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Abstract One of the challenges of organic crop certification
is the efficient targeting of the relatively small percentage of
risk-sensitive fields that have to be controlled during the reg-
ulatory annual in situ inspection. A previous study carried out
on wheat and maize in Germany has shown that organic and
non-organic crops can be efficiently distinguished by remote
sensing. That study pointed to the possibility that these tech-
niques could be used for helping organic crop certification
bodies to better target risk-sensitive fields. This study is a first
adaptation of that research on organic cotton in southwestern
Burkina Faso, West Africa. This study assumed that organic
and non-organic cotton, primarily because of their different
approaches to fertilization and pest control, would result in
bio-chemico-physical differences measurable by both in situ
and remote sensing indicators. This study included 100 cotton
fields, of which 50 were organic, 28 conventional, and 22
genetically modified. In situ indicators were derived from
chlorophyll content, canopy cover, height, and spatial hetero-
geneity measurements. Remote sensing spectral and spatial
heterogeneity indicators were derived from two SPOT 5 sat-
ellite images. Discriminant models were then computed. The
results show statistically highly significant differences be-
tween organic and non-organic cotton fields for both in situ
and satellite indicators, using univariate and multivariate lin-
ear models, with up to 86 % discrimination performance. This

is the first time that the efficiency of using remote sensing to
discriminate between organic and non-organic crops is evalu-
ated in a developing country, particularly for cotton, with good
discrimination being achieved. Pending further validation, it
therefore seems that remote sensing could be used to enhance
organic cotton certification in West Africa by enabling more
efficient targeting of suspect fields and consequently could
contribute to a better development of this sector.

Keywords Organic cotton certification . Organic cotton .

Conventional cotton . Genetically modified cotton . Satellite
remote sensing .West Africa . Burkina Faso . Comparison

1 Introduction

In Burkina Faso, organic cotton has been grown since 2004
and covers about 1 % of the national cotton area (CDE, Centre
for Development and Environment of the University of Berne,
Helvetas Burkina Faso 2008), with the rest of the area more or
less equally shared between conventional and genetically
modified cotton (GRAIN 2004). In order to be sold on the
international market, organic cotton has to comply with
established international standards and rules and to be certified
by organic certification bodies. Part of this certification pro-
cess is a field inspection focused on risk-sensitive areas iden-
tified on the basis of several criteria. Provided that bio-
chemico-physical differences (hereafter referred to as “differ-
ences”) are identified between organic and non-organic cotton
fields and that these differences are observable by satellite
imagery, the latter could be used, in the beginning of the field
certification process, to target for priority control cotton fields
declared as organic but shown as suspect by remote sensing
indicators (Fig. 1). The use of remote sensing would have the
advantages of being a supplementary and independent means
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of control, providing a practical approach for remote areas that
are sometimes difficult to reach in developing countries’
countryside and helping certification bodies to face up to
growing organic crop areas to certify.

The operational method could comprise four steps: (i)
collecting field geolocalization (usually available) and satellite
image(s) of the area targeted for control, (ii) developing a
discriminating model from a comparison of indicators derived
from satellite image (s) for reference organic and non-organic
fields, (iii) using this model to assess the level of confidence
for other organic fields, and (iv) in situ inspection for most
suspect organic fields.

The objectives of this study were to assess, in the context of
southwestern Burkina Faso, (i) the potential differences be-
tween organic and non-organic cotton using a range of in situ
measurements and (ii) the possibility of helping the organic
cotton certification process through the use of remote sensing
images, particularly the ability of these images to discriminate
between organic and non-organic cotton fields.

2 Materials and methods

2.1 Study area

The study area was east of Banfora city in southwestern Burkina
Faso, West Africa (Fig. 2). The local climate is equatorial with

dry winters and savannah (AwKoeppen climate class) and a low
annual temperature amplitude with an annual average of 28 °C.
The rainy season coincides with the growing season and lasts
from about 15 May to 15 October, the rest of the year being dry.
The aridity index, i.e., the ratio of annual precipitation to annual
potential evapotranspiration (Le Houérou et al. 1981), is “dry
subhumid” with a precipitation deficit of 1025 mm/year (FAO,
German Weather Service DWD and Grieser 2006). The area is
flat to slightly hilly, with amean altitude of 300m. The study area
was selected to include a mix of organic and non-organic cotton
fields in an area of 45 km×35 km.

2.2 Cotton crop, phenology, and timing in the area

A range of local cotton varieties is grown in Burkina Faso, but
none is particularly earmarked for organic or conventional
cultivation. Genetically modified cotton is represented by sev-
eral varieties of Bt cotton (Noisette 2006). Cotton is generally
cultivated in a low-intensive way, farming operations are con-
ducted manually or with work animals, and the crop is always
harvested manually (CIRAD and le Développement 2006).
The cotton crop is rainfed (CIRAD and le Développement
2006), and the seeding date in the study area occurs between
20 May and 15 July, depending on the onset of the rainy
season (Jean-Luc Hofs, CIRAD Biotechnologist, 2011, per-
sonal communication). The length of time between seeding
and harvest in the study area is about 150 days, depending

Fig. 1 Schematic illustration of
the study objectives: “Is it
possible to discriminate between
organic and non-organic cotton
fields from satellite images?”
Upper left: 15 November 2011
SPOT 5 satellite image of a study
area subset with in situ fields
shown and leaf chlorophyll
content measurement
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partly on the cotton variety (Abel Gouba, Helvetas Burkina
Faso, 2011, personal communication). Cotton blooms while
growing, and at a given time, a cotton plant simulta-
neously carries flower buds, flowers, and bolls. Once
the ripe bolls open, cotton fibers appear as white balls.
Finally, the leaves wither and the plant dries. The crop
is harvested in October and November (Abel Gouba,
2011, personal communication). In any given region at
a given time, plant growth stages can vary considerably
from one field to another, depending on several factors.
These include local climatic conditions (e.g., very late
rainfall in some places), institutional reasons (e.g.,
workers’ strike and field wreckage), and management
issues (e.g., late input application and poor seed quality,
which can require four reseedings, resulting in delays of
up to 20 days).

2.3 Cotton management system definition and differences

2.3.1 Cotton management systems definition

Organic cotton is cultivated according to the international
rules of organic agriculture and is subjected to the organic
certification process. In particular, synthetic chemical pesti-
cides and fertilizers (Helvetas Burkina Faso 2004), mineral
nitrogen fertilizer, and genetically modified organisms
(European Commission 2007) are prohibited. The genetically
modified cotton grown in Burkina Faso is represented by sev-
eral varieties of the Bt cotton (Noisette 2006). Conventional
cotton is the cotton that has not been genetically modified or
certified as organic. Conventional and genetically modified
cotton use synthetic chemical pesticides and fertilizers and
mineral nitrogen fertilizers.

2.3.2 Observed differences between organic and non-organic
cotton

A recent study in Burkina Faso of about 100 cotton growers
(CDE et al. 2009) shows a clear difference in yield between
organic and conventional cotton, with an average of 1100 kg/
ha for conventional cotton and 675 kg/ha for organic cotton,
i.e., an average of 39 % lower yields. Standard deviations are
important, however, with 314 kg/ha for organic fields and
391 kg/ha for conventional fields, showing considerable yield
variability. This study also notes that elite organic farmers can
potentially push yields above 1000 kg/ha. (CDE et al. 2009).
According to an expert in Burkina Faso cotton (Georg Felber,
Coordinator of the organic and Fairtrade cotton program run
by Helvetas Swiss Intercooperation-Burkina Faso from 2007
to 2011, 2011, personal communication), organic cotton fields
can usually be differentiated from conventional or genetically
modified ones by the naked eye, with less biomass and lower
yield being characteristic of organic fields. This expert also
notes, however, that a well-managed organic field can look
like a conventional or genetically modified one.

The observed yield differences are explained by several
factors, including (CDE et al. 2009): (i) conventional manage-
ment uses chemical synthetic NPK and urea fertilizers and
pesticides; (ii) in organic management, natural fertilization is
slower and often not enough fertilizer is applied; (iii) the or-
ganic cotton development program is fairly new (2004) and
involves less developed farms, as well as farmers with less
expertise and/or training (Some 2008) in organic cropping
techniques, less equipment, less important livestock, and,
therefore, a lower quantity of fertilizers and often precarious
financial situations; (iv) cultivation in less fertile zones; (v)
frequent seed delivery delays from suppliers; and (vi) an in-
crease in new organic management technical staff who lack

Fig. 2 Location of the study area
in southwestern of Burkina Faso
and cotton field distribution
according to the three
management systems: organic,
conventional, and genetically
modified
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the experience and training to enable them to give farmers
adequate advice on applying organic techniques.

Helvetas et al. (2008), however, noted that 2–3 years after
conversion to organic methods, most of the organic cotton
grown under their project produced yields approximately as
good as those obtained through conventional management.
This was partly because organic management improves soil
fertility (Georg Felber, 2011, personal communication).

No reference of study comparing organic and non-organic
cotton with remote sensing was found. Nevertheless, Denis
et al. (2012) were able to completely discriminate between
organic and non-organic maize and winter wheat in
Germany and France using as basic remote sensing indicator
as Green NDVI for example.

2.3.3 Hypothesis on cotton differences from different
management systems

In this study, it was assumed that the differences between
organic and non-organic cotton management systems, partic-
ularly with regard to the different ways of fertilization and pest
control, would produce differences that are measurable using
indicators derived from field instruments or satellite imagery,
as summarized in Table 1. For organic fields, these differences
include less canopy cover, lower chlorophyll content in the
plants and smaller plants. It was also assumed that organic
cotton fields would present higher spatial heterogeneity given
that organic crops cannot benefit from mineral fertilizers,
which make nutrients, especially nitrogen, readily available
and easy to spread evenly on the field, thus evening out the
field’s “natural fertility.” By contrast, organic fertilizers are
usually deposited on a field in piles and then roughly spread,
creating characteristic pockets of fertility where the piles were
deposited and nearby but showing poorer plant development
further away from the piles, resulting in strongly varying cot-
ton development on the organic fields. In addition, it was
assumed that the spatial heterogeneity of organic fields is

exacerbated by the fact that (i) herbicides are not used in
organic management, allowing weeds to develop, often in
localized parts of the fields, and (ii) pest control under organic
management system tends to be less efficient, enabling dis-
eases to take hold more easily.

2.4 Data acquisition and indicators computation

Measurements were taken in organic and non-organic cotton
fields in situ during a field survey and with satellite imagery.

2.4.1 Field survey and sampling

The field survey was conducted during the first 10 days of
October 2011. This period was selected in order to ensure that
the cotton plants had reached a growth stage suitable for the
study, i.e., after start of main stem elongation and before se-
nescence. The study covered 100 cotton fields, of which 50
were organic and 50 non-organic, the latter being split into 28
conventional and 22 genetically modified (Fig. 2). The fields
were selected according to the following criteria: (i) manage-
ment system (organic, conventional, genetically modified);
(ii) spatial distribution, to be representative of the whole study
area; (iii) accessibility; (iv) field size, to be big enough to be
studied on a satellite image with a spatial resolution of 2.5 m;
and (v) availability of the farmer at the time of the measure-
ments. The field boundaries were recorded by GPS.
Genetically modified cotton fields accounted for a significant-
ly larger area (mean area 1.29 ha) than conventional (mean
area 0.81 ha) or organic (mean area 0.88 ha) ones. The field
area varied greatly, both among all the fields and within the
different management types (standard deviation of 1.10, 0.62,
and 0.66 ha, respectively). In each field, ten plots were select-
ed for study. These plots were more than 10 m from the field
boundary, were at least 5 m from each other, and, together,
were representative of the whole field. For each plot,

Table 1 Differences between organic and non-organic cotton management systems, resulting cotton plant differences, related indicators, and
measurement method for in situ measurement and satellite sensing

Differences in cotton management systems Differences in cotton plants Indicators Measurement method
Differences in organic compared with non-organic systems

Less fertilizer Less canopy cover Field canopy cover In situ hemispherical pictures
Satellite “spectral indicators”

No use of synthetic chemical fertilizer
or mineral nitrogen fertilizer

Lower chlorophyll content Leaf chlorophyll content In situ chlorophyll content meter

Lower height Plant height In situ measuring tape

Less spatial homogeneous fertilizer
application

Higher spatial heterogeneity Field spatial heterogeneity Standard deviation by field for other in
situ indicators

Less-efficient pest control Satellite “spatial heterogeneity indicators”
No use of synthetic chemical pesticide
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chlorophyll content, height, and canopy cover measurements
were taken and the growth stage was recorded.

2.4.2 In situ indicators

Height Cotton plant height was measured with a 2-m-long
folding rule. The rule was placed at the plant base, and the
height was read at the top of plant.

Chlorophyll content Chlorophyll content was estimated
using a Chlorophyll Content Meter (CCM-200 from Opti-
Sciences) on one of the upper leaves of the selected plant.
The CCM-200 is a hand-held instrument designed for the
rapid, non-destructive determination of chlorophyll content
of intact leaf samples. Two wavelengths are used to determine
absorbance, one falling within the chlorophyll absorbance
range (red at 653 nm) and the other serving to compensate
for mechanical differences such as tissue thickness (near in-
frared (NIR) at 931 nm). A chlorophyll content index (CCI),
proportional to the amount of chlorophyll in the sample, is
then calculated (Eq. 1) (Opti-Sciences 2002).

CCI ¼ Absorbance 931 nm

Absorbance 653 nm

Equation 1: chlorophyll content index (CCI), nanometers
(nm).

Canopy cover Canopy cover was estimated by taking hemi-
spherical photographs and analyzing them using CAN-EYE
(CAN-EYE 2006) software. A Besel Super Wide Fish Eye
lens 0.25×W-52025 with a macro lens was used on a Canon
PowerShot A590 IS camera. The camera was set on the
ground in between two cotton rows, and the photographs were
taken in a vertical upward direction in automatic mode.
Illumination conditions were selected in order to clearly dif-
ferentiate the plants (crop and weeds) from the sky. The CAN-
EYE software was used to derive two indexes from the hemi-
spherical pictures: (i) a plant area index (PAI) (one-sided plant
area per unit horizontal ground surface area (CAN-EYE 2006)
and (ii) a Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR) index. The “No mixed pixel (two clas-
ses)” CAN-EYE method was used, consisting in identifying
sky pixels, the rest being automatically classified as vegeta-
tion. The adjustment of the brightness index only was suffi-
cient to achieve accurate classification. Mean index values per
field were computed.

Spatial heterogeneity of in situ parameters The spatial het-
erogeneity of the fields was computed by using, for height,
chlorophyll content, and canopy cover indicators, the standard
deviation of every ten measurements by field and then their
mean according to management system.

2.4.3 Satellite imagery and derived indicators

Satellite programming focused on the acquisition of two im-
ages between 1 September and 25 October 2011, but the al-
most permanent cloud cover in the area did not result in ade-
quate acquisition on these dates. A cloud-free SPOT 5 image
on 15 November 2011 was acquired in the 2.5-m color mode
with 2A preprocessing level. This image resulted from merg-
ing one panchromatic image at a spatial resolution of 2.5 m
with one three-band (green, red, NIR) multispectral image at a
spatial resolution of 10 m (SPOT IMAGE 2010). Another
SPOT 5 image, at a spatial resolution of 10 m and with a short
wave infrared (SWIR) band in addition to the green, red, and
NIR bands, was acquired on 30 October 2011. This image,
however, was slightly cloudy, and only 89 fields could be
studied on it. The occasionally small size of the cotton fields
in the area and their spatial configuration required using high
or very high spatial resolution images. As the acquisition date
was very late, the cotton plants were probably mature to se-
nescent and the cotton fiber had probably already been har-
vested at that time. The cotton fields were digitized in a poly-
gon shapefile in ArcGIS, on the SPOT 5 image, using the field
boundary GPS recordings. Using eCognition and R software,
two sets of indicators were computed for each field and image
spectral band: (i) “spectral indicators”, covering mean reflec-
tance, brightness, and all possible ratios of two spectral bands’
mean reflectance and (ii) “spatial heterogeneity indicators”,
covering standard deviation, coefficient of variation, standard
error, and a series of gray-level co-occurrence matrix (GLCM)
features.

2.5 Statistical analysis

The binomial logistic regression technique, a type of the gen-
eralized linear model (GLM) technique, was used to find lin-
ear models that would best discriminate between the organic
and non-organic (conventional and genetically modified)
field types.

Three categories of models were investigated: (i) models
with in situ indicators only, (ii) models with satellite indicators
only, and (iii) models with a combination of in situ and satel-
lite indicators. An exhaustive search to find the best model
among all possible models for a given candidate indicator
set was carried out using the “glmulti” function of R software.
Models with and without pairwise indicator interaction were
studied. When the number of possible models was too high
because of the size of the candidate indicator set and the use or
not of indicator interaction, i.e., when using more than 30
candidate indicators without interaction or more than 10 can-
didate indicators with pairwise interaction, the candidate indi-
cator set was reduced by progressive indicator selection (elim-
ination of less discriminating indicators) before applying the
exhaustive model search.

Remote sensing enables high discrimination between organic and non-organic cotton 1503



The Akaike information criterion (AIC) was used to eval-
uate the relative ability of each model to separate organic from
non-organic cotton fields and to select the best ones. Akaike
information criterion presents the advantage to enable simple
models to be selected by penalizing models over parameteri-
zation and satisfying the parsimony criterion. Models with
smaller Akaike information criterion values are better.
Models composed of 1 (univariate case) to a maximum of 4
(a reasonable maximum) indicators were computed.
Univariate models corresponding to each of the seven in situ
indicators were also systematically computed and presented.

The statistical significance of the models was evaluated
using the p value of a Mann–Whitney–Wilcoxon (MWW)
non-parametric statistical hypothesis test carried out on the
model-predicted probabilities of belonging to a management
system. The number of fields wrongly classified (predicted
probability of belonging to its management system below
0.5) was also counted.

Box and whisker plots were used to present, for the three
cotton systems, the indicator values for univariate cases and
model-predicted probability of belonging to the organic class
for multivariate cases.

Leave-one-out cross validation (LOOCV) was used to val-
idate each model. The root-mean-square errors (RMSE) of the
predicted probability of belonging to a class of the models
calibrated with the 100 fields and of the LOOCV were com-
pared and their differences computed.

All the statistical analysis was carried out using R software.

3 Results and discussion

The results table (Table 2) presents, for each indicator catego-
ry (in situ, satellite, combined) and statistical analysis type
(univariate and multivariate, with or without indicator interac-
tion), the best models and related performance and validation
parameters. With regard to the multivariate analysis, many
other models with a very similar performance exist, but they
are not presented here. Based on a selection of the most inter-
esting of these models, Fig. 3 presents graphs showing the
discrimination achieved between the three cotton manage-
ment systems.

3.1 Univariate model

3.1.1 Height

The mean heights of organic and non-organic cotton (Fig. 3
(1)) show a highly significant difference (20 cm), with lower
heights for organic cotton (69 cm for organic and 89.5 cm for
non-organic). The mean height of genetically modified cotton
is 9 cm higher than the mean of conventional cotton. Although
the heights’ interquartile ranges (IQR) clearly differ between

organic and non-organic cotton, the height ranges (minimum
and maximum) largely overlap.

The means of the standard deviations of the heights by field
(Fig. 3 (2)) for organic and non-organic cotton show a highly
significant difference, with higher spatial heterogeneity for
organic fields (16.8 for organic and 13.8 for non-organic).
Although the IQR clearly differ between organic and non-
organic cotton, the ranges largely overlap.

These results are consistent with the study hypothesis.

3.1.2 Chlorophyll content

The mean CCI of organic and non-organic cotton (Fig. 3 (3))
present a significant difference (1.8) with smaller values for
organic cotton fields (25.0 for organic and 26.8 for non-organ-
ic) which is consistent with the study hypothesis. The CCI
interquartile ranges differ slightly between organic and non-
organic cotton, and the CCI ranges overlap completely.

The means of the standard deviation of the CCI by field
(Fig. 3 (4)) for the organic and non-organic cotton show a
highly significant difference, with smaller spatial heterogene-
ity for organic fields (6.0 for organic and 7.0 for non-organic),
which is not consistent with the study hypothesis. The inter-
quartile ranges differ slightly between organic and non-
organic cotton, and the ranges largely overlap.

3.1.3 Canopy cover

The mean plant area index of organic and non-organic cotton
(Fig. 3 (5)) show a highly significant difference (0.38), with
lower values for organic cotton (0.51 for organic and 0.89 for
non-organic), which is consistent with the study hypothesis.
Genetically modified cotton has a slightly higher plant area
index than conventional cotton. Besides this, the plant area
index interquartile ranges do not overlap at all between organ-
ic and non-organic cotton. The behavior of the mean FAPAR
(Fig. 3 (7)) resembled that of the mean plant area index. The
mean plant area index is the most discriminating univariate
indicator in this study.

The means of the standard deviations of plant area index by
field (Fig. 3 (6)) for organic and non-organic cotton show a
highly significant difference, with lower spatial heterogeneity
for organic fields (0.20 for organic and 0.26 for non-organic),
which is not consistent with the study hypothesis. The inter-
quartile ranges differ slightly between organic and non-
organic cotton, and the ranges largely overlap.

3.1.4 Satellite imagery indicators

The results obtained from the 30 October image are not pre-
sented here because only 89 fields could be studied on it and
the discrimination was no better than with the 15 November
image. Nevertheless, the SWIR band was generally identified
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as one of the most discriminating spectral bands and should be
considered in further similar studies when available. The re-
sults presented here relate only to the 15 November image.

Despite the very late acquisition date, highly significant
differences between organic and non-organic cotton fields
were observed for both the spectral and spatial heterogeneity
SPOT 5 satellite indicators (Fig. 3 (10, 11)).

The most discriminating satellite indicators, by far, are the
spatial heterogeneity ones. This is probably related to the very
late satellite image acquisition at a time when the fields still
displayed spatial heterogeneity, but the spectral features had
already softened.

The most discriminating spatial heterogeneity indica-
tor is the GLCM contrast of the green spectral band
(Fig. 3 (11)) with a p value of 10−7 and interquartile
ranges that nearly do not overlap. Conventional and
genetically modified fields show similar values for this
indicator while organic fields are more heterogeneous.
All spatial heterogeneity indicators computed show
higher values for organic fields, which is consistent with the
study hypothesis.

The most discriminating spectral indicator is the ratio
of the red and NIR (red/NIR) spectral bands (Fig. 3
(10)) with a p value of 0.0005, interquartile ranges that
slightly overlap and ranges that largely overlap between
organic and non-organic cotton. Bearing in mind the study
hypothesis, however, it could be considered that differences
between organic and non-organic cotton fields would be more
pronounced earlier in the season when more living vegetation
is present.

The very late satellite image acquisition date prevents any
direct comparison with the in situ indicator values.

3.2 Multivariate models

The multivariate models discriminate better than the univari-
ate ones and are very highly significant, with p values in the
range of 10−7 to 10−12 and interquartile ranges that do not
overlap.

3.2.1 Multivariate in situ models

The multivariate in situ models (Fig. 3 (8, 9)) generally in-
clude both spectral and spatial heterogeneity indicators,
reflecting the usefulness and complementarities of these two
indicator types. An exception is the two-variate model with
indicator interaction, which is composed of two spectral indi-
cators. On this topic, it has been observed that, for all the in
situ models generated, the interactions usually consisted of
two spatial heterogeneity indicators or two non-spatial hetero-
geneity ones.

Moving from the best univariate in situ model (Akaike
information criterion 104.5) to the best two-variate in situ

model (Akaike information criterion 91.3) leads to an impor-
tant decrease in the Akaike information criterion, which is no
more the case with three- or four-variate models (Akaike in-
formation criterion 87.4 and 85.0, respectively).

Multivariate in situ models perform better than satellite
ones in this study, probably because of the very late satellite
image acquisition date and by the fact that the in situ measure-
ment measures the plants directly.

3.2.2 Multivariate satellite models

None of the four-variate models was kept. They were auto-
matically converted into three- or even two-variate models (in
the case of interaction). For the two- and three-variate models
(Fig. 3 (12, 13)), the selected indicators are all spatial hetero-
geneity ones, which can probably be related to the very late
satellite image acquisition date as noted earlier. The second-
best two- and three-variate models (not presented), however,
have one spectral indicator each.

3.2.3 Multivariate combined models

Combinedmodels are always made of both in situ and satellite
indicators, reflecting the complementarities of these two indi-
cator types. Here again, for all the combined models generat-
ed, the interactions usually consist of two spatial heterogeneity
indicators or two non-spatial heterogeneity ones. In addition,
the two indicators of each interaction are from two different
sources (in situ vs. satellite) (confer the four-variate model
with interaction in Table 2).

Combined multivariate models with indicator interaction
produce the best discrimination in this study, with, a p value
of 10−11 and an Akaike information criterion of 85.5 for two-
variate models (Fig. 3 (14)) and a p value of 10−14 and an
Akaike information criterion of 72.7 for four-variate models
(Fig. 3 (16)). Model performance constantly increases with
complexity, probably because indicators come from different
sources (in situ vs. satellite) and were recorded at different
times, bringing in the models complementary rather than re-
dundant information. The number of incorrectly classified
fields is also decreased with 21 wrongly classified fields for
two-variate in situ models, 26 for two-variate satellite models,
and only 16 for two-variate combined models.

3.3 Model validation

The prediction RMSE of belonging to a class of the LOOCV
are slightly greater than those for corresponding models cali-
brated with 100 fields and this for all models (Table 2). Their
differences are very small compared with the RMSE values
themselves, which validate all models.

Remote sensing enables high discrimination between organic and non-organic cotton 1507
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3.4 Results summary and discussion

On the initial hypothesis The results obtained in this study
are fairly mixed. On the one hand, most of the univariate
indicators (i.e., height and its standard deviation, mean CCI,
canopy cover) and those derived from satellite imagery show
that organic fields present statistically significant lower gen-
eral field development and higher spatial heterogeneity, which
accords with the initial hypothesis, even though these differ-
ences are not always very pronounced, with a large overlap
between indicator value ranges over management systems. On
the other hand, the standard deviations for plant area index and
CCI show lower spatial heterogeneity for organic fields,
which is not consistent with the initial hypothesis.

On the technical results All indicators and models enable
significant to, most of the time, highly significant difference to
be shown between organic and non-organic cotton fields, with
satellite indicators, in situ indicators, and combined models
showing increasing discriminating ability. Multivariate linear
models are more discriminating than univariate ones. Simple
models based on satellite imagery show good discrimination
performance. More complex three- and four-variate models
are consistently more efficient when composed of complemen-
tary indicators (spectral vs. spatial heterogeneity, in situ vs. sat-
ellite, and multitemporal). Both spectral and spatial heterogene-
ity indicators prove to be efficient for discrimination, and none
of them should be preferred over another. Rather, their combi-
nation is worthy. The acquisition of the SPOT 5 image very late
in the crop cycle is probably responsible for the comparatively
small discriminatory power of its spectral indicators. This, in
addition to the fact that no in situ measurement was done at that
time, means that the significance and reliability of these indica-
tors should be treated with caution. A timely image, however,
would probably have proven to be far more efficient. In this
way, the obtained results suggest that there is room for optimism
with regard to applying this method, although further validation
is needed.

The relevance of the use of remote sensing for this appli-
cation in the study area can also be discussed Indeed, the
difficulties faced in acquiring an adequate satellite image
could be seen as indicative of the unfavorable atmospheric

conditions in the study area during the rainy and often cloudy
growing season, which could be a considerable challenge for
implementing an operational remote sensing-based service for
discriminating cotton management systems. In addition, the
varying presence of trees in cotton fields can strongly influ-
ence their reflectance and, in particular, the spatial heteroge-
neity of the fields as computed from the satellite images. This
can range from no trees and a complete agroforestry system
combining cotton and a relatively dense Borassus (Palmyra
palm) plantation, to the presence of one or two huge mango
trees or sparse smaller trees in the field. Besides the direct
effect of the trees on reflectance, they have an indirect effect
through (i) the favorable impact of their shadow on cotton
plants, which extends soil wetness duration, and (ii) the fertil-
ization effect of dead leaves.

Other factors, independent from the cotton management sys-
tem and having a strong impact on cotton growth and field
development, will remain standing in the way of a remote
sensing-based discrimination between organic and non-
organic cotton fields. For example, cotton growth stages can
vary strongly from one field, farmer, or region to another,
depending on the seeding date, itself depending on such fac-
tors as the local climatic conditions (Cf. Sect. 2.2). The natural
fertility of the soil also considerably influences the plant
development.

It should also be noted that the observed differences be-
tween organic and non-organic cotton, in the literature and in
this study, are due partly to the organic cotton program being
relatively new and to the lack of experience among organic
cotton farmers and trainers. As suggested by the yields already
obtained by elite organic farmers, there is every reason to
believe that if organic farming methods are promoted and
refined, the current gap between organic and non-organic cot-
ton yields could be considerably reduced in the years to come.
This would be particularly likely if organic farmers increased
the quantity of organic fertilizers applied, which is, with rain-
fall, the key factor explaining the cotton yields, and one
which seems to be lacking currently.

Finally, it is important to mention that this study was based
on a very limited number of fields (100) and samples (1000
most of the time) that are not totally representative of the study
area or region. The study results therefore need further
validation.

4 Conclusion

This study shows that, for the first time, remote sensing tech-
niques can be used for effective discrimination between or-
ganic and non-organic cotton crops in the context of West
African developing countries. Consequently, provided that
further studies with timely satellite image acquisitions validate

�Fig. 3 Discrimination obtained among the three cotton management
systems with selected indicators and models. Conv conventional, GM
genetically modified, Orga organic. Empty circles: indicator values for
univariate cases and model predicted probability of belonging to the
organic class for multivariate cases; filled black circle: mean value;
arrows: standard deviation from mean; box: the interquartile range
(IQR) delimited by the first (Q1) and third (Q3) quartiles, with the
median indicated by the bold horizontal line; whiskers: the most
extreme data point, which is no more than 1.5 times the IQR from the
box (i.e., Q1−1.5×IQR and Q3+1.5×IQR); long horizontal line: the 0.5
probability threshold (multivariate case only)

Remote sensing enables high discrimination between organic and non-organic cotton 1509



these initial results and that organic cotton performance does
not greatly improve, these techniques could help the organic
cotton certification process by targeting for priority field con-
trol suspect cotton fields declared as organic. Further research
should focus on determining the ideal phenological stage for
cotton management system discrimination by remote sensing
in West Africa and on evaluating the use of a broader spectral
range (SWIR and over).
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