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Abstract

In tolerancing analysis, geometrical or contact specifications can be represented by polytopes. Due to the degrees of invariance of surfaces and

that of freedom of joints, these operand polytopes are originally unbounded in most of the cases (i.e. polyhedra). Homri et al. proposed the

introduction of virtual boundaries (called cap half-spaces) over the unbounded displacements of each polyhedron to turn them into 6-polytopes.

This decision was motivated by the complexity that operating on polyhedra in R
6 supposes. However, that strategy has to face the multiplication

of the number of cap half-spaces during the computation of Minkowski sums. In general, the time for computing cap facets is greater than for

computing facets representing real limits of bounded displacements. In order to deal with that, this paper proposes the use of the theory of screws

to determine the set of displacements that defines the positioning of one surface in relation to another. This set of displacements defines the

subspace of R6 in which the polytopes of the respective surfaces have to be projected and operated to avoid calculating facets and vertices along

the directions of unbounded displacements. With this new strategy it is possible to decrease the complexity of the Minkowski sums by reducing

the dimension of the operands and consequently reducing the computation time. An example illustrates the method and shows the time reduction

during the computations.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

The objective of tolerance analysis is to determine if the

cumulative defects fulfil the functional requirements of a me-

chanical system. The displacements limits of a toleranced sur-

face inside its tolerance zone or a toleranced joint inside its

clearance can be modelled by a set P of n half-spaces H̄−i =
{ai1x1 + ... + ai6x6 ≤ bi} in R

6 [15,16]:

P =
n⋂

i=1

H̄−i = {x ∈ R
6 : aT

i x ≤ bi, i = 1, ...n}

= {x ∈ R6 : Ax ≤ b}, A ∈ Rn×6 and b ∈ Rn

The six dimensions are due to the six possible displacements

that define the position and orientation of any rigid body with

respect to a coordinate system in the Euclidean space. Since

the degrees of invariance dinv of toleranced surfaces or the de-

grees of freedom dmob of toleranced joints define theoretically

unbounded displacements, P is usually an open set, i.e. a poly-

hedra in R
6.

Due to the complexity that operating on polyhedra in R
6 sup-

poses, Homri et al. [8,9] proposed the introduction of virtual

boundaries ¯Hc− j, called cap half-spaces, over the unbounded

displacements of geometric or contact polyhedra to turn them

into 6-polytopes. Finally, P becomes a bounded setP by adding

m = 2.dinv half-spaces for a toleranced surface or m = 2.dmob

for a toleranced joint.

P =
⎛⎜⎜⎜⎜⎜⎝

n⋂
i=1

H̄−i

⎞⎟⎟⎟⎟⎟⎠ ∩
⎛⎜⎜⎜⎜⎜⎜⎝

m⋂
j=1

H̄c−j

⎞⎟⎟⎟⎟⎟⎟⎠

Once each set of constraints becomes a bounded set, the ac-

cumulation of variations in a mechanical assembly can be cal-

culated through Minkowski sums and intersections in R
6 [4,15].

This strategy, suitable even for tolerance analysis of over-

constrained assemblies, has to face the multiplication of cap

half-spaces during the computation of Minkowski sums. Thus,

the time for computing cap facets (facets associated with cap

half-spaces) is far greater than that for computing facets repre-

senting real limits of bounded displacements.

© 2016 The Authors. Published by Elsevier B.V.  This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In order to deal with the aforementioned issue, we propose

the use of the theory of screws to perform the mobility analy-

sis of the toleranced mechanical system. By doing so, the set

of bounded displacements that define the relative position of a

couple of surfaces influencing the functional condition (FC) can

be determined. For each case, this set of displacements defines

the smallest affine subspace of R6 in which the respective poly-

topes have to be projected to perform the Minkowski sum. As a

result, the complexity of this highly time-consuming operation

can be decreased by reducing the dimension of the space.

2. Tolerance analysis with 6-polytopes

The current methodology of tolerance analysis with 6-

polytopes is illustrated in this section by an example. The case

presented in figure 1, implies the control of the relative position

of two non-parallel nominally planar surfaces S 1 with a local

reference system R1 (vectorial base x1, y1 and z1) and S 2 with

a local reference system R2 (vectorial base x2, y2 and z2) and

tolerance zones TZ1 and TZ2 respectively.

Fig. 1. Proposed case study

To solve the proposed case with the 6-polytopes method,

first a CAD file representing the toleranced part was created

and imported into the open source software PolitoCAT [5]. The

software, through its graphical interface, allows the creation

of 6-polytopes representing possible variations of toleranced

features. The 6-polytope P1 6D, representing the possible

displacements of S 1 inside its tolerance zone TZ1, was created

with 20 pairs of geometric constraints, generated in turns by a

discretization of the contour line in 20 points. To virtually limit

the unbounded displacements of S 1, 3 pairs of cap half-spaces

were added to the set of geometric constraints. Particularly for

this case, the cap half-spaces are required to limit the rotation

along y1, ry1
, the translation about x1, tx1

, and the translation

about z1, tz1
. O1 was chosen to express the constraints. As it is

not possible to represent graphically 6-polytopes, a projection

into a 3D space is required. The projection of P1 6D, P∗
1 6D, is

shown in figure 2, where the axis of projection are the rotation

along x0, rx0
, the rotation along z0, rz0

and the translation

along y0, ty0
. Similarly, the 6-polytope P2 6D representing the

possible displacements of S 2 inside its tolerance zone TZ2 was

created with 20 pairs of geometric constraints and 3 pairs of

cap half-spaces. The 3D projection P∗
2 6D of P2 6D onto rx0

, rz0

and ty0
is presented in figure 2. It can be noted that P∗

2 6D has

unbounded displacements along rx0
and ty0

due to the influence

of the unbounded displacements ry2
and tx2

in the local base of

the surface. This is why much of the facets of P∗
2 6D become

cap half-spaces in the global base. Figure 2 shows in darker

color the non-cap facets.

Fig. 2. 3D projection of P1 6D, P2 6D and PC 6D. Facets highlighted in darker

color represent non-cap facets

The strategy based on 6-polytopes propose the direct sum

of P1 6D and P2 6D in R
6. This operation was performed by

means of the open source software politopix [5]. The operation

took 19 s to be computed, the details of the calculated polytope

PC 6D and its operands are presented in table 1. The simulation

was performed with an Intel Core i7-3740QM. Figure 2 shows

a 3D projection P∗C 6D (according to rx0
, rz0

and tz0
) of the sum

PC 6D = P1 6D ⊕ P2 6D. By analyzing the graphical results

it can be concluded that the only controllable displacement is

rz0
. It is worth to mention that for facility of visualization of

the polytopes, the second member of the cap half-spaces was

chosen not too big, but the graphical difference between the

bounded and unbounded displacements is even clearer when
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Table 1. Tolerance analysis with 6-polytopes (F: facets, V: vertices)

P1 6D P2 6D PC 6D

F 46 46 3676

V 176 176 5208

Time [s] 19

this value is increased. This conclusion is also compliant with

the trace of the bounded displacements of the operands: for

the operand P2 6D the only bounded displacement in the global

base (x0,y0,z0) is rz0
. Then, the unbounded displacements of

this operand are kept in the calculated polytope PC 6D.

These results show that computing Minkowski sum of poly-

topes in R
6, implies the computation of many facets coming

from cap half-spaces of the operands, which were initially re-

quired just to generate closed sets. Punctually in this exam-

ple, the calculated polytope in R
6, PC 6D, is composed by 3676

facets, from which just 2 are necessary to describe the toler-

ance analysis problem: the two bounding the displacements

along the axis rz0
. All the remaining facets are coming from

cap half-spaces and have no meaning in this tolerance analysis

problem. In other words, polytopes in R
1 are enough for solv-

ing this case. Hence the question: is it possible to know the

bounded displacements (the dimension) of the calculated poly-

tope before performing a Minkowski sum? The answer can be

found in the mobility analysis of the toleranced surfaces. This

can be carried out by means of the theory of screws as it is ex-

plained in the next section.

3. Theory of screws overview

The theory of screws is based on the following theorems [2]:

• Chasles’ theorem: any rigid body motion can be repre-

sented instantaneously as a rotation about a unique line

and a translation along that same line.

• Poinsot’s theorem: any system of moments and forces act-

ing on a rigid body can be represented instantaneously as

a one moment and one force.

These theorems describe the concepts of twist and wrench

respectively. Twists can be analyzed as allowable motions

while wrenches as forbidden motions [14]. Both, twists T̂ and

wrenches Ŵ are 1x6 row vectors written as:

T̂ = [ω | v] = [ω | r × ω]

Ŵ = [ f | m] = [ f | r × f ]

where ω is a unit angular velocity vector, v is a unit linear ve-

locity vector, f is unit moment vector, m is unit force vector

and r is the expression point of the screw. When, ω and v are

unitary vectors as described above, T̂ is called a unitary twist

and similarly if f and m are unitary vectors, Ŵ becomes a uni-

tary wrench. The advantage of using unitary screws is that the

mobility analysis can be performed by using just the geometric

parameters of the involved surfaces.

This theory, initially developed for kinematic analysis of

mechanisms [1,7], has been also widely applied to tolerance

analysis [6,13] by the assumption of manufacturing and assem-

bly defects are generally small displacements. The difference

between these applications is that for mechanism analysis the

inputs are large motions of one or more of the parts and the out-

puts are the rigid body displacements, velocities and forces; and

in tolerance analysis the inputs are small variations due to the

manufacturing or assembly process and the output are the small

rigid body displacements and accumulated variations. For a

mechanism model, the solution describes the motion regarding

the time. For a static assembly, the tolerancing analysis gives

the variation of the assembly regarding the nominal model [3].

The theory of screws is suitable to represent the n degrees

of invariance of a toleranced surface or degrees of freedom of a

toleranced joint by concatenating in a matrix the set of n twists

describing each degree of invariance or freedom:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̂1
T̂2
...

T̂n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T is usually called twist-matrix and by calculating its dual vec-

tor space, the corresponding wrench-matrix (also called recip-

rocal) can be obtained. The reciprocity of screws is one of the

most important property of this theory since it allows to change

easily from the twist-space to wrench-space and vice versa.

By computing the union of displacements it is possible to

determine the mobility conditions of a couple of surfaces of a

mechanical system [1]. This can be performed by concatenat-

ing the respective twist-matrices T1 and T2 of the surfaces [12]:

Union(T1,T2) =

[
T1

T2

]

Returning to the example of figure 1, the twist representing

the degree of invariance in rotation of S 1 and expressed in the

global reference system R0 is:

T̂11/0 =
[
y1/0 0

]

where y1/0 corresponds to y1 expressed in the global reference

system R0. Similarly, the twists expressed the global reference

system R0 representing the translations along x1 and z1 are:

T̂12/0 =
[
0 x1/0

]
T̂13/0 =

[
0 z1/0

]

The twist-matrix T1/0 representing the degrees of invariance

S 1 respect to R0 is:

T1/0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
T̂11/0

T̂12/0

T̂13/0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The unbounded displacements in the positioning of S 1 re-

spect to S 2 can be calculated as the union of the corresponding
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set of displacements:

TS 1/S 2 = Union(T1/0,T2/0) =

[
T1/0

T2/0

]

Finally, by the reciprocal of the union of the displacements

it is possible to calculate the bounded displacements:

WS 1/S 2 = reciprocal(TS 1/S 2)

Depending on the relative orientation of normal vectors

y1 and y2 of S 1 and S 2, WS 1/S 2 can be composed by three

wrenches (in the case of parallelism) or by one wrench (in the

general case). In the first case, the three wrenches represent two

rotations and one translation, and in the second case, the result-

ing wrench represents the rotation along the vector defined by

y1 × y2.

4. Proposed approach

The possible displacements of a toleranced surface inside its

tolerance zone, or a toleranced joint inside its clearance, can

only be analyzed and controlled along the bounded displace-

ments of the nominal surface, i.e. the displacements which

do not leave the nominal surface globally invariant. Moreover,

when the displacements are analyzed respect to other surface,

the number of controlled displacements can decrease according

to the invariant geometric properties of the other surface. For

instance, to describe the position of a spherical surface respect

to a reference system, three parameters for describing three

translations are required. If the position of the same spheri-

cal surface has to be described to respect a planar surface, just

one parameter for controlling the displacement of both surfaces

along the normal of the plane is needed.

Due to the afford mentioned, we propose in this work to ap-

ply the theory of screws to identify, before a Minkowski sum,

the subspace of R6 in which the most of the displacements of

the calculated polytope are bounded. By knowing this, it is pos-

sible to adapt the dimension of the operand polytopes by pro-

jecting them into the previously identified subspace and then

to perform the Minkowski sum on it. Thus, the operations can

be performed with polytopes in the smallest possible dimen-

sion instead of dealing with 6-polytopes. This is justified by the

reduction on the complexity of the Minkowski sums when the

dimension of the operands is decreased.

The proposed methodology consist in 5 steps as described

following and depicted in figure 3:

1. Polytopes creation: for each geometric and contact toler-

ance a polytope has to be created.

2. Mobility analysis: by the use of the theory of screws it is

possible to determine the subspace of R
6 containing the

bounded displacements. In this subspace the operations

has to be computed in order to deal with the simplest repre-

sentation of the polytopes according to the tolerance anal-

ysis problem.

3. Polytopes projection: when the subspace for operating the

polytopes is identified, the projection of the operand poly-

topes is required. Some algorithms for projecting set of

inequalities can be found in [10,11].

4. Minkowski sum: the projected polytopes can be summed

by means of the software Politopix [5] in the identified

subspace. The calculated polytope, representing the cu-

mulative defects of the surfaces under control, will be the

simplest representation of the tolerance analysis problem.

5. Cap half-spaces addition: in order to get a clear graphi-

cal representation of the calculated polytope in R
3 the re-

quired half-spaces to limit the unbounded displacements

have to be added.

Fig. 3. Proposed methodology vs current methodology

5. Case study

The methodology proposed in previous section is illustrated

in this section by solving the example presented in figure 1. Fi-



146   Santiago Arroyave-Tobón et al.  /  Procedia CIRP   43  ( 2016 )  142 – 147 

nally, a comparison with the solution by the 6-polytopes method

given in section 2 is presented.

The step (1) of the methodology is the same than in the

case of the strategy with 6-polytopes. So, the next step con-

sists on doing the mobility analysis to determine the displace-

ments which allows the control of the position of S 2 respect to

S 1. As explained in section 3, the twist-matrix representing the

unbounded displacements for positioning S 2 respect to S 1 is:

TU =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

sin(θ) cos(θ) 0 0 0 −d · sin (θ)
0 0 0 cos(θ) sin(θ) 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where d is the distance along y0 between the points O1 and O2.

Finally, the bounded displacements can be calculated as the

reciprocal of TU [1]:

WU = reciprocal(TU) = [0 0 0 0 0 − 1]

The previous result means that none force can be transmit-

ted between the surfaces, but it is possible to transmit torque

along z0. From the tolerance analysis point of view, it means

that for controlling the relative position of S 2 respect S 1 only

to control the rotation along z0, rz0
, axis is required. Therefore,

the subspace of R6 that contains just bounded displacement is

a 1-dimensional space composed by rz0
. Then, the Minkowski

sum can be computed in R
1 instead of in R

6.

Next, according with step (3), the projections P1 6D →
π(P1 6D) =: P1 pr and P2 6D → π(P2 6D) =: P2 pr were com-

puted by means of ESP algorithm [10] into a 1-dimensional

space that represents rotations along z0 axis. P1 pr and P2 pr

are therefore 1-polytopes composed by 2 facets and 2 vertices

each one as it is summarized in table 2. Finally, the sum of

PC pr = P1 pr ⊕ P2 pr in R
1, also executed in politopix, took

0.001 s to be computed (in contrast with the 19 s of the ini-

tial method). The simulation was performed with an Intel Core

i7-3740QM. Figure 4 shows the calculated polytope and its

operands in comparison with the 2D projection of its corre-

sponding 6-polytopes.

Table 2. Tolerance analysis with projected polytopes (F: facets, V: vertices)

P1 pr P2 pr PC pr

F 2 2 2

V 2 2 2

Time [s] 0.001

In order to check if the polytopes calculated by the two

strategies PC pr and PC 6D are equivalent together from the tol-

erance analysis point of view, the equality between PC pr and

the projection of PC 6D onto the subspace of the rotations along

z0 was checked. This was performed by evaluating if the ver-

tices of PC pr were inside of the half-spaces of the projection of

PC 6D and vice versa. The equivalence can be also confirmed

graphically in figure 4, where it can be noticed that the half-

spaces of PC pr agree with the half-spaces of PC 6D that are not

Fig. 4. 1D representation of P1 pr , P2 pr and PC pr

caps (in figure 4 cap facets are represented by dashed lines).

The results can also be compared in figure 5, where it is pre-

sented a 3D representation of the result from both strategies.

It can be noticed that P∗C 6D is composed by many cap facets

coming from cap facets of the operands from which just the

two bounding rz0
is required. It means that just 0.05% of the

facets of PC 6D represent useful information according to the

tolerance analysis problem (see tables 1 and 2). In the other

hand, the 3D representation of the calculated polytope by the

projection method P∗C pr has the simplest topology to represent

the associated tolerance analysis problem: a pair of non-cap

half-spaces bounding r
0
, a pair of cap half-spaces bounding rx0

and a pair of cap half-spaces bounding ty0
. This was achieved

by identifying in advance the axes of bounded displacements

and summing the projection of the operands in R
1. This is the

reason of the reduction in the computation time and the main

contribution of the present work.

In the particular case in which the tolerance for S 1 is zero,

the analyzed case study corresponds to the ISO specification

presented in figure 6. In fact, not Minkowski sum is required for

this case and just the projection of the polytope of the toleranced

surface on R
1 is enough to obtain all the possible displacements

between the two surfaces (i.e. the resulting polytope).
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Fig. 5. Comparison of the 3D representation of the calculated polytopes P∗C 6D
and P∗C pr

Fig. 6. Special case of the case study when TZ1 is zero

6. Discussion and conclusions

We proposed a way to calculate Minkowski sum of poly-

topes coming form tolerance analysis problems by adjusting the

dimension of the operands according to the mobility conditions

of the involved nominal surfaces. This with aim of avoiding

computation of cap facets and deal as much as possible juts with

half-spaces that represents real geometric constraints. Theory

of screws is suitable for performing mobility analysis and de-

termining in advance the subspace into which the operand poly-

topes have to be projected and summed to avoid calculating

facets over the unbounded directions.

In comparison with the strategy based on 6-polytopes [8,9],

the method proposed in this paper allows decreasing the com-

putation time of Minkowski sums of polytopes by taking in-

formation from the tolerance analysis problem to simplify the

operands and to perform the computation in the subspace of

smallest possible dimension.

In some situations, as in the case of unilateral contacts, the

absolute elimination of cap half-spaces is not possible, in other

words, the set of contact constraints cannot be made compli-

ant with a closed set in any subspace of R6. In such cases, it

is required to use the virtual boundaries (cap half-spaces) in-

troduced by Homri et al. [8,9] and to trace them during the

different computations in order to differentiate among all the

facets of a calculated polytope between those that are generated

by the cap half-spaces and the others generated by half-spaces

that derive from geometric and contact constraints. The trace-

ability of the vertices and facets of a calculated polytope from

the vertices and facets of the operands represents an interest-

ing direction for further research. By doing this, the constraints

having more influence regarding the FC can be identified and

then the maximization of the tolerances can be performed. Ad-

ditionally, further research is required to generalize this method

to solve complete tolerance analysis problems involving several

parts.
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