTS4
EO1

EO1

RTS4

RTS4

Fig. 2: Hybridization in CPLS : combining EO-QAP and RoTS

Here is a possible scenario: inside the same team, an instance E1 of EO-
QAP reports a good configuration C1 to the EP. Later, an instance R1 of RoTS
retrieves C1, improves on it (RoTS being strong at intensification) and obtains
a better configuration C2, on which it reports back to the EP. Later, C2 gets
adopted by an instance E2 which, being in a diversification phase, moves to a
faraway search region, which may provide yet better solutions. Obviously, other
scenarios are possible, e.g. when another EO-QAP explorer E3 also retrieves C1

(provided by EO) it gives a “second chance” to this configuration (due to its
internal stochastic state it can further improve this configuration). The whole
system behaves as a hybrid solver, benefiting from cross-fertilization due to the
inherent diversity of the search strategies.

4 Experimental Evaluation

In this section we present an experimental evaluation of our hybrid parallel
method (source code, instances and new solutions will be soon available from
http://cri-hpc1.univ-paris1.fr/qap/). All experiments have been carried
out on a cluster of 16 machines, each with 4 × 16-core AMD Opteron 6376 CPUs
running at 2.3 GHz and 128 GB of RAM. The nodes are interconnected with
InfiniBand FDR 4× (i.e. 56 GBPS). We had access to 4 nodes and used up to
32 cores per node, i.e. 128 cores. Each problem is executed 10 times stopping
as soon as the BKS (which is sometimes the optimum) is found. This execution
is done with a short time limit of 5 minutes (in case the BKS is not reached).
Such experiments give an interesting information about the quality of solutions
quickly obtainable. All times are given either in seconds for small values (as
a decimal number) or in a human readable form as mm:ss or hh:mm:ss). The
relevant CPLS parameters controlling the cooperation are (as per [11]):

– Team Size (NPT): we fixed it to NPT = 16. There are thus 8 teams com-
posed of 16 explorer nodes ; 8 running a EO-QAP solver and 8 running RoTS
solver. This is constant over all problems. We did not yet experiment with
other splits.

– Report and Update Interval (R and U): we manually tuned U and usually
fix R = U/2.

– Elite Pool (EP): its size is fixed to 4 for all problems.
– pAdopt : is set to 1. Any solver instance receiving a better configuration than

its current one always switches to the new one.

4.1 Scalability Analysis

We start this experimental evaluation by analyzing the scalability of ParEOTS.
Such an analysis is not easy, because if the BKS cannot be reached, the run-
time is only bounded by the timeout used. It is thus necessary to only consider
problems that can be systematically solved by the EO sequential solver (to have
a reference time using 1 core). We selected two instances of QAPLIB which
require the longest sequential time: tai35a solved on average in 42.399s and
lipa70a solved in 57.737s. We then ran these problems with ParEOTS, varying
the number of cores from 2 to 128. Figure 3 presents the speedup data and curves
obtained with our algorithm (using a log-log scale). The Ideal curve corresponds
to linear speedup: time is halved when the number of cores is doubled. For both
problems the speedup is linear. Using 128 cores, the best speedup is 126, obtained
for tai35a whose execution time now only requires 0.336s.

4.2 Evaluation on QAPLIB

We here evaluate the performance of our hybrid solver ParEOTS on a set of 33
hard instances of QAPLIB. We selected this set because it is the most difficult
set for the independent parallel version of our EO procedure [10]. In addition to

http://cri-hpc1.univ-paris1.fr/qap/

Cores
tai35a lipa70a

time speedup time speedup

1 0:42 1.0 0:57 1.0
2 0:33 1.3 0:18 3.2
4 0:20 2.1 0:17 3.4
8 8.9 4.8 8.4 6.9

16 6.3 6.8 3.8 15.2
32 2.6 16.6 2.1 27.5
64 1.4 31.4 1.1 54.3

128 0.3 126.0 0.5 106.3
 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64 128

S
p
ee

d
u
p

lo
g
ar

it
h
m

ic
 s

ca
le

Number of cores
logarithmic scale

tai35a
lipa70a

Ideal

Fig. 3: Speedup profile using the Hybrid CPLS on two QAPLIB instances

raw performance, and for validation purpose, we also want to assess the gain ob-
tained with the hybrid version compared the cooperative parallel versions of its
two components: ParEO and ParRoTS (also written in X10 within CPLS). For
this, all 3 systems are run under the same conditions (see Section 4). Obviously,
ParEO runs 128 instances of our EO procedure, ParRoTS runs 128 instances
of RoTS while ParEOTS executes 64 instances of EO-QAP and 64 of RoTS.
To measure the hybrid performance we focus on the number of BKS found by
each parallel solver. When running 50% of EO and 50% of RoTS we define
a low threshold (low) as the average of #BKS found by both parallel solvers.
This corresponds to what can be normally expected. Below this value, the hy-
brid solver is ineffective. Above, it already performs well. Moreover, we define
a high threshold (high) as the maximum of the #BKS of both solvers. Above
this value, the hybrid solver performs at least as well as the best single solver (a
hybrid solver without gain would need twice the number of cores to obtain such
a performance). Obviously low and high can be generalized to an hybridization
involving more than 2 solvers. For a given problem, executed n times, the per-
formance (hperf) of the hybrid solver reaching #bks times the BKS is defined
as follows:

hperf =



#bks− low
low

, if #bks < low

#bks− low
high− low

, if low < #bks < high and low 6= high

1 +
#bks− high
n− high

, if high ≤ #bks and n 6= high

1, if high = #bks = n

(1)

The performance ranges in [−1, 2]. if hperf < 0 the hybrid solver is ineffective
on that problem. For hperf ∈ [0, 1) the performance is acceptable and when
hperf ∈ [1, 2] the performance is very good.

low high very high

-1 0 1 2

ParEOTS
hperf

ParEO ParRoTS

#bks APD time #ad. #bks APD time #ad. #bks APD time #ad.

els19 10 0.000 0.0 2.6 1.00 10 0.000 0.0 0.2 10 0.000 0.0 0.3
kra30a 10 0.000 0.0 3.9 1.00 10 0.000 0.0 2.6 10 0.000 0.0 3.6
sko56 10 0.000 1.5 0.3 1.00 10 0.000 4.8 2.5 10 0.000 0.6 0.0
sko64 10 0.000 1.7 0.3 1.00 10 0.000 4.8 1.5 10 0.000 1.3 0.0
sko72 10 0.000 8.7 1.0 1.00 10 0.000 0:13 1.4 10 0.000 0:16 1.7
sko81 10 0.000 0:24 1.8 1.00 7 0.008 1:58 9.4 10 0.000 1:06 4.6
sko90 10 0.000 1:32 4.8 1.00 10 0.000 1:32 5.0 7 0.002 1:54 5.3
sko100a 10 0.000 1:09 1.3 2.00 5 0.012 3:44 4.2 7 0.002 2:46 3.3
sko100b 10 0.000 0:45 0.8 1.00 8 0.001 2:26 2.6 10 0.000 1:02 0.6
sko100c 10 0.000 0:56 1.0 1.00 10 0.000 2:25 2.4 6 0.001 3:12 3.6
sko100d 10 0.000 1:03 1.1 1.00 6 0.014 3:20 3.6 10 0.000 0:37 0.2
sko100e 10 0.000 0:47 0.9 1.00 10 0.000 1:43 1.6 5 0.002 2:47 3.0
sko100f 10 0.000 0:57 0.9 2.00 4 0.011 4:05 4.8 5 0.003 3:42 4.3
tai40a 10 0.000 1:26 1.6 1.00 7 0.022 2:51 3.4 10 0.000 1:04 1.0
tai50a 3 0.077 4:24 3.5 −0.33 5 0.026 3:28 2.4 4 0.044 4:11 2.5
tai60a 3 0.146 4:15 0.9 1.13 2 0.132 4:45 1.9 0 0.297 5:00 2.0
tai80a 0 0.364 5:00 4.9 1.00 0 0.385 5:00 1.0 0 0.605 5:00 1.0
tai100a 0 0.298 5:00 2.0 1.00 0 0.297 5:00 3.0 0 0.567 5:00 5.0
tai20b 10 0.000 0.0 1.0 1.00 10 0.000 0.0 0.8 10 0.000 0.0 0.3
tai25b 10 0.000 0.0 0.5 1.00 10 0.000 0.6 17.0 10 0.000 0.0 0.0
tai30b 10 0.000 0.1 1.9 1.00 10 0.000 0.1 3.0 10 0.000 0.1 1.2
tai35b 10 0.000 0.3 4.3 1.00 10 0.000 0.7 14.2 10 0.000 0.2 1.9
tai40b 10 0.000 0.1 0.6 1.00 10 0.000 0.1 0.4 10 0.000 0.2 2.0
tai50b 10 0.000 2.6 1.2 1.00 2 0.214 4:26 4.5 10 0.000 2.1 0.0
tai60b 10 0.000 4.6 1.2 1.00 3 0.205 4:16 2.6 10 0.000 5.3 0.0
tai80b 10 0.000 0:53 1.6 2.00 0 1.192 5:00 8.8 5 0.002 3:06 6.0
tai100b 10 0.000 1:11 0.7 2.00 0 0.465 5:00 5.5 2 0.035 4:10 4.8
tai150b 0 0.061 5:00 0.7 1.00 0 1.088 5:00 1.5 0 0.103 5:00 0.3
tai64c 10 0.000 0.0 0.0 1.00 10 0.000 0.0 0.3 10 0.000 0.0 0.0
tai256c 0 0.178 5:00 2.2 1.00 0 0.263 5:00 1.3 0 0.266 5:00 1.5
tho40 10 0.000 0.5 0.0 1.00 10 0.000 1.2 0.2 10 0.000 0.4 0.0
tho150 1 0.007 4:51 2.0 1.10 0 0.144 5:00 1.7 0 0.019 5:00 1.9
wil100 10 0.000 1:37 1.9 2.00 0 0.061 5:00 5.4 6 0.001 2:16 2.4

Summary 267 0.034 1:24 1.6 1.12 199 0.138 2:28 3.7 227 0.059 1:53 1.9

Table 1: ParEOTS on QAPLIB and comparison with ParEO and ParRoTS

Table 1 presents the results. The parameters used for EO are the same as
in [10]. For RoTS we generally use a tabu tenure = 8n and an aspiration = 4n2.
The table reports, for each solver, the number of times out of 10 runs the BKS
was reached (#bks), the Average Percentage Deviation (APD) which is relative
deviation percentage computed as follows: 100 × Avg−BKS

BKS (where Avg is the
average of the 10 found costs), the average execution time (average of the 10
wall times for one instance) and the numbers of adoptions done by the winning
explorer (#ad.). The performance value is also reported. The last row presents
the averages of each column (or sums for #bks columns).

It is worth noticing that the overall performance of the cooperative parallel
version of the 2 base solvers using a short time limit is rather good. Even so,
the hybrid solver clearly outperforms them. Focusing on #BKS, it provides high
performance (hperf ≥ 1) for 32 instances (only for tai50a does it behave worse
than its two components). Moreover, in 4 cases it obtains a hperf = 2 corre-
sponding to cases where it performs much better than both individual solvers
(to such an extent that it obtains the perfect score #BKS = 10). It found the

BKS at each replication for 26 problems; this is much better than ParEO (15)
and ParRoTS (18). In only 4 cases, could ParEOTS not reach the BKS: this
number is 8 for ParEO and 6 for ParRoTS. It is worth noticing that even in
these 4 cases, the hybridization is still effective since the APD is lower than for
its components. For instance, on the very difficult problem tai256c, the hy-
bridization cannot solve the problem but the APD is 0.178 while it is around
0.263 for both components. Another remarkable case is tho150, for which the
hybridization is very effective. The average APD is now 0.007 (0.144 for ParEO
and 0.019 for ParRoTS). In fact, it turns out that this problem could even be
solved once.

The “summary” row reports interesting numbers. All in one, the average
APD of ParEOTS is 0.034 which is much better than 0.138 for ParEO and 0.059
for ParRoTS. Regarding execution times, it is a good surprise to see that the
increase of quality does not hamper the speed. In fact, with an average execution
time of 85s the hybrid solver is faster than ParEO (148s) and ParRoTS (113s).

4.3 Testing on Palubeckis’ instances

In 2000, Palubeckis proposed a new hard problem generator with known opti-
mum [36] and provided a set of 10 hard instances called InstXX . Few results
have been published about experiments with them. Palubeckis reports the best
solutions found by a repeated local search procedure (called multi-start descent
or MSD). In [37] the authors propose an Ant Colony Optimization algorithm
(QAP-ACO) and test it on these instances (in this work these instances are
called paluXX).

We experimented in the same setting as previously: with 128 cores and a
time limit of 5 minutes. Table 2 displays the results for 3 solvers. In addition
to the APD we also provide the best cost value found among the 10 runs. Data
is taken from the aforementioned articles. We also provide execution times for
QAP-ACO for indicative purposes.

opt.
ParEOTS QAP-ACO MSD

#bks APD best value time #bks APD best value time #bks APD best value

Inst20 81536 10 0.000 81536 0.0 0 0.340 81817 1.2 10 0.000 81536
Inst30 271092 10 0.000 271092 0.1 0 0.580 272654 0:10 0 0.364 272080
Inst40 837900 10 0.000 837900 4.0 0 0.360 840930 1:02 0 0.287 840308
Inst50 1840356 10 0.000 1840356 0:17 0 0.380 1847422 3:46 0 0.354 1846876
Inst60 2967464 10 0.000 2967464 1:07 0 0.390 2978898 10:05 0 0.362 2978216
Inst70 5815290 10 0.000 5815290 2:07 0 0.300 5832460 24:24 0 0.287 5831954
Inst80 6597966 10 0.000 6597966 1:56 0 0.310 6618736 50:42 0 0.308 6618290
Inst100 15008994 1 0.120 15008994 5:00 0 0.270 15048806 1:41:02 0 0.256 15047406
Inst150 58352664 0 0.126 58414888 5:00 0 0.198 58468204
Inst200 75405684 0 0.125 75498892 5:00 0 0.183 75543960

Table 2: ParEOTS on Palubeckis’ instances (128 cores, timeout 5m)

Even with a limit of 5 minutes, the performances of ParEOTS are very good.
The optimum is reached for problems whose size n ≤ 100. In addition, for all

n ≤ 80 ParEOTS reaches the optimum at each replication. For sizes n > 100,
clearly a limit of 5 minutes is too short to reach the optimum. Nevertheless, the
obtained solutions are of good quality with an APD around 1.12%: 2-3 times
better than challengers. It is worth noticing that for n > 20 all published best
obtained solutions are improved (in bold font in the table). Regarding execution
times, ParEOTS also outperforms its competitors.

4.4 Testing on Drezner’s instances

In 2005, Drezner and al. designed new QAP instances with known optimum
but specifically ill conditioned to be difficult for metaheuristic methods [38].
The authors reports the best solutions found by a powerful compounded hybrid
genetic algorithm (called CHG in what follows). The instances are really difficult
and only very recently were some results published by Acan and Ünveren with a
great deluge algorithm (called TMSGD) [39]. These hard instances are thus an
interesting challenge for our hybrid solver.

We ran it under the same conditions as before: using 128 cores and with
a time limit of 5 seconds. Table 3 presents the results for 3 solvers. Data is
taken from the above mentioned articles (in the case of CHG each problem was
executed 20 times, presented #BKS are divided by 2 for normalization). We also
provide execution times for TMSGD for indicative purposes (TMSGD was run
on a 2.1 GHz PC).

opt.
ParEOTS TMSGD CHG

#bks APD best time #bks APD best time #bks APD best

dre15 306 10 0.000 306 0.0 10 0.000 306 2.1
dre18 332 10 0.000 332 0.0 10 0.000 332 7.4
dre21 356 10 0.000 356 0.0 10 0.000 356 0:18
dre24 396 10 0.000 396 0.0 10 0.000 396 0:56
dre28 476 10 0.000 476 0.1 10 0.000 476 1:18
dre30 508 10 0.000 508 0.1 10 0.000 508 2:36 10 0.00 508
dre42 764 10 0.000 764 0.7 6 0.25 764 8:51 9 1.34 764
dre56 1086 10 0.000 1086 5.6 3 3.556 1086 18:39 3 17.46 1086
dre72 1452 10 0.000 1452 0:26 0 8.388 1512 47:06 1 27.28 1452
dre90 1838 9 0.968 1838 2:47 0 10.979 1959 1:36:33 0 33.88 2218
dre110 2264 6 6.334 2264 3:43 0 15.123 2479 2:41:25
dre132 2744 1 22.784 2744 4:54 0 17.553 3023 3:31:07

Table 3: ParEOTS on Drezner’s instances (128 cores, timeout 5m)

The performance of ParEOTS is very good: all problems could be optimally
solved, and, to the best of our knowledge, this is the first time that an optimal
solution is found for dre90, dre110 and dre132. TMSGD performs better than
CHG (but the CHG experiment is old). Regarding execution times, ParEOTS
needs 2:47 to solve dre90 while TMSGD cannot solve it even using 1:36:33
(CHG reports one hour for dre90 and also fails to find the optimum).

5 Conclusion and Further Work

We set out to construct a hybridized solver by resorting to a parallel and coop-
erative multi-walk scheme, which relies on the CPLS framework to provide both
the cooperation and the parallel or distributed execution.

As a testbed for the idea, we chose to tackle the Quadratic Assignment
Problem, because it is recognized as a very difficult problem of significant prac-
tical interest and also because benchmark instances abound in the literature.
For this we designed ParEOTS: a hybrid cooperative parallel solver combining
two methods: our Extremal Optimization algorithm and Taillard’s robust tabu
search. This hybrid solver is much more efficient than any of its two individual
base solvers. Regarding QAPLIB, our hybrid solver is able to reach the best
known solution (BKS) for all instances except 4. In most cases it is even able to
systematically find the BKS at each replication. Even then, for the 4 not fully
solved hardest instances (tai80a, tai100a, tai150b and tai256c), the solutions
obtained are very close to the BKS. We also tested the solver on other hard in-
stances. The results on Palubeckis’ instances are very good: for the first time,
ParEOTS optimally solved all instances up to a size n = 100 (prior to this work
only optimal solutions for n = 20 were known). We discovered optimal solutions
for sizes n = 30..100 and 2 new best obtained solutions for n = 150 and n = 200.
Regarding Drezner’s instances, the results are even better: we discovered opti-
mal solutions for all instances (including dre90, dre110 and dre132). This is
the first time that optimal solutions for these 3 instances are published.

From our experiments, it became clear that: (1) the coding effort for build-
ing a hybrid solver is much lower with our approach than for existing hybrid
algorithms, and (2) the performance gain over competing approaches is very sig-
nificant. The latter aspect can be construed as a sort of evolutionary algorithm,
one which blends phenotypes rather than genotypes, all under the supervision
of the cooperative framework. As to the former, the changes needed to fit the
CPLS scheme are minimal and very simple.

We plan to further explore portfolio approaches, combining more than two
types of solver as well as experimenting with techniques for parameter auto-
tuning. Another line entails the induction of solver multiplicity by presenting
several instances of the same solver, but set up with different parameters.

Acknowledgments

The authors wish to thank Prof. E. Taillard for providing the RoTS source code
and explanations. The experimentation used the cluster of the University of
Évora, which was partly funded by grants ALENT-07-0262-FEDER-001872 and
ALENT-07-0262-FEDER-001876.

References

1. Koopmans, T.C., Beckmann, M.: Assignment Problems and the Location of Eco-
nomic Activities. Econometrica 25(1) (1957) 53–76

2. Commander, C.W.: A survey of the quadratic assignment problem, with applica-
tions. Morehead Electronic Journal of Applicable Mathematics 4 (2005) MATH–
2005–01

3. Bhati, R.K., Rasool, A.: Quadratic Assignment Problem and its Relevance to
the Real World: A Survey. International Journal of Computer Applications 96(9)
(2014) 42–47

4. James, T., Rego, C., Glover, F.: Multistart Tabu Search and Diversification Strate-
gies for the Quadratic Assignment Problem. IEEE Transactions on Systems, Man,
and Cybernetics Part A:Systems and Humans 39(3) (2009) 579–596

5. Benlic, U., Hao, J.K.: Breakout Local Search for the Quadratic Assignment Prob-
lem. Applied Mathematics and Computation 219(9) (2013) 4800–4815

6. Drezner, Z.: The Extended Concentric Tabu for the Quadratic Assignment Prob-
lem. European Journal of Operational Research 160(2) (2005) 416–422

7. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution
of the quadratic assignment problem. Computers & Operations Research 35(3)
(2008) 717–736

8. James, T., Rego, C., Glover, F.: A Cooperative Parallel Tabu Search Algorithm for
the Quadratic Assignment Problem. European Journal of Operational Research
(2009)

9. Tosun, U.: On the Performance of Parallel Hybrid Algorithms for the Solution of
the Quadratic Assignment Problem. Engineering Applications of Artificial Intelli-
gence 39 (2015) 267–278

10. Munera, D., Diaz, D., Abreu, S.: Solving the Quadratic Assignment Problem with
Cooperative Parallel Extremal Optimization. In: European Conference on Evolu-
tionary Computation in Combinatorial Optimisation (EvoCOP). Lecture Notes in
Computer Science, Springer (2016)

11. Munera, D., Diaz, D., Abreu, S., Codognet, P.: A Parametric Framework for Coop-
erative Parallel Local Search. In Blum, C., Ochoa, G., eds.: European Conference
on Evolutionary Computation in Combinatorial Optimisation (EvoCOP). Volume
8600 of Lecture Notes in Computer Science., Springer (2014) 13–24

12. Munera, D., Diaz, D., Abreu, S., Codognet, P.: Flexible Cooperation in Parallel
Local Search. In: Symposium on Applied Computing (SAC), New York, New York,
USA, ACM Press (2014) 1360–1361

13. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
Von Praun, C., Sarkar, V.: X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing. In: SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, San Diego, CA, USA, ACM (2005) 519–538

14. Saraswat, V., Tardieu, O., Grove, D., Cunningham, D., Takeuchi, M., Herta, B.:
A Brief Introduction to X10 (for the High Performance Programmer). Technical
report (2012)

15. Taillard, É.D.: Robust Taboo Search for the Quadratic Assignment Problem. Par-
allel computing 17(4-5) (1991) 443–455

16. Burkard, R.E.: Quadratic Assignment Problems. In Pardalos, P.M., Du, D.Z., Gra-
ham, R.L., eds.: Handbook of Combinatorial Optimization (2nd edition). Springer
New York (2013) 2741–2814

17. Loiola, E.M., de Abreu, N.M.M., Netto, P.O.B., Hahn, P., Querido, T.M.: A survey
for the quadratic assignment problem. European Journal of Operational Research
176(2) (2007) 657–690

18. Zaied, A.N.H., Shawky, L.A.E.f.: A Survey of Quadratic Assignment Problems.
International Journal of Computer Applications 101(6) (2014) 28–36

19. Sahni, S., Gonzalez, T.: P-Complete Approximation Problems. Journal of the
ACM 23(3) (1976) 555–565

20. Said, G.A.E.N.A., Mahmoud, A.M., El-Horbaty, E.S.M.: A Comparative Study
of Meta-heuristic Algorithms for Solving Quadratic Assignment Problem. Inter-
national Journal of Advanced Computer Science and Applications (IJACSA) 5(1)
(2014)

21. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (jul 1997)
22. Taillard, É.D.: Comparison of iterative searches for the quadratic assignment prob-

lem. Location Science 3(2) (1995) 87–105
23. Misevicius, A.: A Tabu Search Algorithm for the Quadratic Assignment Problem.

Computational Optimization and Applications 30(1) (jan 2005) 95–111
24. Boettcher, S., Percus, A.: Nature’s way of optimizing. Artificial Intelligence

119(12) (2000) 275–286
25. Boettcher, S., Percus, A.G.: Extremal Optimization: an Evolutionary Local-Search

Algorithm. In: Computational Modeling and Problem Solving in the Networked
World. Volume 21. Springer US (2003)

26. Boettcher, S.: Extremal Optimization. In Hartmann, A.K., Rieger, H., eds.: New
Optimization Algorithms to Physics. Wiley-VCH Verlag, Berlin (2004) 227–251

27. Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of
evolution. Physical Review Letters 71(24) (1993) 4083–4086

28. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience
(2005)

29. Alba, E., Luque, G., Nesmachnow, S.: Parallel Metaheuristics: Recent Advances
and New Trends. International Transactions in Operational Research 20(1) (2013)
1–48

30. Diaz, D., Abreu, S., Codognet, P.: Parallel Constraint-Based Local Search on the
Cell/BE Multicore Architecture. In: Studies in Computational Intelligence. Volume
315. (2010) 265–274

31. Verhoeven, M., Aarts, E.: Parallel Local Search. Journal of Heuristics 1(1) (1995)
43–65

32. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism
for constraint-based local search: the costas array case study. Constraints 20(1)
(2014) 1–27

33. Toulouse, M., Crainic, T., Sansó, B.: Systemic Behavior of Cooperative Search
Algorithms. Parallel Computing (2004) 57–79

34. Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asynchronous Teams: Co-
operation Schemes for Autonomous Agents. Journal of Heuristics 4(4) 295–321

35. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2)
(2001) 43–62

36. Palubeckis, G.: An Algorithm for Construction of Test Cases for the Quadratic
Assignment Problem. Informatica, Lith. Acad. Sci. 11(3) (2000) 281–296

37. Wu, K.C., Ting, C.J., Gonzalez, L.C.: An Ant Colony Optimization Algorithm for
Quadratic Assignment Problem. In: Asia-Pacific Conference on Industrial Engi-
neering and Management Systems. (2011)

38. Drezner, Z., Hahn, P., Taillard, É.: Recent Advances for the Quadratic Assignment
Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic
Methods. Annals of Operations Research 139(1) (2005) 65–94

39. Acan, A., Ünveren, A.: A Great Deluge and Tabu Search Hybrid with Two-stage
Memory Support for Quadratic Assignment Problem. Applied Soft Computing
36(C) (nov 2015) 185–203

	Hybridization as Cooperative Parallelism for the Quadratic Assignment Problem

