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Abstract. Several real-life applications can be stated in terms of the
Quadratic Assignment Problem. Finding an optimal assignment is com-
putationally very difficult, for many useful instances. We address this
problem using a local search technique, based on Extremal Optimiza-
tion and present experimental evidence that this approach is competi-
tive. Moreover, cooperative parallel versions of our solver improve per-
formance so much that large and hard instances can be solved quickly.
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1 Introduction

The Quadratic Assignment Problem (QAP) was introduced in 1957 by Koop-
mans and Beckmann [1] as a model of a facilities location problem. This problem
consists in assigning a set of n facilities to a set of n specific locations minimizing
the cost associated with the flows of items among facilities and the distance be-
tween them. This combinatorial optimization problem has many other real-life
applications: scheduling, electronic chipset layout and wiring, process commu-
nications, turbine runner balancing, data center network topology, to cite but
a few [2,3]. Unfortunately this problem is known to be NP-hard and finding
efficient algorithms to solve it has attracted a lot of research in recent years.

Exact (or complete) methods like dynamic programming, cutting plane tech-
niques and branch & bound procedures have been successfully applied to medium-
size QAP instances but cannot solve larger instances (e.g. when n > 20). To
tackle these problems, one must resort to incomplete methods which are de-
signed to quickly provide good, albeit sub-optimal, solutions. This is the case of
approximation algorithms, i.e. algorithms running in polynomial time yet able
to guarantee solutions within a constant factor of the optimum. Unfortunately,
it is known that there is no ε-approximation algorithm for the QAP [4]. Another
class of incomplete methods is provided by meta-heuristics. Since 1990 several
meta-heuristics have been successfully applied to the QAP: tabu search, simu-
lated annealing, genetic algorithms, GRASP, ant-colonies [3]. The current trend
is to specialize existing heuristics, to compose different meta-heuristics (hybrid
procedures) and to use parallelism.



In this paper we propose EO-QAP: an Extremal Optimization (EO) proce-
dure for QAP. EO is a nature-inspired general-purpose meta-heuristics to solve
combinatorial optimization problems [5]. This local search procedure, a priori,
has several advantages: it is easy to implement, it does not get confounded
by local minima and takes only one adjustable parameter. We experimentally
demonstrate that EO-QAP performs well on the set of QAPLIB benchmark in-
stances. It is, however, known that it is difficult with EO to have fine control
on the trade-off between search intensification and diversification: some strate-
gies have been proposed to overcome this limitation [6], but they entail a more
complex tuning process. In this paper we put forth two other approaches which
contribute to a more effective handling of QAP using EO: firstly, we propose a
simple extension to the original EO which allows the user to have more control
over the stochastic behavior of the algorithm. Secondly, we propose to use coop-
erative parallelism to promote more intensification and/or diversification. Our
implementation uses a parallel framework [7] written in X10 [8,9]. We show that
the cooperative parallel version behaves very well on the hardest instances.

The rest of the paper is organized as follows. Section 2 discusses QAP and
provides the necessary background. Section 3 presents our EO algorithm for
QAP and proposes an extension to the original EO. Several experimental results
are laid out and discussed in section 4 and we conclude in Section 5.

2 Background

Before introducing the main object of this paper, we need to recall some back-
ground topics: the Quadratic Assignment Problem (QAP), Extremal Optimiza-
tion (EO) and Cooperative Parallel Local Search (CPLS).

2.1 QAP

Since its introduction in 1957, QAP has been widely studied and several surveys
are available [10,2,11,3].

A QAP problem of size n consists of two n× n matrices (aij) and (bij). Let
Π(n) be the set of all permutations of {1, 2, . . . n}, the goal of QAP is to find a
permutation π ∈ Π(n) which minimizes the following objective function:

F (π) =

n∑
i=1

n∑
j=1

aij · bπiπj (1)

For instance, in facility location problems, the a matrix represents inter-
facility flows and b encodes the inter-location distances. In that context, both
matrices are generally symmetric: ∀i,j aij = aji and bij = bji. However, in
other settings the matrices can become asymmetric. Indeed, QAP can be used
to model scheduling, chip placement and wiring on a circuit board, to design
typewriter keyboards, for process communications, for turbine runner balancing
among many other applications [2,12].



The computational difficulty of QAP stems form the fact that the objective
function contains products of variables (hence the term quadratic) and in the
fact that the theoretical search space of an instance of size n is the set of all per-
mutations Π(n) whose cardinality is n!. In 1976, Sahni and Gonzalez proved that
QAP is NP-hard [4] (the famous traveling salesman problem can be formulated
as a QAP). Moreover, the same authors proved that there is no ε-approximation
algorithm for QAP (unless P=NP). In practice QAP is one of the most difficult
combinatorial optimization problems with many real-life applications.

QAP can be (optimally) solved with exact methods like dynamic program-
ming, cutting plane techniques and branch & bound algorithms (together with
efficient lower bound methods). Constraint Programming does not work well on
QAP and, surprisingly, SAT solvers have not been extensively used for QAP.
However, general problems of medium size (e.g. n > 20) are out of reach for
these methods (even if some particular larger instances can be solved). It is thus
natural to use heuristics to solve QAP. In the last decades several meta-heuristics
were successfully applied to QAP: tabu search, simulated annealing, genetic al-
gorithms, GRASP, ant-colonies [13]. In this paper we propose to use Extremal
Optimization to attack QAP problems.

2.2 Extremal Optimization

In 1999, Boettcher and Percus proposed the Extremal Optimization (EO) proce-
dure [5,14,15] as a meta-heuristics to solve combinatorial optimization problems.
EO is inspired by self-organizing processes often found in nature. It based on
the concept of Self-Organized Criticality (SOC) initially proposed by Bak [16,17]
and in particular by the Bak-Sneppen model of SOC [18]. In this model of bio-
logical evolution, species have a fitness ∈ [0, 1] (0 representing the worst degree
of adaptation). At each iteration, the species with the worst fitness value is up-
dated, i.e. its fitness is replaced by a new random value. This change also affects
all other species connected to this “culprit” element and their fitness value also
gets updated. This results in an extremal process which progressively eliminates
the least fit species (or forces them to mutate). Repeating this process eventually
leads to a state where all species have a good fitness value, i.e. a SOC. EO follows
this line: it inspects the current configuration (assignment of variables), selects
the worst variable (the one having the lowest fitness) and replaces its value by
a random value. However, always selecting the worst variable can lead to a de-
terministic behavior and the algorithm can stay blocked in a local minimum.
To avoid this, the authors propose an extended algorithm which first ranks the
variables in increasing order of fitness (the worst variable has thus a rank k = 1)
and then resorts to a Probability Distribution Function (PDF) over the ranks k
in order to introduce uncertainty in the search process:

P (k) = k−τ (1 ≤ k ≤ n) (2)

This power-law probability distribution takes a single parameter τ which is
problem-dependent. Depending on the value of τ , EO provides a wide variety of



search strategies from pure random walk (τ = 0) to deterministic (greedy) search
(τ →∞). With an adequate value for τ , EO cannot be trapped in local minima
since any variable is susceptible to mutate (even if the worst are privileged).
This parameter can be tuned by the user. Moreover, the original paper proposes
a default value depending on n: τ = 1 + 1

ln(n) .

EO displays several a priori advantages: it is a simple meta-heuristic (it can
be easily programmed), it is controlled by only one free parameter (a fine tuning
of several parameters becomes quickly tedious) and it does not need to be aware
about local minima. Nevertheless, EO has been successfully applied to large-scale
optimization problems like graph bi-partitioning, graph coloring, Spin Glasses or
the traveling salesman problem [14]. Boettcher and Percus point out, however,
that depending on the problem, “a drawback of the EO method is that a general
definition of fitness for the individual variables may prove ambiguous or even
impossible” [19]. To overcome this, De Sousa and Ramos proposed an exten-
sion called Generalized Extremal Optimization [20,21]. Zhou and al. proposed a
variant called Continuous Extremal Optimization to deal with continuous opti-
mization problems [22]. It has been also argued that one main issue with EO is
that is does not provide a fine control of the intensification. Randall and Lewis
propose some intensification strategies to improve EO [6]. We present two alter-
natives to overcome this limitation: we propose a simple extension to improve
the stochastic capabilities of EO and we show how cooperative parallelism can
help to achieve intensification or diversification through communications.

2.3 Cooperative Parallel Local Search

Parallel local search methods have been proposed in the past [23,24,25]. In this
article we are interested in multi-walk methods (also called multi-start) which
consist in a concurrent exploration of the search space, either independently
or cooperatively via communication between processes. The Independent Multi-
Walks method (IW) [26] is the easiest to implement since the solver instances do
not communicate with each other. However, the resulting gain tends to flatten
when scaling over a hundred of processors [27], and can be improved upon. In the
Cooperative Multi-Walks (CW) method [28], the solver instances exchange infor-
mation (through communication), hoping to hasten the search process. However,
implementing an efficient cooperative method is a very complex task: several
choices have to be made about the communication which influence each other
and which are problem-dependent [28].

We build on the framework for Cooperative Parallel Local Search (CPLS)
proposed in [29,7]. This framework, available as an open source library in the
X10 programming language, allows the programmer to tune the search process
through an extensive set of parameters which, in the present version, statically
condition the execution. CPLS augments the IW strategy with a tunable commu-
nication mechanism, which allows for the cooperation between the multiple in-
stances to seek either an intensification or diversification strategy for the search.
At present, the tuning process is done manually: we have not yet experimented
with parameter self-adaptation (still an experimental feature).



The basic component of CPLS is the explorer node which consists in a local
search solver instance. The point is to use all the available processing units by
mapping each explorer node to a physical core. Explorer nodes are grouped into
teams, of size NPT (see Figure 1). This parameter is directly related to the
trade-off between intensification and diversification. NPT can take values from
1 to the maximum number of nodes (frequently linked to maximum number
of available cores in the execution). When NPT is equal to 1, the framework
coincides with the IW strategy, it is expected that each 1-node team be working
on a different region of the search space, without seek parallel intensification.
When NPT is equal to the maximum number of nodes (creating only 1 team in
the execution), the framework has the maximum level of parallel intensification,
but it is not possible to enable parallel diversification between teams.
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Fig. 1: CPLS framework structure

Each team seeks to intensify the search in the most promising neighborhood
found by any of its members. The parameters which guide the intensification
are the Report Interval (R) and Update Interval (U): every R iterations, each
explorer node sends its current configuration and the associated cost to its head
node. The head node is the team member which collects and processes this in-
formation, retaining the best configurations in an Elite Pool (EP ) whose size
|EP | is parametric. Every U iterations, explorer nodes randomly retrieve a con-
figuration from the EP , in the head node. An explorer node may adopt the
configuration from the EP , if it is “better” than its own current configuration
with a probability pAdopt. Simultaneously, the teams implement a mechanism to
cooperatively diversify the search, i.e. they try to extend the search to different
regions of the search space.

Typically, each problem benefits from intensification and diversification on
some level. Therefore, the tuning process of the CPLS parameters seeks to pro-
vide the appropriate balance between the use of the intensification and diver-
sification mechanisms, in hope of reaching better performance than the non-
cooperative parallel solvers (e.g. Independent Multi-Walks). A detailed descrip-
tion of this framework may be found in [7].



3 EO-QAP: an EO Procedure for QAP

3.1 General Procedure

Our EO-QAP algorithm starts from a random permutation π ∈ Π(n), with an
associated cost given by F (π). To ensure we only consider proper permutations,
we only perform swap operations on pairs of elements from any given one: this
is how value assignment is classically implemented in permutation problems,
thereby eschewing the costly explicitly encoding of an all-different constraint.
We define the permutation resulting from swapping πi and πj :

πi↔j = µ | µi = πj , µj = πi, µk = πk ∀k 6∈ {i, j} (3)

The neighborhood of πi is the set N(πi) of the permutations obtained from
π by swapping πi with any another value. By extension, the neighborhood of π
is the set N(π) of all permutations obtained by swapping any two values:

N(πi) = {πi↔j | 1 ≤ j ≤ n, j 6= i} (4)

N(π) =

n⋃
i=1

N(πi) (5)

Most local search procedures (in particular hill climbing) would select, among
all elements of N(π), the best neighbor µ, i.e. the one minimizing the next global
cost function. By doing so, they have to deal with the problem of being trapped
in a local minimum. Instead, EO defines a fitness value λi for each value πi, with
the understanding that a value with a low fitness is more likely to mutate, i.e.
to get swapped. We define the fitness value λi as the best possible improvement
of the cost F when moving to a πi’s neighbor.

λi = min
µ∈N(πi)

F (µ)− F (π) (6)

A negative λ thus represents an improvement of the cost. At each iteration,
the n fitness values are evaluated and ranked, with rank k = 1 for the worst
fitness. EO-QAP will thus favor the mutation of a value which improves (de-
creases) the objective function. The value to mutate is chosen stochastically
from a probability distribution over the rank order. This comes down to pick a
value at rank k (1 ≤ k ≤ n) with a probability P (k) = k−τ . Let πr be the value
measured by the kth fitness value, then πr will be deemed the “culprit” and be
forced to mutate. For this we need to choose a target value πs for the swap. Sev-
eral possibilities exist: one is to choose πs randomly. Another, as in the original
EO article, is to pick a random value using the same probability distribution.
We propose a third possibility applying the min-conflict heuristic [30]: select the
best possible value, that is, the value which minimizes the objective function of
the next configuration. The algorithm then swaps πr and πs (thus moving to a
neighbor) and iterates with this new configuration. The process stops when a
some condition is reached (e.g. a time limit or a given cost is reached). The best
solution found so far is then returned (see Algorithm 1).



Algorithm 1 EO-QAP: an EO procedure for QAP

1: function EO-QAP
2: π ← a random permutation ∈ Π(n)
3: bestsol← π
4: bestCost← F (π)
5: while termination criterion is not reached do . e.g. a timeout
6: compute all fitness values λ of π
7: sort all λ in ascending order
8: let k be a random rank with a probability P (k)
9: let λr be the kth fitness value (πr must mutate)

10: consider all possible moves from πr and
11: choose a value πs minimizing the cost of the next configuration
12: π ← πr↔s . swap πr and πs

13: if F (π) < bestCost then
14: bestCost← F (π)
15: bestSol← π
16: end if
17: end while
18: return < bestSol, bestCost >
19: end function

Implementation Commentary and Complexity Analysis. A permutation
π can be encoded by an array of n integers sol[] (with sol[i] = πi). Line 6
computes the fitness λi for each value πi. Thanks to Taillard and his famous
Robust Taboo Search (RoTS), we know how to compute the evolution of the
global cost after a swap incrementally, instead of recomputing it each time from
scratch – see equations (1) and (2) which define ∆(µ, ., .) in [31]. This results
in an evaluation of all λ in O(n2), while a näıve algorithm is in O(n3). The
simplest data structure to manage λ is just an array fit[] whose elements are
pairs of the form <index,lambda>. Initially we have fit[i]=<i, λi >. Line 7
sorts the fit[] array on the second field (λ), in ascending order, this can be
done in O(n log2(n)). Line 8 picks a value at position k with a probability
P (k). Since the PDF and τ are constant along the execution of the algorithm,
it is more efficient to pre-compute the n samples of P (k), (1 ≤ k ≤ n) and
store then in an array prob[]. To pick a random k, we can use a roulette-wheel
selection on prob[] in O(n) theoretically (but closer to O(1) in practice due to
the PDF). It is also possible to use a a binary search in O(log2(n)) storing the

cumulative PDF (prob[k] =
∑k
i=1 P (i)). Line 9: the variable to mutate is given

by sol[fit[k].index]. Line 10 selects the other variable for the swap, as per
the min-conflict heuristic; this is done in O(n). However, as this variable had
already been found when computing λ (Line 6), one just has to record it. To this
end, the elements of the fit[] array are refactored as <index,lambda,index2>,
where index2 contains the index of the variable which minimizes the cost. The
second variable for the swap is then simply given by sol[fit[k].index2]. The
overall complexity of each iteration (i.e. of the main loop body) is thus O(n2).



3.2 Extending Extremal Optimization

Because it relies on just one parameter, EO is comparatively very simple to
use (tuning many local search parameters can become very laborious). As we
show in section 4, the results of EO-QAP are very good on many instances
of QAPLIB. However, some harder instances need a fine control of the trade-
off between intensification and diversification. EO handles these two strategies
with the same tool: the probability distribution P (k) = k−τ . Depending on
the returned value, either the current path continues to be improved (with a
high probability) or, in the extreme case, completely abandoned (with a low
probability). Every variable has a non-zero chance of being selected and EO is
not affected by local extrema. The choice of the probability distribution P has
thus a great impact, also determined by its parameter τ , which must be selected
by the user. Tuning τ for some hard problems (e.g. tai40a) turned out to be
difficult. We therefore decided to extend EO so as to accept different probability
distribution functions (PDF). The user can thus choose the most appropriate
PDF. For simplicity, all proposed PDFs take a single input parameter τ , the
other parameters (if any) being either constant or functionally dependent on τ .
We now discuss a few interesting PDFs, and how they are influenced by the
single τ parameter:

PDF definition Usage in EO Name

Power(x, τ) = x−τ P (k) = Power(k, τ) power law
Expon(x, µ) = µ e−µx P (k) = Expon(k, τ) exponential law

Normal(x, µ, σ) = 1
σ
√
2π
e−

(x−µ)2

2σ2 P (k) = Normal(k, 1, τ) normal law

Gamma(x, k, θ) = 1
Γ(k)θk

xk−1e−
x
θ P (k) = Gamma(k, τ, eτ ) gamma law
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The EO algorithm behaves very differently, depending on the PDF and the
chosen value for τ . Figure 2 shows the curves associated with these PDFs for a
size n = 40, picking different values for τ . Clearly, with the power law, the first
ranked variable has a very high probability to be selected, the probability then
decreases very fast but the variables with a high rank (i.e.“good” variables) are
very likely to mutate (e.g. when τ = 0.5). This results in less intensification,
and suits some problems perfectly. If this behavior is unwanted, a larger value
for τ may be used, nevertheless, this rapidly puts too strong a pressure on the
besk ranked variables which, for some problems, will be selected too frequently.
It can be difficult to find a good trade-off. On the other hand, the exponential
law skews probabilities a little bit more in favor of lower ranked variables. This
is clear from the shapes of the PDFs (see Figure 2). The normal (Gaussian)
law is also interesting because the curve decreases slowly for the very first ranks,
then more rapidly and then more slowly again: the first ranked “worst” variables
will then be selected with a high but comparable priority. Finally, we found the
gamma law interesting because it is not strictly decreasing and can, for instance,
give more priority to the second or third variable than to the first one. With this
PDF we obtained good results for tai40a with τ = 1.5. It is worth noticing that
a shifted normal law can also be used as a non-stricly decreasing function, e.g.
using P (k) = Normal(k, 2, eτ ). It is worth noticing that the best PDF and τ
combination is not the same when EO-QAP is run sequentially or in parallel.

Clearly, allowing different PDFs enhances the power of EO which can attack
more problems efficiently. The user now has more precise control over the behav-
ior of the algorithm, which remains simple with only two tunable parameters:
the PDF and its τ value. It is even possible allow the user to provide his own
customized PDF as a file of n values P1, . . . Pn. At run-time, the prob[] array
above mentionned is populated as follows: prob[k] = Pk∑n

i=1 Pi
(each value being

divided by the sum of all values to ensure the whole PDF = 1).

4 Experimental Evaluation

In this section we present experimental results on the entire QAPLIB test set.
To do this, we developed an X10 implementation of EO-QAP.3 Because EO is a
stochastic procedure, we ran each problem 10 times and averaged the results. The
number of possible experiments is very high: with different PDFs and τ values,
varying the timeout, testing sequential or parallel runs, with different topologies
and communication strategies, etc. We thus adopted a 3-stage protocol:

1. Attempt to solve all QAPLIB problems (134 instances) with a basic version
of EO-QAP (i.e. without any tuning) and a very short timeout (in order
to be able to try 10 runs for each of the 134 instances). All problems for
which the Best Known Solution (BKS) was reached for every execution are
definitively classified as solved. The others (solved less than 10 times) form
the test set of the next stage.

3 Source code and instances are available from cri-hpc1.univ-paris1.fr/qap/.

cri-hpc1.univ-paris1.fr/qap/


2. To attack the remaining problem we ran EO-QAP (with same parameters
and timeout) in independent parallel multi-walks, without communication,
on 32 cores of a single machine. As previously, we collected the fully solved
instances which need no longer be considered. The remaining instances form
the input set for the next stage.

3. The remaining problems are the hardest ones: for these, we used a coopera-
tive parallel version of EO-QAP on 128 cores, tuning the PDF and τ value,
and using a larger timeout of 10 minutes.

4.1 Stage 1: Sequential Execution

In this first stage, the input test set consists of the 134 QAPLIB instances, which
are run sequentially on an AMD Opteron 6376 clocked at 2.3 GHz, using a single
core. This is the basic version of EO-QAP with the original power-law PDF and
default value for τ (see Section 2.2). For each problem we report the BKS (which
is sometimes the optimum), the number of times the BKS is reached (#BKS),
i.e. the number of times the problem is solved, the average execution time (in
seconds) and the the Average Percentage Deviation (APD) which is the average

of the 10 relative deviation percentages computed as follows: 100F (sol)−BKS
BKS . We

use a short timeout of 5 minutes. Even if the solver stops as soon as the BKS is
reached a limited timeout is needed to be able to run the 134 instances 10 times.

Table 1 presents the whole results. Surprisingly, even with this straightfor-
ward and suboptimal setting, EO-QAP performs quite well: more than 50% of
the instances get totally solved. More precisely: 68 instances are fully solved (in
green), and among the remaining 66, only 25 are never solved. On average, the
41 others are solved 4.6 times (in orange). The average APD for the 66 instances
not fully solved is about 2.2%.

4.2 Stage 2: Independent Parallelism

In this stage, we ran the EO-QAP algorithm in parallel without communication
with the same settings as in the first stage (default PDF, default τ , timeout 5
min). The machine was the same: a quad AMD Opteron 6376 clocked at 2.3
GHz, but using 32 cores. These parameters make it possible to assess what im-
provement we can easily obtain by means of parallel execution. Indeed, this from
of parallelism (sometimes called embarrassingly parallelism) works by perform-
ing multiple independent walks to explore the search space. Each worker blindly
explores a region of the search space, looking for a solution. The process ends
as soon as any solver reaches a solution. Since all EO solvers start from a ran-
dom point, we can expect that they will all visit different regions of the search
space (i.e. ensuring a form of diversification), thus increasing the chance to find
a solution. Such a parallelization of an algorithm is easy to implement and often
behaves very well (see Section 2.3).

The results of this experiment are summarized in Table 2. This form of
parallelism brings a significant improvement in performance and reach. Exactly



Problem BKS APD #BKS time(s)

bur26a 5426670 0.034 6 122.817
bur26b 3817852 0.101 5 151.415
bur26c 5426795 0.126 5 161.905
bur26d 3821225 0.120 2 251.497
bur26e 5386879 0.072 7 90.776
bur26f 3782044 0.142 6 120.325
bur26g 10117172 0.202 5 150.330
bur26h 7098658 0.245 6 120.161
chr12a 9552 0.000 10 0.011
chr12b 9742 0.000 10 0.005
chr12c 11156 0.000 10 0.178
chr15a 9896 0.000 10 2.206
chr15b 7990 0.000 10 0.143
chr15c 9504 0.000 10 1.043
chr18a 11098 0.000 10 1.400
chr18b 1534 0.000 10 0.041
chr20a 2192 0.000 10 2.951
chr20b 2298 0.000 10 3.568
chr20c 14142 0.000 10 0.632
chr22a 6156 0.000 10 2.234
chr22b 6194 0.000 10 2.784
chr25a 3796 0.000 10 6.803
els19 17212548 20.902 2 240.000
esc16a 68 0.000 10 0.000
esc16b 292 0.000 10 0.000
esc16c 160 0.000 10 0.000
esc16d 16 0.000 10 0.000
esc16e 28 0.000 10 0.000
esc16f 0 0.000 10 0.000
esc16g 26 0.000 10 0.000
esc16h 996 0.000 10 0.000
esc16i 14 0.000 10 0.000
esc16j 8 0.000 10 0.000
esc32a 130 0.000 10 0.292
esc32b 168 0.000 10 0.051
esc32c 642 0.000 10 0.001
esc32d 200 0.000 10 6.634
esc32e 2 0.000 10 0.000
esc32g 6 0.000 10 0.000
esc32h 438 0.000 10 18.223
esc64a 116 0.000 10 0.009
esc128 64 0.625 8 60.175
had12 1652 0.194 6 120.000
had14 2724 0.220 7 90.000
had16 3720 0.032 4 180.000
had18 5358 0.134 4 180.033
had20 6922 0.150 6 122.549
kra30a 88900 0.983 4 180.439
kra30b 91420 0.213 5 189.252
kra32 88700 0.826 5 150.539
lipa20a 3683 0.000 10 0.069
lipa20b 27076 0.000 10 0.005
lipa30a 13178 0.000 10 0.742
lipa30b 151426 0.000 10 0.037
lipa40a 31538 0.000 10 1.962
lipa40b 476581 0.000 10 0.067
lipa50a 62093 0.000 10 4.245
lipa50b 1210244 0.000 10 0.113
lipa60a 107218 0.000 10 18.825
lipa60b 2520135 0.000 10 2.282
lipa70a 169755 0.000 10 57.737
lipa70b 4603200 0.000 10 8.288
lipa80a 253195 0.047 9 158.337
lipa80b 7763962 0.000 10 18.203
lipa90a 360630 0.221 5 256.062
lipa90b 12490441 0.000 10 20.193
nug12 578 0.000 10 0.012

Problem BKS APD #BKS time(s)

nug14 1014 0.000 10 0.341
nug15 1150 0.000 10 0.293
nug16a 1610 0.373 5 150.025
nug16b 1240 0.000 10 0.008
nug17 1732 0.000 10 17.504
nug18 1930 0.000 10 1.287
nug20 2570 0.000 10 0.482
nug21 2438 0.000 10 28.066
nug22 3596 0.501 5 158.960
nug24 3488 0.034 9 87.571
nug25 3744 0.000 10 0.591
nug27 5234 0.474 6 130.763
nug28 5166 0.031 9 101.182
nug30 6124 0.157 6 122.573
rou12 235528 0.000 10 0.013
rou15 354210 0.000 10 0.035
rou20 725522 0.000 10 1.668
scr12 31410 0.000 10 0.006
scr15 51140 0.000 10 0.023
scr20 110030 0.000 10 0.334
sko42 15812 0.197 3 221.158
sko49 23386 0.073 2 250.514
sko56 34458 0.172 3 236.856
sko64 48498 0.302 1 277.832
sko72 66256 0.503 1 287.034
sko81 90998 0.449 0 300.000
sko90 115534 0.675 0 300.000
sko100a 152002 0.612 0 300.000
sko100b 153890 0.264 0 300.000
sko100c 147862 0.760 0 300.000
sko100d 149576 0.583 0 300.000
sko100e 149150 0.687 0 300.000
sko100f 149036 0.652 0 300.000
ste36a 9526 0.426 7 139.233
ste36b 15852 2.976 2 253.286
ste36c 8239110 0.426 2 264.393
tai12a 224416 0.000 10 0.011
tai15a 388214 0.000 10 0.089
tai17a 491812 0.000 10 0.292
tai20a 703482 0.000 10 2.637
tai25a 1167256 0.000 10 6.330
tai30a 1818146 0.000 10 9.589
tai35a 2422002 0.000 10 42.399
tai40a 3139370 0.215 0 300.000
tai50a 4938796 0.511 0 300.000
tai60a 7205962 0.537 0 300.000
tai80a 13499184 0.750 0 300.000
tai100a 21052466 0.579 0 300.000
tai12b 39464925 7.995 2 240.000
tai15b 51765268 0.071 5 151.353
tai20b 122455319 21.993 1 270.000
tai25b 344355646 12.805 1 270.207
tai30b 637117113 15.479 1 270.022
tai35b 283315445 7.703 0 300.000
tai40b 637250948 10.085 0 300.000
tai50b 458821517 6.803 0 300.000
tai60b 608215054 6.559 0 300.000
tai80b 818415043 5.402 0 300.000
tai100b 1185996137 4.750 0 300.000
tai150b 498896643 2.686 0 300.000
tai64c 1855928 0.450 0 300.000
tai256c 44759294 0.431 0 300.000
tho30 149936 0.184 9 87.784
tho40 240516 0.147 2 241.778
tho150 8133398 1.196 0 300.000
wil50 48816 0.153 0 300.000
wil100 273038 0.409 0 300.000

Table 1: Sequential execution (power-law, default τ , timeout = 300 s)



Problem BKS APD #BKS time(s)

bur26a 5426670 0.000 10 0.027
bur26b 3817852 0.000 10 0.021
bur26c 5426795 0.000 10 0.009
bur26d 3821225 0.000 10 9.311
bur26e 5386879 0.000 10 0.010
bur26f 3782044 0.000 10 0.009
bur26g 10117172 0.000 10 0.006
bur26h 7098658 0.000 10 0.010
els19 17212548 0.421 9 30.007
esc128 64 0.000 10 0.036
had12 1652 0.000 10 0.000
had14 2724 0.000 10 0.000
had16 3720 0.000 10 0.000
had18 5358 0.000 10 0.001
had20 6922 0.000 10 0.001
kra30a 88900 0.134 9 30.544
kra30b 91420 0.000 10 2.485
kra32 88700 0.000 10 0.195
lipa80a 253195 0.000 10 15.001
lipa90a 360630 0.000 10 32.361
nug16a 1610 0.000 10 0.001
nug22 3596 0.000 10 0.002
nug24 3488 0.000 10 0.004
nug27 5234 0.000 10 0.006
nug28 5166 0.000 10 0.059
nug30 6124 0.000 10 0.268
sko42 15812 0.000 10 1.138
sko49 23386 0.000 10 40.118
sko56 34458 0.001 9 71.411
sko64 48498 0.005 8 109.435
sko72 66256 0.041 3 236.308
sko81 90998 0.044 1 271.685
sko90 115534 0.125 1 288.550

Problem BKS APD #BKS time(s)

sko100a 152002 0.117 0 300.000
sko100b 153890 0.112 0 300.000
sko100c 147862 0.056 0 300.000
sko100d 149576 0.133 0 300.000
sko100e 149150 0.059 0 300.000
sko100f 149036 0.144 0 300.000
ste36a 9526 0.000 10 1.148
ste36b 15852 0.000 10 2.035
ste36c 8239110 0.000 10 5.148
tai40a 3139370 0.074 0 300.000
tai50a 4938796 0.286 0 300.000
tai60a 7205962 0.302 0 300.000
tai80a 13499184 0.497 0 300.000
tai100a 21052466 0.419 0 300.000
tai12b 39464925 0.000 10 0.001
tai15b 51765268 0.000 10 0.001
tai20b 122455319 0.045 9 30.003
tai25b 344355646 0.074 8 94.831
tai30b 637117113 0.638 6 122.746
tai35b 283315445 0.364 3 229.160
tai40b 637250948 0.339 7 91.070
tai50b 458821517 1.222 0 300.000
tai60b 608215054 1.318 0 300.000
tai80b 818415043 2.012 0 300.000
tai100b 1185996137 0.900 0 300.000
tai150b 498896643 1.546 0 300.000
tai64c 1855928 0.012 8 60.004
tai256c 44759294 0.294 0 300.000
tho30 149936 0.000 10 0.235
tho40 240516 0.002 8 77.261
tho150 8133398 0.436 0 300.000
wil50 48816 0.000 10 27.545
wil100 273038 0.111 0 300.000

Table 2: Independent parallelism on 32 cores (timeout = 300 s)

half of the 66 problem instances now become fully solved (the average time being
3.2s). However, among the 33 remaining ones, 19 remain never solved and, on
average, the remaining 14 get solved 6 out of 10 times. Moreover, the average
APD over the not fully solved 33 is 0.372%. This contrasts with the previous
situation (2.2%), which indicates a significant improvement in the quality of
solutions: even when the optimum is not reached, the solution which was found
is close.

4.3 Stage 3: Cooperative Parallelism

In this final experiment, we attacked the 33 hardest instances with parallelism
and cooperation. This was simplified thanks to the CPLS framework which pro-
vides the necessary abstraction layers and already handles the communication
(see Section 2.3). The sequential EO-QAP needed a very simple adaptation: ev-
ery R iterations it has to send its current configuration to the Elite Pool and,
every U iterations, it retrieves a configuration from the pool, which it nonde-
terministically4 adopts it if it is better than the current one. The CPLS system

4 With a probability pAdopt.



already provides library functions for all these operations. The resulting solver
is then composed of several EO-QAP instances running in parallel, which coop-
erate by communicating in order to converge faster on a solution. As per [7], the
CPLS parameters which control the cooperation are as follows:

– Team Size (NPT ): we tested various configurations and defined NPT = 16.
There are thus 8 teams composed of 16 explorer nodes each running the
EO-QAP procedure. This is constant for all problems.

– Report Interval (R): we manually tuned it (starting from the average number
of iterations collected during the previous stage divided by 10).

– Update Interval (U): we experimented different ratio and retained U/R = 2.

– Elite Pool (EP ): its size is fixed to 4 for all problems.

– pAdopt : is set to 1. An EO-QAP instance receiving a better configuration
than its current one always switches to this new one.

This experiment has been carried out on a cluster of 16 machines, each with
4 × 16-core AMD Opteron 6376 CPUs running at 2.3 GHz and 128 GB of
RAM. The nodes are interconnected with InfiniBand FDR 4× (i.e. 56 GBPS.)
We had access to 4 nodes and used up to 32 cores per node, i.e. 128 cores. We
stay with a timeout of 5 minutes. Finally, we tested deeply two PDFs (power
and exponential) and their τ value and retained the best combination for each
problem instance (we could not yet test the Normal law and the Gamma law,
while efficient in sequential seems, not well suited for parallelism or else using a
different τ value).

Table 3 presents the results obtained on the hardest instances. The table also
reports the average number of iterations, the report and update interval (R and
U), the number of times the winning algorithm has adopted an elite configu-
ration, the PDF and τ value used. In this last stage, 15 new problems become
fully solved. Moreover the average time to solve them is only 24.5 seconds. Only
8 remain unsolved. On average, the remaining 10 get solved 5 out of 10 times.
Moreover, the average APD over the 18 not fully solved is only 0.25%. Even
when the optimum is not reached the returned solution is close to this optimum.

The table shows that an efficient execution corresponds to a limited number
of “adoptions” of an elite configuration (less than 5 changes). This is directly
correlated to the value of R and U . There are some exceptions like tai25b and
tho40 which are both fully solved. We plan to analyze in details these both
situations (e.g. varying R and U).

Regarding the power and exponential PDF, there is no winner. It is worth
noticing that sometimes the difference is huge. For instance, sko90 is solved 9
times with the power law but only 2 times with the exponential law. The reverse
occurs for taiXX a for which the exponential law performs much better.

The performance of the cooperative parallel EO-QAP, is on par with the best
competing solutions, while retaining a much simpler internal structure [32]. Due
to space limitations, we do not develop this further.



Problem BKS APD #BKS time(s) #iters R U #adopt PDF τ

els19 17212548 0.000 10 0.003 23 10 20 0.2 pow 1.70
kra30a 88900 0.000 10 0.026 599 100 200 2.6 pow 0.20
sko56 34458 0.000 10 4.776 35658 7000 14000 2.5 pow 0.60
sko64 48498 0.000 10 4.822 26494 7000 14000 1.5 pow 0.60
sko72 66256 0.000 10 13.442 57956 15000 30000 1.4 pow 0.80
sko81 90998 0.008 7 118.905 399748 20000 40000 9.4 pow 1.00
sko90 115534 0.000 10 92.951 253547 25000 50000 5.0 pow 0.60
sko100a 152002 0.012 5 224.206 492441 50000 100000 4.2 pow 1.00
sko100b 153890 0.001 8 146.679 322560 50000 100000 2.6 pow 1.00
sko100c 147862 0.000 10 145.032 319871 50000 100000 2.4 pow 1.00
sko100d 149576 0.014 6 200.948 442626 50000 100000 3.6 pow 1.00
sko100e 149150 0.000 10 103.370 228094 50000 100000 1.6 pow 1.00
sko100f 149036 0.011 4 245.929 542031 50000 100000 4.8 pow 1.00
tai40a 3139370 0.022 7 171.113 2701406 350000 700000 3.4 exp 0.18
tai50a 4938796 0.026 5 208.882 1997696 350000 700000 2.4 exp 0.16
tai60a 7205962 0.132 2 285.329 1833023 400000 800000 1.9 exp 0.17
tai80a 13499184 0.385 0 300.000 1037282 400000 800000 1.0 exp 0.16
tai100a 21052466 0.297 0 300.000 657489 100000 200000 3.0 exp 0.13
tai20b 122455319 0.000 10 0.001 69 20 40 0.8 exp 0.38
tai25b 344355646 0.000 10 0.600 23331 400 800 17.0 pow 1.40
tai30b 637117113 0.000 10 0.121 3360 500 1000 3.0 pow 0.20
tai35b 283315445 0.000 10 0.737 15659 500 1000 14.2 pow 0.80
tai40b 637250948 0.000 10 0.061 973 500 1000 0.4 exp 0.12
tai50b 458821517 0.214 2 266.446 2571166 250000 500000 4.5 exp 0.03
tai60b 608215054 0.205 3 256.836 1676681 250000 500000 2.6 pow 0.40
tai80b 818415043 1.192 0 300.000 1035635 45000 90000 8.8 pow 1.05
tai100b 1185996137 0.465 0 300.000 658761 50000 100000 5.5 pow 1.02
tai150b 498896643 1.088 0 300.000 281965 70000 140000 1.5 pow 0.94
tai64c 1855928 0.000 10 0.010 27 6 12 0.3 exp 0.04
tai256c 44759294 0.263 0 300.000 81624 10000 20000 1.3 exp 0.04
tho40 240516 0.000 10 1.243 20091 22000 44000 0.2 pow 1.00
tho150 8133398 0.144 0 300.000 281711 50000 100000 1.7 pow 1.00
wil100 273038 0.061 0 300.000 662233 50000 100000 5.4 exp 0.09

Table 3: Cooperative parallelism on 128 cores (timeout = 300 s)

5 Conclusion and Further Work

We have proposed EO-QAP: an Extremal Optimization (EO) procedure for
QAP. The basic sequential version of EO-QAP, while simple behaves rather well
on several instances of QAPLIB. To attack hardest instances we first proposed
a simple extension to the original EO procedure allowing for different probabil-
ity distribution functions (PDF). The user can select the most adequate PDF
depending on the degree of intensification wanted. Moreover, we resorted to co-
operative parallelism using a framework written in the X10 parallel language,
which provides the user with a fine degree of control of the intensification and
diversification for the search. The cooperative version of EO-QAP displays very
good results: using 128 cores, 116 instances of QAPLIB are systematically solved
at each execution, 10 instances are solved half the time and only 8 instances re-
main unsolved (but the obtained solution is near to the optimum).

We now plan to attack other known hard instances. Future work includes
the study of a default parameter for the other PDFs (e.g. exponential) and how
to take into account the hardness of the problem to define this value (e.g. in
terms of the landscape ruggedness of the instance to solve). Moreover, we plan



to explore portfolio approaches, i.e. ones which combine multiple solvers as well
as experiment with techniques for parameter auto-tuning. This experimentation
entails a deep analysis of the parallel performance behavior.
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