
HAL Id: hal-01332471
https://hal.science/hal-01332471v1

Submitted on 15 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schedulers for BGW Tasks to Guarantee Quality of
Service of Embedded Real-Time Systems

Maryline Chetto, Mohamed Ould Sass

To cite this version:
Maryline Chetto, Mohamed Ould Sass. Schedulers for BGW Tasks to Guarantee Quality of Service of
Embedded Real-Time Systems. 5th International Conference on Pervasive and Embedded Computing
and Communication Systems, Feb 2015, Angers, France. �hal-01332471�

https://hal.science/hal-01332471v1
https://hal.archives-ouvertes.fr

Schedulers for BGW Tasks to Guarantee Quality of Service
of Embedded Real-Time Systems

Keywords: Embedded, Real-time, Processor Overload, Fault-Tolerance, Uniprocessor, Scheduling.

Abstract: We present a new task model called BGW for preemptable, periodic task sets, scheduled on a uniprocessor
embedded platform. The tasks may be subject to faults and the processor may be overloaded. According to
BGW, any Black job has to execute a primary algorithm before deadline, any Grey job may execute either the
primary or the back-up algorithm and any White job may be discarded. We describe several Earliest Deadline
First (EDF) based scheduling frameworks suitable for this model. We also present and discuss the results of
experiments that compare the EDF scheduler applied to conventional Liu and Layland task sets to various
schedulers applied to BGW task sets. The Quality of Service is observed through metrics including ratio of
deadline success, preemption rate, etc.

1 INTRODUCTION

We consider the problem of scheduling preemptable,
periodic real-time task systems with arbitrary relative
deadlines, scheduled on a single processor by an on-
line scheduler. We focus our attention on firm real-
time systems for which producing results after dead-
line can be accepted only under some pre-specified
conditions that depend on the application.
The problem of real-time scheduling has been studied
extensively from about forty years starting with the
famous research paper of Liu and Layland in 1973
(0). Most of these works (see a survey in (0)) have
focussed on hard real-time systems and resulted in a
number of fixed and dynamic priority driven schedul-
ing algorithms with associated off-line schedulability
tests.
In this paper, we propose to describe and evaluate a
new task model for answering requirements of firm
real-time systems that accept deadline violations due
to either occurrence of faults or/and processing over-
load. Overload conditions can be caused by a bad sys-
tem design, not anticipated simultaneous arrivals of
interrupts, hardware defects in data acquisition from
sensors, under-estimated computational demands, op-
erating system exceptions, etc. Fault-tolerance tech-
niques intend to keep the system operational in the
presence of faults, even with producing degraded re-
sults. We will show how the BGW task model permits
to guarantee online graceful and controlled degrada-
tion of the Quality of Service in embedded real-time
systems.

2 BACKGROUND AND RELATED
WORK

2.1 Traditional task scheduling

Traditionally, a periodic task τi is characterized by
two parameters at least: Ci, worst case execution time
and Ti, activation period. Every task periodically gen-
erates an infinite set of jobs for execution. The uti-
lization factor of a periodic task gives the ratio of ex-
ecution requirement per period: ui =

Ci
Ti

. As a conse-
quence, the total utilization factor of a task set com-
posed of n tasks is : ∑

n
i=1 ui. The following EDF

schedulability test was established (0): ∑
n
i=1 ui ≤ 1

i.e. total utilization is at most one. A task set is said to
be feasible if there exists at least one schedule where
all jobs of all tasks complete by their deadline at run
time. Earliest Deadline First was proved optimal and
Deadline Monotonic was proved the best one in the
class of fixed priority schedulers (0). However, EDF
as well as DM are suitable for under-loaded process-
ing systems where the processing demand is lower
than the processing capacity at every time. Such
schedulers are particularly adapted to a hard real-time
context that imposes underload conditions.

2.2 Fault-tolerant scheduling

Redundancy is the foundation of fault tolerance tech-
niques. There are three types of redundancy: hard-
ware, software and temporal. Permanent faults are
generally dealt through hardware redundancy while
temporal redundancy techniques serve for transient

or intermittent faults. They consist in re-executing
a task which has failed with either the same coding
version (pure temporal redundancy) or a different ver-
sion, currently a shorter one. We are interested with
the Deadline Mechanism (DL) model. Each task has
two independent software versions (0). Firstly, a ma-
jor version called primary produces results with high
precision when it is completely executed before dead-
line. Secondly, a version called alternate or back-up
with shorter execution time has to run for producing
a just acceptable result whenever the primary fails in
executing timely due to a fault or processor overload.
Two distinct scheduling frameworks may be imple-
mented for the DL mechanism (0) (0). Firstly, accord-
ing to the First Chance (FC) technique the alternate
version of any job executes completely first before the
primary version of the same job starts execution. If
the primary version finishes before deadline, its re-
sults are used in preference to those of the alternate.
Secondly, the Last Chance (LC) technique attempts to
execute first the primary version. Nevertheless suffi-
cient processing time intervals have to be reserved to
guarantee feasible execution of the alternate version
if the primary fails. Consequently, success of any pri-
mary leads to discard the corresponding alternate and
recover processing time since the result of the alter-
nate becomes no longer necessary. In this strategy, the
scheduler has to suspend any running primary when-
ever an alternate requires to be executed so as to meet
its deadline. Theoretical and simulation studies estab-
lished that the LC strategy outperforms the FC strat-
egy (0) (0).

2.3 Scheduling with overload conditions

Any scheduling algorithm should aim at minimizing
the overall damage to the system performance when-
ever a processing overload occurs. This can be per-
formed by dynamically changing some timing param-
eters of the tasks (e.g. execution time or period), using
importance values attached to the tasks or skipping
some jobs of recurring tasks. In that work, we opted
for the Skip-over (SO) model (0). Each periodic task
is characterized by a value called skip factor denoted
by si, (2 ≤ si ≤ ∞) signifying that among si succes-
sive jobs, at most one can be skipped. Every job of
a task has one of the two colours: red or blue. A red
job has to complete before deadline while a blue one
can be aborted at any time. Moreover, after a deadline
missing, at least (si−1) jobs are red and must be ex-
ecuted timely. Several scheduling schemes have been
proposed and analysed for the SO model such as RTO
(Red Tasks Only) or BWP (Blue When Possible).

3 THE BGW TASK MODEL

BGW (Black Grey White) is a novel task model which
uses time redundancy to cope with both transient pro-
cessor overload and faults (?). The BGW model de-
rives from:

• the DL Model where each periodic task has two
independent versions for fault-tolerance and over-
load management.

• and the SO model where each periodic task has a
skip parameter for overload management.

Every job generated by a periodic task take at every
time instant one of the three following colours :

• Black if the job has to imperatively produce a re-
sult through the primary version,

• Grey if the job has to produce a result through at
least one version, but in preference the primary
one,

• White if the job may be dropped i.e. the job has
no execution requirement even if it is preferable
to execute one of the two versions.

Formally, a BGW task set τ = {τ1,τ2, ...,τn} is com-
posed of n periodic tasks where each task τi is charac-
terized by its conventional timing parameters and two
additional QoS parameters (ni, li). Let us define the
term ”distance” as a number of requests. ni expresses
the maximum distance allowed between two consecu-
tive successful executions of the primary version. li is
the maximum distance allowed between two consecu-
tive successful executions of a job (whatever primary
or alternate).

Any scheduling scheme for BGW-tasks should :

• guarantee that the requirements of the BGW tasks
are satisfied. At least one primary version over
ni successive jobs has to be executed timely, and
one alternate version over li successive jobs has to
be executed timely. In other words, the scheduler
should timely execute the primary version of each
Black job and either the primary version or the
alternate version of each Grey job.

• maximize the number of successful primary exe-
cutions,

• minimize the number of unsuccessful jobs i.e jobs
which are either discarded or not completed be-
fore deadline.

In this paper, we report the results of a simulation
study where the performance of three EDF based
schedulers is analyzed (0).

4 SCHEDULERS UNDER STUDY

We apply the FC technique where every alternate
executes entirely and systematically for producing a
result with just acceptable precision. After the corre-
sponding primary is authorized to start execution for
producing a result with a better precision but never-
theless with a longer execution time. By definition of
the Black colour, only the primary version is executed
for black jobs. Either the alternate version or the pri-
mary one has to be executed timely for every grey job.
The white job can be aborted.

The FC technique applied to the the BGW model
can be implemented through different scheduling
variants. We analyse here three EDF based schedul-
ing strategies, each one defined by a specific ordering
of versions. Let “X > Y ” express that job with type
X should be executed with a higher priority than any
job with type Y. Any scheduling framework uses at
most five ordered lists which are respectively BP (BA
does not exist by definition of black colour), GA, GP,
WA and WP. This can be easily implemented in any
real-time operating system with only one list of jobs
that contains five ordered sub-lists. We assume in that
work that all the lists are ordered according to the ear-
liest deadline first rule. Our simulation results will
concern scheduling frameworks based on the follow-
ing priority ordering:

1. BP > GA > GP > WA > WP: Both the alternate
and the primary versions of any grey job should
be executed with a higher priority than the white
jobs. As a consequence this scheduling policy will
be denoted by GbWA (Grey before White Alter-
nate),

2. BP > GA > GP > WP: Both the alternate and
the primary versions of any grey job should be
executed with a higher priority than the primary
versions of the white jobs. In that policy, alter-
nate versions of white jobs are never executed. As
a consequence this scheduling policy will be de-
noted by GbWP (Grey before White Primary),

3. BP > GA > WA > GP > WP: The alternate ver-
sions of all grey jobs and white jobs should be
executed with a higher priority than the primary
versions of all grey jobs and white jobs. As a con-
sequence this scheduling policy will be denoted
by AbP (Alternate before Primary)

5 EXPERIMENTS

5.1 Simulation Environment

We developed a task set generator that outputs BGW-
schedulable task sets. The task generation proce-
dure was parameterized so that task sets exhibit differ-
ent degrees of scheduling difficulty and consequently
allows us to provide an objective evaluation of the
BGW mechanism.
The generator has the following input parameters:
number of tasks (n), Least Common Multiple of the
periods (P), worst case alternate load (Ua), worst case
primary load (Up), (ni) and (li) parameters.
In all simulations reported in this paper, parameters n
and P take constant values 22 and 3360 respectively.
We considered 14 values for Up which uniformly vary
from 0.8 to 2.2. Ua is a linear function of Up with
Ua = 0.2∗Up and ni = 7, li = 4.
Outputs are the timing parameters of tasks (i.e. pe-
riod, relative deadline, worst case alternate execution
time and worst case primary execution time. More
precisely, for a given alternate load Ua , Ca

i and Cp
i

are proportional to Ti (Ca
i ≤Cp

i) with a minimal value
equal to 1. The task sets which result from the dif-
ferent combinations of Ua and Up were scheduled ac-
cording to BGW and EDF successively.

5.2 Metrics

We measure the resulting Quality of Service of the
system under the BGW mechanism by the ratio of
primary versions which are executed timely over the
total number of jobs (NPJ) and the ratio of jobs (pri-
maries and alternates) which are executed timely over
the total number of jobs (NSJ). Scheduling tasks in
overloaded conditions implies to discard some un-
completed jobs. Consequently, as processor time can
be wasted, we measure the wasted time ratio (WTR)
i.e. the percentage of time used by the processor for
producing no result or useless results.
The EDF scheduling strategy wastes time because of
uncompleted primaries. Under the BGW strategy,
time is wasted when both primaries and alternates are
uncompleted and white jobs do not execute.There are
also some processing time lost in preemptions and
context switches. So we measured the relative pre-
emption cost (RPC) i.e. the number of preemptions
per the total number of jobs within a time reference
window.

5.3 NSJ Analysis

We analyse NSJ which gives the number of jobs
which are executed timely (either by primary or alter-
nate versions) over the total number of jobs. We com-
pare it for the three different BGW strategies in addi-
tion to the classical EDF scheduling algorithm (where
every job has only one version i.e. the primary one).
Fig.1 shows variation of NSJ by making vary the pri-
mary load, Up, (and consequently the alternate load
Ua). As shown by the four graphs, for high load, AbP
and GbWA strategies outperform GbWP and EDF.
The AbP strategy exhibits a higher NSJ in compar-
ison to the GbWA strategy, which in turn, is better
than GbWP. Indeed, under low alternate load (Ua)
compared to primary load (Up), there are additional
chances of executing alternate versions of grey and
white jobs, when they have a higher priority in the
job execution order.
The basic EDF scheduler causes more jobs to fail
compared to the three scheduling strategies applied to
BGW-tasksets. Only primary versions are executed
under classical EDF, thus requiring large processing
time. These observations confirm the effectiveness of
our specific task model for overload control. For all
BGW strategies, the number of deadline misses in-
creases as Up increases. High value of Ua causes more
processor time consumption by alternate version of
grey jobs, thus leading to higher deadline misses for
grey primaries. Clearly, the priority of alternate ver-
sions in the job execution order significantly impacts
the BGW performance in terms of global success.
This confirms usefulness of AbP and GbWA strate-
gies.
From Up = 100%, NSJ highly decreases until reach-
ing 50% for Up = 200% under the EDF algorithm,
and 40% under the GbWP strategy. For AbP and
GbWA, the decreasing is insignificant and indepen-
dent from the primary load, until Up = 210% where
NSJ visibly starts decreasing. AbP and GbWA have
similar NSJ until Up reaches 170% where a small dif-
ference between the two strategies can be observed.
Under higher load, the ratio of deadline misses for
EDF algorithm is approximately ten times higher than
for the AbP strategy. This observation outlines why
both the BGW model and specific scheduling strate-
gies improve significantly the resulting Quality of
Service of embedded systems under transient proces-
sor overload. NSJ appears to have the highest values
for the AbP and GbWA strategies, when the GA list
respectively WA list has higher priority than the GP
list respectively the WP list.
The GbWP policy behaves like EDF when the pri-
mary load (Up) is increasing. Therefore, execut-

Figure 1: Percentage of successful jobs as a function of
load.

ing WP jobs before WA jobs leads to a significant
decrease in global success for GbWP relatively to
GbWA because primaries have a higher execution
time in comparison to alternates.
Let us note that 1/(ni+1) = 14.28% and 1/(li+1) =
71.72% that respectively represent the ratio of black
jobs and grey jobs which have to meet deadlines.
When the primary load Up is high, all the BGW poli-
cies execute the lowest number of black jobs which
is permitted by distance parameters. In that situa-
tion, the BGW and EDF policies behave identically in
terms of success ratio. Nevertheless, there is no con-
trol on which job fails under classical EDF in contrast
to BGW policies.

5.4 NPJ Analysis

Fig.2 depicts variation of NPJ i.e. the ratio of success-
ful primaries by making vary Up (primary load). For
all values of Up, GbWA outperforms EDF.

GbWP and EDF strategies offer the best per-
formance since, for the former strategy, the highest
priorities are affected to the GP and WP jobs.
Whereas, for the latter strategy, there is no execu-
tion of the two versions of grey and white jobs by
re-executing the primary version after executing the
alternate one.
NPJ is greater for the GbWP strategy, compared to
the GbWA strategy which is in turn, greater than the
AbP algorithm.
With the small difference observed between the
EDF algorithm and the GbWP strategy in term of
successful primaries, we can state that, the BGW
strategies have a comparable performance if priorities
given to GP and WP jobs are greater compared to
priorities given to the WA jobs.
It is very interesting to note that NPJ, the percentage
of successful primaries remains greater than or equal
to 14.28%, that is the smallest ratio of primary
versions to be executed in accordance with the
requirement of the BGW model.

At least 1/(ni) jobs have to execute their primary
version. In this study we have (ni = 7). As a con-
sequence, at least 1/7 = 14.28% primaries must be
executed timely. This explains why we can continue
the simulation experiment until Up = 700% and we
observe that NPJ is decreasing under 14.28%. It is
also observed that NPJ for EDF decrease rapidly as
Up grows, until it stands comparison to the AbP and
GbWA policies.
In fact, at higher values of the utilization factor Up, in
particular between Up = 210% and Up = 220%, we
observe that all schedulers behave identically when
observing NPJ i.e. the ratio of successful primaries.

Considering the jobs execution order under BGW

Figure 2: Percentage of successful primaries as a function
of load.

scheduling strategies, we notice that when the com-
putation times of GA jobs and WA jobs tend to zero,
all BGW scheduling policies tend to behave as the
EDF scheduler.
We note also that, the lower the priority is given
to WA jobs, the more similar are the behaviours
of BGW and EDF policies in terms of successful
primaries ratio. When the primary load Up becomes
very high (more than 210%), all the BGW policies
execute only primaries of the black jobs and so BGW
and EDF policies have similar NPJ. We can draw the
same conclusion when the alternate load is roughly
equal to the primary load.

5.5 WTR Analysis

The wasted time ratio (WTR) is the percentage of
time used by the processor for producing useless re-
sults (notably jobs which are aborted). The EDF
scheduling strategy leads to waste processing time
when primaries are aborted before completion be-
cause of time starvation. Generally, wasted time
comes from the execution of primary grey jobs and
all versions of white jobs in the BGW policies.
Fig.3 shows the variation of WTR.

The best performance regarding WTR is given
by the GbWA algorithm for all load conditions. In
under-load conditions, WTR is equal to zero for EDF
because only the primary versions are executed, and
EDF is optimal if there is no overload. For GbWP,
WTR is also equal to zero until Up = 110% and
increases slowly until Up = 130%. Then, it continues
to increase with large values until 21% at Up = 220%.

Both the increase in the number of lost jobs and

Figure 3: Percentage of wasted time as a function of load.

the increase in computation time of alternate and
primary versions lead to the increase in wasted time.
Indeed, abortion of any primary or alternate version
will create large unusable processing time.
As Up increases, the ratio of lost jobs under the
EDF policy increases more than the AbP and GbWA
strategies.
Hence, WTR under EDF is greater than under AbP
and GbWA strategies when Up is very high.

5.6 RPC Analysis

It is interesting to compare the number of preemp-
tions generated by the different scheduling strategies,
so as to evaluate correctly the relative overhead. In
fact, the previous performance evaluation may have
no significance if some schedulers exhibit unaccept-
able overhead at runtime due to context switches.
Fig.4 shows RPC i.e. the preemption ratio

In under-load conditions, we notice a light dif-
ference between the different algorithms. Globally,
RPC is approximately constant at 19% for the AbP
and GbWA strategies. We also observe similarity be-
tween GbWP and EDF policies with different values
of alternate loads.
RPC for AbP and GbWA strategies is greater than
for GbWP and EDF algorithms. Consequently, the
number of selected WA, GP and WP jobs to be exe-
cuted for AbP and GbWA strategies increases, which
increases the preemption ratios.

Under all load conditions, the GbWP strategy of-
fers the best performance in terms of RPC compared

Figure 4: Preemption Rate as a function of load.

to the other BGW strategies. It is always less than
10% above Up = 110%. We observe small differences
between GbWP and EDF policies. EDF gives high
RPC in under-load conditions and decreases in over-
load conditions between 100% and 150%. RPC starts
to increase from Up = 150% for EDF until it reaches
the same level as AbP and GbWA.
Globally, RPC is stable for AbP and GbWA policies
unlike GbWP and EDF strategies. RPC for BGW
policies, particularly for AbP and GbWA is higher
than for the EDF scheduler applied to jobs which are
all primary versions. When the primary version load
is high, the probability to execute timely the GP jobs
decreases. Thus, neither the execution of WA nor WP
jobs is achieved, hence, the decrease in RPC for the
GbWA strategy. According to jobs execution order
under BGW strategies, for example for GbWA when
the computation time of GA and WA jobs tends to be
close to ones of the GP and WP jobs, the BGW poli-
cies tends to behave as EDF in terms of RPC.

6 CONCLUDING REMARKS

The contribution of this paper was twofold. We
described a new approach for modelling Quality of
Service (QoS) requirements of periodic task systems
which may be the object of both transient faults
and processor overloads. This approach consists in
integrating the Deadline Mechanism and the Skip-
Over model in a unified task model, namely BGW.
We have shown how BGW permits to provide an
acceptable quality of service through adequate task
scheduling. We evaluated several scheduling schemes
for BGW-task sets with experiments. The simula-
tion demonstrates the merits of our proposed task
model compared to the classical Liu and Layland task
model. Simulations show the improvement of specific
scheduling frameworks for the BGW model achieved
in terms of ratio of successful jobs and efficiency
of processor usage which alleviates the performance
degradation under overload conditions.

REFERENCES

G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer academic, 1997.

A. K. Atlas, A. Bestavros. Statistical rate monotonic
scheduling. In Proceedings of IEEE Real-Time
Systems Symposium, December 1998.

H. Chetto, M. Chetto. Some Results of the Earliest
Deadline Scheduling Algorithm. IEEE Transac-
tions on Software Engineering, Volume 15, Issue
10, pp. 1261-1270, 1989.

H. Chetto, M. Chetto. An adaptive scheduling algo-
rithm for fault-tolerant real-time system. Soft-
ware engineering journal May 1991.

G. Koren, D. Shasha. Skip-over algorithms and com-
plexity for overloaded systems that allow skips.
Proceedings of the 16th IEEE Real-Time Sys-
tems Symposium (RTSS’95), Pisa, Italy, 1995.

A.L. Liestman, R.H. Campbell, A Fault-Tolerant
Scheduling Problem. IEEE Transactions on Soft-
ware Engineering, vol. 12, no. 11, pp. 1089-
1095, 1986.

C. Liu and J. Layland. Scheduling algorithms for mul-
tiprogramming in real-time environment. Journal
of ACM, 1(20) :46-61, October 1973.

M. Ould Sass, M. Chetto, A. Queudet. The BGW
model for QoS aware scheduling of real-time
embedded systems. MobiWac ’13 Proceedings of
the 11th ACM international symposium on Mo-
bility management and wireless access. Pages
93-100 ACM New York, NY, USA 2013.

