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Symmetric differentials on complex hyperbolic manifolds with cusps

Benôıt Cadorel

Abstract

Let (X,D) be a logarithmic pair, and let h be a smooth metric on TX∖D. We give sufficient
conditions on the curvature of h for ΩX(logD) and ΩX to be big. As an application, we give a
metric proof of the bigness of ΩX(logD) on any toroidal compactification of a bounded symmetric
domain. Then, we use this singular metric approach to study the bigness and the nefness of ΩX

in the more specific case of the ball. We obtain effective ramification orders for a cover X ′ Ð→X,
étale outside the boundary, to have all its subvarieties with big cotangent bundle. We also prove
that ΩX′ is nef if the ramification is high enough. Moreover, the ramification orders we obtain
do not depend on the dimension of the quotient of the ball we consider.

1 Introduction

For any compact quotientX of a bounded symmetric domain, we know from the work of Brunebarbe,
Klingler and Totaro [BKT13], that the cotangent bundle ΩX must be a big vector bundle. The
method they use to prove this result consists mainly in computing the curvature of the Bergman
metric to show that the bundle must be nef, and then that its higher Segre class must be positive.
In the case where X is merely a compactification of a quotient of a bounded symmetric domain,
with boundary D, the general philosophy of logarithmic pairs says that ΩX(logD) should have
positivity properties similar to the compact case. In this spirit, Brunebarbe proves the following in
[Bru16] :

Theorem 1 ([Bru16]). Let (X,D) be a toroidal compactification of a quotient of a bounded sym-
metric domain. Then ΩX(logD) is big.

Brunebarbe’s proof relies on a close study of some well suited variations of Hodge structure. One
purpose of this paper is to give another approach to this result, generalizing the one of [BKT13].
Indeed, a theorem of Boucksom [Bou02] indicates that we can estimate the volume of a given
pseudo-effective line bundle, by the maximal power of the curvature of a suitable singular metric,
integrated outside its singularities. Applying these ideas, we can prove the following result.

Theorem 2. Let (X,D) be a logarithmic pair. Assume that TX ∣X∖D admits a smooth Kähler metric
h satisfying the following hypothesis :

1. h has negative holomorphic sectional curvature on X ∖D, bounded by a constant −A ;

2. h has non-positive bisectional curvature;

Then ΩX(logD) is a big vector bundle. In addition, if
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3. h, seen as a metric on TX , is locally bounded;

then ΩX is big.

Remark that this result, coupled with a theorem of Campana and Păun [CP15], implies that
a logarithmic pair (X,D) with a Kähler metric satisfying the first two hypothesis of Theorem 2,
must have KX + D big. This can be seen as a weak logarithmic version of a recent theorem of
Wu and Yau [WY16], stating that a projective manifold admitting a Kähler metric with negative
holomorphic sectional curvature must have an ample canonical bundle.

In the case of a quotient of a bounded symmetric domain, the Bergman metric on the open
part of our compactification satisfies all the properties we need to apply Theorem 2. Thus, it
seems that the simple use of singular metrics is well suited to study the positivity properties of
the toroidal compactifications of bounded symmetric domains. In particular, we will see that for
toroidal compactification of a quotient of the ball, we can obtain effective results for the general
notions of positivity of the cotangent bundle.

If a quotient X = Bn/Γ is compact, it is well known that the Bergman metric on Bn will induce
negativity properties on TX . In particular, the bundles KX , ΩX will be ample, X will be Kobayashi
hyperbolic, and so on. If the group Γ is not co-compact, it is legitimate to ask to what extent these
properties are preserved under the toroidal compactification. More precisely, given such a toroidal

compactification X = Bn/Γ, we would like to study the general notions of positivity for the classical

bundles supported by X.
In the simple case of curves, we know that KX has a priori no reason to be even nef (i.e. to

have non-negative degree) : it suffices to consider X = P1, and X = P1∖{0,1∞}, which is a quotient
of the unit disk. In the case of surfaces, Hirzebruch considers in [Hir84] the blowing-up of a product
of two elliptic curves at a point. By using logarithmic Yau-Miyaoka’s inequality, he shows that
such a manifold is a toroidal compactification of a quotient of B2. This provides an example of a
toroidal compactification of a quotient of the ball for which KX is neither big nor nef. However,
this particular feature of KX is specific to the dimensions 1 and 2 : Di Cerbo and Di Cerbo prove
in [CC15] that KX must always be nef for n ≥ 3. Using their work, Bakker and Tsimerman show in
turn that KX is big for n ≥ 3, and even ample if n ≥ 6.

In this paper, we propose to study the various notions of positivity for the cotangent bundle
ΩX , on a given toroidal compactification X of a quotient of the ball. First of all, the results of
[Bou02] will permit us to estimate the intersection numbers of the logarithmic tautological bundle
with curves C ⊂ P (TX(− logD)). The nefness of the logarithmic cotangent bundle of X will follow
naturally.

Theorem 3. For any toroidal compactification of a quotient of the ball (X,D), the logarithmic
cotangent bundle ΩX(logD) is nef.

Using singular metrics related to the Bergman metric on Bn permits us to compare the curvature
of ΩX and KX on the open part X ⊂ X. The results of [BT15] provide us with effective estimate
on the positivity of KX , and of its linear combinations with D, that we can transpose to ΩX . Since
the cotangent bundle behaves well under restriction to subvarieties, we can prove the following
statement.

Theorem 4. Let X ′ be a quotient of Bn, and let X Ð→X ′ be an étale cover ramifying at order at
least l on any boundary component. Assume that
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(i) l ≥ 9 if n = 3,

(ii) l ≥ 11 if n = 4,

(iii) l ≥ 13 if n ≥ 5.

Then, for any subvariety V of X, not included in D, any resolution of V has big cotangent bundle.
In particular, by [CP15], any such subvariety is of general type.

Now that we know that the logarithmic cotangent bundle is nef on a compactification of a
quotient of Bn, we want to prove similar claims on the standard cotangent bundle. One natural way
to complete our study, is to resolve the birational transformation P(TX(− logD))⇢ P(TX), and to
use this resolution to relate the two tautological bundles on these projectivized spaces. This will be
our work in Section 4. Studying this resolution will provide us with useful identities of intersection
numbers, which will give us a bound on the ramification needed for ΩX to be nef.

Theorem 5. Let X
σÐ→ X ′ be a finite covering of a quotient of the ball, ramifying to an order

larger than 7 on the boundary D′ ⊂X ′. Then ΩX is nef.

Finally, Theorem 5 will permit us to use the classical criterion for bigness of nef divisors, to
obtain the following refined version of Theorem 4, dealing with embedded subvarieties of X.

Theorem 6. Let X
σÐ→ X ′ be a finite étale covering, ramifying to an order larger than 7 on the

boundary D′ ⊂X ′. Then all immersed submanifolds W Ð→X not included in D have big cotangent
bundle. In particular, they are of general type by [CP15].

We see that the theorems 4 and 5 can be related to a result of [BT15] about the Green-Griffiths
conjecture on the pairs (X,D). In their article, Bakker and Tsimerman actually use a theorem of
Nadel [Nad89] to prove that if dimX = 3 (resp. dimX = 4,5, resp. dimX ≥ 6), X will verify the
Green-Griffiths conjecture when the ramification order l satisfies l ≥ 2 (resp. l ≥ 3, resp. l ≥ 4). In
particular, it implies that, with the same ramification orders, all curves not included in the bound-
ary are hyperbolic. The bounds of [BT15] are consequently smaller than ours in the case of curves,
but our method has the advantage of working for submanifolds of any dimension.

Acknowledgments. The author would like to thank his advisor Erwan Rousseau for his
guidance and his fruitful ideas, and Julien Grivaux for his support and enlightening discussions on
many aspects of this work.

2 Compactifications of quotients of the ball

2.1 Construction of the toroidal compactification

We recall some results on the structure of the toroidal compactification of a quotient of the complex
unit ball. Let Γ ⊂ PU(n,1) be a group of automorphisms of the ball. As explained in [Mok12] and
[DCDC15], if we assume that all parabolic isometries of Γ are unipotent, it is possible to compactify
the quotient Bn/Γ using a construction similar to the one of [AMRT10], which we can find in full
detail in [Mok12]. If Γ is supposed to be a neat arithmetic subgroup of Aut(Bn), this assumption
will always be verified.
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From now on, we will assume that Γ is a group of automorphisms of Bn with unipotent parabolic
isometries. LetX = Bn/Γ . The toroidal compactification ofX consists in adding to it a finite number

of abelian varieties at its cusps, to obtain a smooth manifold X. Let us describe the structure of X
in the neighborhood of such a cusp.

For any N > 0, let
S(N) = {(z′, zn) ∈ Cn−1 ×C; l(z′, zn) > N} , (1)

with l(z′, zn) = Imzn − ∣∣z′∣∣2. The open set S(0) is a Siegel domain representation of Bn with respect
to a given base point b ∈ ∂Bn, and the family (S(N))N represents the family of horoballs of Bn at
the point b.

There exists a finite number of conjugacy classes of maximal parabolic subgroups Γi ⊂ Γ, each
one of them corresponding to a cusp Ci of X. Let Γb ⊂ Γ be such a group, fixing some b ∈ ∂Bn.
Then, for a certain N > 0, Γb fixes the horoball S(N), where the Siegel representation (1) is taken
so that 0 ∈ Cn−1 ×C corresponds to b.

The stabilizer of b in Γ acts on S(N) as the semi-direct product of two group actions, that we
will now describe. The first one of these is an action of Z, defined by

k ⋅ (z′, zn) = (z′, zn + kτ),

where τ ∈ R∗
+ is some parameter depending on b. Let G(N) = S(N)/Z , with its natural analytic

structure.
We have G(N) ≅ {(w′,wn) ∈ Cn−1 ×C∗; ∣∣(w′,wn)∣∣µ < e

− 2π
τ
N}, where ∣∣(w′,wn)∣∣µ = ∣wn∣e

2π
τ

∣∣w′∣∣2 .

The projection is realized by the following holomorphic application :

S(N) ΨÐ→ G(N)

(w′,wn) z→ (z′, e
2iπzn
τ ) .

Let Ĝ(N) = {(w′,wn) ∈ Cn−1 ×C; ∣∣(w′,wn)∣∣µ < e
− 2π
τ
N}. Thus, if we note D0 = {wn = 0} ⊂ Ĝ(N), we

see easily that the differential of Ψ send surjectively TS(N) onto TG(N)(− logD0).
The second group action comes from a lattice Λb ⊂ Cn−1, and can be written

a ⋅ (z′, zn) = (z′ + a, zn + i∣∣a∣∣2 + 2ia ⋅ z′) ,

for a ∈ Λb, (z′, zn) ∈ S(N). The stabilizer of b in Γ acts on S(N) as the semi-direct product of these

two previous actions. Thus, the action of Λb goes to the quotient S
(N)/Z ≅ G(N), and we can write

its action on G(N) as

a ⋅ (w′,wn) = (w′ + a, e−
2π
τ

∣∣a∣∣2e−4π a⋅z
′

τ wn) . (2)

The action of Λb on G(N) extends naturally as an action on Ĝ(N). We can thus define the open

manifold Ω
(N)

b to be the quotient Ĝ(N)/Λb .

The subspace D0 ⊂ Ĝ(N) goes to the quotient by Λb, to give an abelian variety Db = D0/Λb ↪
Ω

(N)

b . Moreover, the embedding of the horoball S(N) ↪ Bn induces an embedding of the quotient

Ω(N) ∖Db = G(N)/Λb ↪ X.
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The toroidal compactification of X is defined to be the glueing of the manifolds Ω
(N)

bi
on X along

the open subsets Ω
(N)

bi
∖ Tbi , where the bi ∈ ∂Bn span a family of representatives of the cusps. Let

us denote by X this compactification. We see that, as sets, we have

X =X ⊔⊔
i

Dbi .

Let us denote by D = ⊔iDbi the compactifying divisor of X. This divisor is a disjoint union of
abelian varieties.

Terminology.

1. In the rest of this paper, a quotient of the ball will always mean a quotient of Bn by a subgroup
of PU(n,1) with unipotent parabolic isometries.

2. Unless otherwise specified (e.g. in Section 3), a toroidal compactification will always be a
toroidal compactification of a quotient of the ball, as defined in this section.

2.2 Local coordinates. Bergman metric

Let Db be a component of D, and let w0 ∈Db be any point of this component. In some neighborhood

U of x0, we can consider local coordinates (w′,wn), coming from the global coordinates on Ĝ
(N)

b . We
will describe explicitly the action of Λb on the logarithmic tangent bundle to U in these coordinates.

First, we study the action of this group on TG(N)(− logD0). By (2), it can be expressed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a ⋅ ∂
∂w′i

∣
x

= ∑j
∂w′♯j
∂w′i

∂
∂w′♯j

∣
a⋅x

+ ∂w′♯j
∂w′i

∂
∂w′♯j

∣
a⋅x

= ∂
∂w′♯i

− 4πāi
τ w♯

n ( ∂
∂w♯n

)
a⋅x

a ⋅ (wn ∂
∂wn

)
x

= (w♯
n

∂
∂w♯n

)
a⋅x

,

where (w♯
i) is the family of coordinates at the point a ⋅ x. After taking the quotient by Λb, we see

that

(ej)1≤j≤n =
⎛
⎝
( ∂

∂wj
− 4π

τ
wj (wn

∂

∂wn
))

1≤j≤n−1

,wn
∂

∂wn

⎞
⎠

is well defined on the whole Ω
(N)

b , and realizes a smooth frame for TX(− logD) on Ω
(N)

b for some
N > 0 large enough.

Recall that on the ball Bn, with standard coordinates (zj), the Bergman metric is given by, up
to a normalization choice

hBerg =
(1 − ∣∣z∣∣2)∑j dzj ⊗ dzj + (∑j zjdzj)⊗ (∑j zjdzj)

(1 − ∣∣z∣∣2)2
. (3)

With this particular choice of normalization, the metric has constant holomorphic sectional cur-
vature equal to −2, and we also have Ric(hBerg) = −(n + 1)ωBerg, where ωBerg is the Kähler form
associated with the Bergman metric.

The smooth frame (ej)j permits to express the Bergman metric on Ω(N) ∖Db. Indeed, as we
can see from [Mok12], we have the following proposition :
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Proposition 2.2.1. The Bergman metric on Bn induces a singular hermitian metric on TX(− logD),
whose expression in the frame (ej)j admits the diagonal form

(Hij) = (hBerg(ei, ej)) = diag(l(w)−1, ..., l(w)−2),

with, for any w = (w′,wn) ∈ Ω
(N)

b ∖Db, l(w) = τ
4π log ∣∣w∣∣2µ.

Remark. Even though the metric ∣∣⋅∣∣µ is a priori defined only on S(N), it is invariant under the

actions of Z and Λb, so it is legitimate to express the norm ∣∣w∣∣µ for any w ∈ Ω
(N)

b ∖Db.

Later on, we will need to compute the intersection numbers of KX +D in terms of the Bergman

metric on X ⊂ X. The following proposition, which comes from Mumford’s work [Mum77], will be
useful for this purpose.

Proposition 2.2.2. Let (X,D) be a toroidal compactification, and let V
f
Ð→ X be a generically

injective holomorphic map, from a complex manifold of dimension p, such that f(V ) /⊂ D. Let
V = f−1(D). Then we have

(KX +D)p ⋅ [f(V )] = ∫
V
( i

2π
f∗Θ(deth∗Berg))

p

= (n + 1)p

πp
∫
V
f∗ωpBerg.

The first equality actually comes from the fact that h∗Berg is a good metric on ΩX(logD) in the
sense of [Mum77]. The second equality is just an application of the fact that hBerg has constant
sectional curvature.

3 Bigness of the cotangent bundles

In this section, we use singular metrics to study the bigness of the standard and logarithmic cotan-
gent bundle of a log-pair (X,D). We will see that general assumptions on the negativity of the
curvature of X ∖D, are already sufficient to prove that ΩX(logD) is big.

Terminology. We call a log-pair the data of a pair (X,D), where X is a smooth complex
projective manifold, and D ⊂X a divisor with simple normal crossings. If D is smooth, we say that
the log-pair (X,D) has smooth boundary.

3.1 Singular metrics on the tangent bundles

The following result relates the bigness of the standard and logarithmic cotangent bundles of a
given log-pair (X,D), to the negativity of the curvature of a given metric Kähler metric on the
open part X ∖D. This result is as a generalization of a theorem of [BKT13] : we will use a criterion
for bigness of [Bou02], coupled with the well known Ahlfors-Schwarz lemma, to extend the field of
application of their proof. This will give a proof of the following theorem, which is a slightly more
general version of Theorem 2.

Theorem 7. Let (X,D) be a logarithmic pair. Assume that TX ∣X∖D admits a smooth metric h
(not necessarily Kähler) satisfying the following hypothesis :

1. h has negative holomorphic sectional curvature H on X ∖D, bounded by a constant −A ;
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2. h has non-positive bisectional curvature B ;

3. h has negative bisectional curvature at some point of P(TX ∣X∖D) i.e. there exist x0 ∈ X ∖D,
v0 ∈ Tx0X ∖ {0} such that

∀w ∈ Tx0X ∖ {0} , B(v0,w) < 0.

Then ΩX(logD) is a big vector bundle. In addition, if

4. h, seen as a metric on TX , is locally bounded;

then ΩX is big.

Remark. By [BKT13], if the metric h is supposed to be Kähler, the first two hypothesis of Theorem
7 actually imply the third one. Thus, Theorem 2 is a consequence of Theorem 7.

Before proving Theorem 7, let us begin by recalling some well known growth properties of metrics
with negative holomorphic sectional curvature, derived from the Ahlfors-Schwarz lemma.

Proposition 3.1.1 (Ahlfors-Schwarz lemma). Let H be a model of the Poincaré half-plane, with
its canonical metric ωP . Let h be another smooth metric on TH, with negative sectional curvature
bounded by a constant −A. Then, there exists a constant C > 0, depending only on A, such that

h ≤ CωP .

In particular, if ∆ is the unit disk of C, and if h is a metric on T∆ with bounded negative
curvature as above, there exists C > 0 such that

h(z) ≤ C

(1 − ∣z∣2)2
. (4)

Similarly, if ∆∗ is the punctured unit disk, any such metric on T∆∗ is bounded as

h(z) ≤ C

∣z∣2∣log ∣z∣∣2
.

Now, let ∆n be the unit polydisk in Cn, with the coordinates (z1, ..., zn), and let U = (∆∗)m ×
∆n−m be the complementary of D = {z1...zm = 0}. We introduce the Poincaré metric h(p) on U ,
defined by its Kähler form

ω(p) =
m

∑
k=1

i
2dzk ∧ dzk

∣zk∣2∣log ∣zk∣∣2
+

n

∑
k=m+1

i

2
dzk ∧ dzk.

Proposition 3.1.2. Let h be a smooth metric on TU , with holomorphic sectional curvature bounded
from above by a negative constant −A. Then h has Poincaré growth, i.e. for any x ∈D, there exists
a constant C (depending only on A) such that for any vector fields ξ and η on U , we have

∣h(ξ, η)∣2 ≤ Cω(p)(ξ, ξ)ω(p)(η, η). (5)

in the neighborhood of x.
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Proof. Applying Cauchy-Schwarz, we see that it suffices to prove that for any vector field η, we
locally have ∣∣η∣∣h ≤ C ∣∣η∣∣(p). Moreover, we can clearly suppose η constant.

Let η = ∑j aj ∂
∂zj

be such a constant vector field. Then

∣∣η∣∣2h ≤ n
2∑
j

∣∣aj
∂

∂zj
∣∣

2

h

.

Thus, it suffices to prove the result for η = ∂
∂zj

for any j ∈ [∣1, n∣]. Let x0 ∈ U , and let ω be a

neighborhood of x0 on which ∣∣x∣∣∞ is bounded by a constant B, for any x ∈ ω.
If j ∈ [∣1,m∣], we apply the Ahlfors-Schwarz lemma to the punctured disk passing through x and

directed by ∂
∂zj

to get that

∣∣ ∂
∂zj

∣∣
h

(x) ≤ C 1

∣zj ∣2∣log ∣zj ∣∣2
,

on ω, for some C depending only on A.

Similarly, if j ∈ [∣m + 1, n∣] we see from (4) that ∣∣ ∂∂zj ∣∣h must be bounded from above by

∣∣ ∂
∂zj

∣∣
h

(x) ≤ C 1

(1 − ∣z∣2)2
≤ C

(1 −B2)2
,

with C depending only on A. This proves the result.

Corollary 3.1.1. Let ∆n and D ⊂ ∆n be as above, and let h be a smooth metric on T∆n∖D, which
we suppose to have negative sectional curvature bounded by −A. Then for any vector field ξ of
TX(− logD), ∣∣ξ∣∣h is bounded in the neighborhood of any point of D.

Proof. It suffices to apply (5) on the vectors of the canonical frame ((zj ∂
∂zj

)
1≤j≤m

, ( ∂
∂zj

)
m≤j≤n

),

and to remark that ω(p) is bounded on these vectors.

We now prove that under the first three assumptions of Theorem 7, ΩX(logD) is big.

Let Y = P(TX(− logD))
p
Ð→ X and let O(1) be the tautological bundle of this projectivized

space.

Lemma 3.1.1. The line bundle O(1) is pseudo-effective on Y .

Proof. Let ĥ be the metric induced by h on the tautological bundle O(−1)Ð→ Y . Remark that ĥ is
not defined on p−1(D). Denote by ĥ∗ the dual of this metric ; we see that ĥ∗ is determined locally
by the norm of a non-vanishing section of O(1). More specifically, if (x, [v]) ∈ p−1(D), choose a
section σ of TX(− logD), non vanishing around x, such that σ(x) = v. Then σ induces a local
section σ̂ of O(−1) around (x, [v]), whose dual section we will denote by σ̂. Locally, the norm of
σ̂∗ is given by

∣∣σ∗∣∣̂h∗ =
1

∣∣σ∣∣h
,

where σ̂∗ is the section of O(1) dual to σ̂. Then, on p−1(X ∖D), the curvature of (O(1), ĥ∗) is
determined near (x, [v]) by

i

2
Θ(ĥ∗) loc= i

2
∂∂ log ∣∣σ̂∗∣∣̂h∗ =

i

2
∂∂ log ∣∣σ∣∣h.
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We can develop this expression, to obtain

i

2
Θ(ĥ∗) ⋅ (ξ, ξ) loc= − i

2

⟨σ,Θ(h) ⋅ (p∗ξ, p∗ξ)σ⟩h
∣∣σ∣∣2h

+ ωFSh (ξvert, ξvert). (6)

The first term appearing in the right hand side of this equation is equal to B(σ, p∗ξ)∣∣p∗ξ∣∣h, where B
is the bisectional curvature of h. It is non-negative by our hypothesis. The second term, associated
with the Fubini-Study metric on the fibers, is also non-negative. This implies that i∂∂ log ∣∣σ̂∗∣∣2

ĥ∗
≥ 0,

i.e. that − log ∣∣σ̂∗∣∣2
ĥ∗

is plurisubharmonic on Y ∖p−1(D). Moreover, ∣∣σ̂∗∣∣2
ĥ∗

= 1
∣∣σ∣∣2h

is locally bounded

from below by Corollary 3.1.1, so − log ∣∣σ∗∣∣2
ĥ∗

is bounded from above. By the usual properties of
bounded plurisubharmonic functions, we see that this last function extends uniquely on p−1(D) to
a plurisubharmonic function, defined locally on Y .

Consequently, we can write ĥ∗
loc= e−Ψ, with Ψ plurisubharmonic. This implies in particular that

ĥ∗ is a singular metric on O(1), with positive curvature in the sense of currents. By [Dem92], this
implies in turn that O(1) is a pseudo-effective line bundle.

To conclude, we will use the following theorem of [Bou02] :

Theorem 8. (Boucksom [Bou02]) Let L be a pseudo-effective line bundle on a compact Kähler
manifold M of dimension n. Then, for any closed positive current T ∈ c1(L), if we denote by Tac
the absolutely continuous part of T , the powers T kac have bounded mass on M .

Moreover, the volume of L is equal to

vol(L) = max
T
∫
M
Tnac,

where T ranges among the positive closed (1,1)-currents representing c1(L).

Proof of Theorem 7. Let T = i
2Θc(ĥ∗), where by Θc we mean the curvature in the sense of currents.

Since p−1(D) has zero Lebesgue measure, for any k, T kac is the current of integration against Θ(ĥ∗)k
on Y ∖ p−1(D). In particular,

∫
Y
T 2n−1
ac = ∫

Y ∖p−1(D)
( i

2
Θ(ĥ∗))

2n−1

.

Remark that Theorem 8 implies that this last integral converges. By (6), we have

i

2
Θ(ĥ∗)(x,[v])(ξ, ξ) = −∣∣p∗ξ∣∣

2B(v, p∗ξ) + ωFSh (ξvert, ξvert)

and since h has non-positive bisectional curvature, the (2n − 1,2n − 1)-form ( i
2Θ(ĥ∗))2n−1

is non-
negative on Y ∖ p−1(D). Moreover, by our third hypothesis, this form is positive at the point
(x0, [v0]) ∈ Y ∖ p−1(D).

This means, because of Theorem 8, that

vol (O(1)) ≥ ∫
Y ∖p−1(D)

( i
2

Θ(ĥ∗))
2n−1

> 0.

Thus, O(1) has positive volume, hence is big on Y . This proves the first assertion of Theorem 2.
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Now, assume that h, seen as a metric on TX , is locally bounded near D. As before, it follows
from our second hypothesis that h induces a metric ĥ∗0 on the tautological bundle O(1)Ð→ P(TX),
with positive curvature above X ∖D. If p0 ∶ P(TX) Ð→ X is the canonical projection, we see that
ĥ∗0 can locally be written

ĥ∗0
loc= e−Ψ0 ,

with Ψ0 plurisubharmonic on p−1(X ∖D). Because of our fourth hypothesis, we see that Ψ0 must
be bounded from above near any point of p−1(D), and thus must extend into a plurisubharmonic
function near any such point. This implies that the tautological bundle O(1) is pseudo-effective,
and, applying Theorem 8, we obtain as before that this line bundle has positive volume. This ends
the proof.

We can now give a proof of Theorem 1. If Ω is a bounded symmetric domain, its Bergman
metric hΩ is a Kähler metric satisfying the first two hypothesis of Theorem 2. Therefore, for any
quotient X of Ω by a subgroup Γ ⊂ Aut(Ω), the metric hX induced on X by hΩ satisfies those same
hypothesis. If X =X ⊔D is any smooth compactification of X, with D a divisor with simple normal
crossings, Theorem 2 implies that ΩX(logD) is big. This proves Theorem 1.

We finish this section by a result which will be central in our study of the nefness of the cotangent
bundles of a toroidal compactification.

Proposition 3.1.3. Let (X,D) be a pair satisfying the hypothesis 1 and 2 of Theorem 2. Let
Y = P(TX(− logD)) with its canonical projection p onto X. Let f ∶ V Ð→ Y a generically finite
morphism from a smooth complex manifold onto a subvariety f(V ) ⊂ Y , not included in p−1(D).
Then f∗ĥ∗ induces a singular metric on O(1), and

vol (f∗O(1)) ≥ ∫
f−1(Y ∖p−1(D))∩VS

[ i

2π
f∗Θ(ĥ∗)]

dimV

,

where VS is the locus of points where f is immersive.

Proof. We saw in the proof of Theorem 7 that we can locally write ĥ∗
loc= e−Ψ, with Ψ plurisubhar-

monic and nowhere equal to −∞ on Y ∖ p−1(D). Consequently, we can write

f∗ĥ∗
loc= e−Ψ○f ,

with Ψ ○ f plurisubharmonic, and nowhere equal to −∞ outside f−1 (p−1(D)). Since f(V ) is not

included in p−1(D), this implies that Ψ ○ f ∈ Psh ∩ L1
loc, hence that f∗ĥ∗ induces a singular metric

on f∗O(1), with positive curvature. Therefore, the line bundle f∗O(1) is pseudo-effective, and we
can estimate its volume using Theorem 8. Since VS ∪ f−1(p−1(D)) has zero Lebesgue measure, the
absolutely continuous part of Θc(f∗ĥ∗) is equal to f∗Θ(ĥ∗) almost everywhere, which gives the
result.

3.2 Bigness of the standard cotangent bundle of a compactification of a quotient
of the ball

In this section, we prove Theorem 4. We start by specifying some results that we can find in [BT15].
Let us resume the notations and conventions introduced in Section 2.
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Proposition 3.2.1. Let X ′ be a quotient of Bn, and let X Ð→ X ′ be an étale cover, ramifying at
order l on the boundary. Then, for any β > 0 such that

1. β ≤ l if n ∈ [∣3,5∣] ;

2. β ≤ n+1
2π l if n ≥ 6,

the divisor KX + (1 − β)D is nef and big.

Proof. Denote by π the projection X Ð→X
′
. Then if n ≥ 6, we have :

π∗ (KX′ + (1 − n + 1

2π
D′)) =KX +D − n + 1

2π
π∗D′

≤KX +D − n + 1

2π
lD

≤KX + (1 − β)D,

where by ” ≤ ” we mean that the two divisors differ by some linear combination with non-negative
coefficients of components of D.

The divisor of the left hand side is big by [BT15], thus so is the right hand side divisor. More-
over, because of our definition of the relation ≤, it is easy to see that the intersection number of
KX + (1 − β)D with any curve not included in D is non-negative. Besides, since OX (KX +D)∣

D
≅

OD and D∣D being negative (see [Mok12]), we see that for any curve C ⊂ D, we must have
[KX + (1 − β)D] ⋅C ≥ 0. This proves that KX + (1 − β)D is nef.

In the case n ∈ [∣3,5∣], we reason similarly, writing

π∗KX′ ≤KX + (1 − β)D,

and using the fact that KX′ is nef and big.

Lemma 3.2.1. With the same hypothesis as in Proposition 3.2.1, assume that β is a rational
number satisfying β < l if n ∈ [∣3,5∣], and β < n+1

2π l if n ≥ 6. Then, for any m ∈ N∗ large enough, the

divisor m [KX + (1 − β)D] is base-point free.

Proof. This is a simple application of the base-point free theorem (see [KM98]). The divisor KX +
(1 − β)D is big, so for m large enough, m [KX + (1 − β)D] −KX is big.

In addition, we have

m [KX + (1 − β)D] −KX = (m − 1) [KX + (m(1 − β)
m − 1

)D]

= (m − 1) [KX + (1 − β + (1 − β)
m − 1

)D] ,

so if m is large enough, this last divisor will fall in the case of Proposition 3.2.1, and consequently,
be nef.

The divisor KX + (1 − β)D satisfies the hypothesis of the base-point free theorem, so the result
follows.
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From now on, we will assume that X and X ′ are as in Theorem 4. Then, l > 4π if n ≥ 5 and
l > 2(n + 1) if n ∈ {3,4}, so it is possible to find a rational number β such that

β ∈ ]2(n + 1),max(l, n + 1

2π
l)[ .

In that case, because of Lemma 3.2.1, we can write β = p
q , with p, q large enough so that L =

q(KX +D) − pD is base-point free.

Consider a subvariety V of X, not included in D. Because of the base-point freeness of L, there
exists a section s ∈H0 (X,p(KX +D) − qD), which does not vanish identically on V .

Since p
q > 2(n+1), we have 2

p <
1

(n+1)q . Choose a real number α ∈ ]2
p ,

1
(n+1)q [. Let g be the metric

induced by hBerg on the line bundle O (q (KX +D)), and let

φ = ∣∣s∣∣αg .

We can see in [Mok12, Proposition 1] that near the boundary, the metric g is bounded in the
canonical frame dz1 ∧ dz2 ∧ ... ∧ dzn

zn
as

∣∣dz1 ∧ ... ∧
dzn
zn

∣∣
2

g
≤ C ∣log ∣zn∣∣n+1, (7)

where zn = 0 is a local equation for D.

Consider the singular metric h̃ defined on TX by h̃ = φ hBerg, and let hV be its restriction to TV
(at the points where it is defined).

Lemma 3.2.2. On X ∖ s−1(0), h̃ has negative holomorphic sectional curvature, bounded by a con-
stant −A, and negative bisectional curvature.

Proof. Locally on X ∖ s−1(0), we can write

i

2
Θ(h̃) loc= i

2
∂∂ logφ⊗ In +

i

2
Θ(h), (8)

so, s∣X∖s−1(0) being a non-vanishing section of the line bundle O(q(KX +D)), we have

i

2
∂∂ logφ = i

2
α ∂∂ log ∣∣s∣∣g

= i

2
α q ΘK

X+D

= −qα Ric(hBerg)
= qα(n + 1) ωBerg

To study the negativity of (8), we can reason locally, in the neighborhood of a point of X
corresponding to 0 ∈ Bn, where ωBerg admits the expression (3). Then, we can write Θ(hBerg)
matricially as

Θ(hBerg)0 = −ωBerg In + tT ∧ T,

with T = (dz1...dzn). Since qα(n + 1) < 1, an easy calculation gives the result.
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Let V1
f1Ð→ V be any resolution of V . If we let Z = Vsing ∪ D ∪ s−1(0), it is possible to find

a resolution Ṽ
f
Ð→ V , dominating f1, such that the reduced divisor f−1(Z)red has simple normal

crossings. Since the sectional and bisectional holomorphic curvatures decrease on submanifolds, we
see from Lemma 3.2.2 that hV has bounded negative sectional curvature and negative bisectional
curvature on Ṽ ∖ f−1(Z).

Lemma 3.2.3. For any x ∈ Ṽ , for any local vector field ξ of TṼ defined on a neighborhood of x,
∣∣ξ∣∣hV is bounded in a neighborhood of x.

Proof. If x ∉ f−1(D), hBerg, considered as a metric on T
X
′ , is bounded in a neighborhood of f(x),

so the result is clear.
If x ∈ f−1(D), hBerg having Poincaré growth with respect to D, we can write for any p near x :

∣∣f∗(ξ)∣∣Berg(f(p)) ≤
C

∣zn∣∣log ∣zn∣∣2
,

where zn is some local coordinate around f(x), defining D. Thus,

∣∣ξ∣∣hV = φ ∣∣f∗(ξ)∣∣

≤ C
∣∣s∣∣αg

∣wn∣2∣log ∣wn∣∣2
.

Since s, seen as a section of O(q(KX +D)), vanishes at order p on D, this last function is bounded

by
∣zn∣

pα

∣zn∣
2
∣log ∣zn∣∣

2−(n+1)qα , because of (7). Since pα > 2, this gives the result.

The proof of Theorem 4 is now straightforward.

Proof of Theorem 4. Because of Lemma 3.2.2 and Lemma 3.2.3, the metric hV satisfies all four
hypothesis of Theorem 7 on Ṽ . Therefore, ΩṼ is big. Since the morphism Ṽ Ð→ V1 is proper and
birational, it follows that ΩV1 is big, which ends the proof.

4 Birational transformation between logarithmic and standard pro-
jectivized tangent bundles

In this section, we introduce a construction that will reveal useful in Section 5, when we study the
nefness of the cotangent bundle of a toroidal compactification.

The plan of our work in the next sections is straightforward : we will first show that the
logarithmic cotangent bundle of a toroidal compactification is nef, using Proposition 3.1.3, and then
use this result to study the standard cotangent bundle. To do this, we will resolve the birational
map P (TX(− logD))⇢ P (TX) into a sequence of two birational morphisms :

P (TX(− logD)) π←Ð Ỹ
π0Ð→ P (TX) . (9)

With this construction, it will not be hard to express the pullbacks of the two tautological line
bundles onto Ỹ , in term of each other. Therefore, we will be able later on to deduce a condition
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for ΩX to be nef (i.e. for the line bundle O(1)0 Ð→ P(TX(− logD))) to be nef), knowing that
ΩX(logD) is nef (i.e. that the tautological bundle O(1)log Ð→ P(TX(− logD)) is nef).

In the rest of the section, we describe the resolution (9) : in fact, it holds for more general
log-pairs than the toroidal compactifications. We show actually that for any log-pair (X,D) with
smooth boundary, there is a canonical way to resolve the map P(TX(− logD))⇢ P(TX), by blowing
up a single smooth analytic subset in each of these two manifolds.

Terminology and conventions. For our purposes, we will have to switch regularly between
the algebraic and geometric conventions for projectivized bundles. Let us briefly sum up these
conventions.

Let X denote a general scheme, and let E be a graded OX -algebra. Define the X-scheme
ProjX (E) in the usual way (see for example [Har77]). Then, if E is a vector bundle on X, PX (E)
will denote the projectivized bundle of lines of E, and P∗X (E) will denotes its projectivized bundle
of hyperplanes. We have the following natural isomorphisms :

PX (E) ≅ P∗X (E∗) ≅ ProjX (Sym E∗) .

4.1 Resolution of the rational maps

For the rest of the section, (X,D) will be a log-pair with smooth boundary. We will denote by
Y = P(TX(− logD)) the projectivized bundle of the logarithmic tangent bundle, with its associated
tautological bundle OY (1). In the same way, let Y0 = P(TX), and let OY0(1) be its tautological
bundle. We will denote by p ∶ Y Ð→X and p0 ∶ Y0 Ð→X the canonical projections.

As announced before, we will prove that the natural birational map Y ⇢ Y0 can be resolved by
blowing-up only one subvariety on Y and on Y0. Let us first describe these two subvarieties.

Logarithmic exact sequence. Rational map Y ⇢ Y0

On (X,D), we have the usual logarithmic cotangent exact sequence :

0Ð→ ΩX Ð→ ΩX(logD) resÐ→ OD Ð→ 0, (10)

the last arrow being the Poincaré residue map.

The surjective morphism ΩX(logD) Ð→ OD induces a section of the projection p−1(D) =
P∗ (ΩX(logD)∣D)Ð→D, whose image we will denote by Z.

The sequence (10) permits to write the following exact sequence of graded OX -algebras :

ΩX ⊙ Sym ΩX(logD)Ð→ Sym ΩX(logD) vÐ→ Sym OD Ð→ 0. (11)

The injection Z ↪ Y is actually induced by the surjective morphism v, which determines a morphism
of projective spaces over X :

D ≃ P∗X (OD)↪ P∗X (ΩX(logD)) .

By functoriality of the tautological bundles, we see that OY (1)∣Z is isomorphic to the tautological
bundle of P∗X (OD), i.e. is trivial.
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Therefore, the sequence (11) gives the following exact sequence of OY -modules

p∗ΩX Ð→ OY (1)Ð→ OY (1)⊗OZ Ð→ 0,

or, twisting by OY (−1) :

p∗ΩX ⊗OY OY (−1) ιÐ→ OY Ð→ OZ Ð→ 0, (12)

and we see in particular that IZ , the ideal sheaf of Z, is the image of the morphism ι.

The morphism of OY -modules p∗ΩX

ι⊗IdO(1)Ð→ OY (1) induces a map P(TX(− logD)) Ψ0⇢ P(TX)
which is the rational map we are studying. Since this morphism is not surjective, this map is not
globally defined. Actually, by (12), the image of ι ⊗ IdO(1) is IZ ⊗ OY (1). This shows that the
locus of indeterminacy of Ψ0 is Z, and that this map can be resolved by blowing up at Z, to give a
well-defined morphism

BlZY
ΨÐ→ Y0.

Let Ỹ
πÐ→ Y be the blowing-up of Y at Z, with its canonical projection, and let E ⊂ Ỹ be the

exceptional divisor.

Remark. Let (X,D) be a toroidal compactification. With the notations of Section 2, the embedding
P(ODb)↪ P(TX(− logD)) is given locally by

x ∈D = P(ODb)↦ (x, [wn
∂

∂wn
]) ,

so the indeterminacy locus of PX (TX(− logD))⇢ PX (TX) is

Z =⊔
b

{(x, [wn
∂

∂wn
]) ; x ∈Db} .

The rational map Y0 ⇢ Y .
In a similar way, we can write the following exact sequence :

0Ð→ ΩX(logD)⊗O(−D)Ð→ ΩX Ð→ ΩD Ð→ 0, (13)

whose last arrow is given by the restriction to TD, and the first arrow is given in local coordinates
by

(∑
i

vidzi + vn
dzn
zn

)⊗ zn ↦∑
i

(znvi)dzi + vndzn,

where (z1, ..., zn) are local coordinates such that zn is an equation for D. Exactly as before, the
last arrow induces a closed immersion PD(TD) ≅ P∗X(ΩD) ↪ PX(TX), whose image we will denote
by Z0. The first arrow also induces a rational map Φ0 ∶ PX(TX) ⇢ PX (TX(− logD)⊗O(D)),
with indeterminacy locus Z0, which can be resolved by a blowing-up at Z0. Let Φ ∶ BlZ0Y0 Ð→
P (TX(− logD)⊗O(D)) be the induced map.

We will now prove that the morphism BlZY Ð→ Y0 factors through the blowing-up BlZ0Y0 Ð→ Y0.
To see this, we use the universal property of blowing-ups (see [Har77]).

Let Ψ∗IZ0 ⋅OỸ be the sheaf of ideals of OỸ generated by the image of IZ0 under the natural
map Ψ∗OY0 Ð→ OỸ .
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Proposition 4.1.1. The sheaf of ideals Ψ∗IZ0 ⋅OỸ ⊂ OỸ is invertible on Ỹ .

Proof. We have the following commutative diagram :

Ỹ
Ψ
> Y0

Y

π

∨
p
> X

p0
∨

Let j = ι⊗IdO(1) ∶ p∗ΩX Ð→ OY (1). The morphism Ψ is determined by the surjective morphism
of OỸ -modules

π∗p∗ΩX
π∗j
Ð→ π∗IZ ⊗ π∗OY (1) = OỸ (−E)⊗ π∗OY (1).

By general properties of projective morphisms, π∗j factors through Ψ∗OY0(1), into a composite
morphism

π∗p∗ΩX Ð→ Ψ∗OY0(1)
vÐ→ OỸ (−E)⊗ π∗OY (1). (14)

Remark first that v is a surjective morphism of invertible sheaves on Ỹ : it is consequently an
isomorphism.

Let us determine J , the image of Ψ∗ (IZ0 ⊗OY0(1)) by v. Similarly to what we see for IZ , the
OY0-module IZ0 ⊗OY0(1) is the image of the morphism

p∗0 [ΩX (logD)⊗O(−D)]Ð→ OY0(1),

so, since p ○ π = p0 ○Ψ, the image of Ψ∗ [IZ0 ○OY0(1)] under v is the image of the composition

π∗p∗ [ΩX (logD)⊗O(−D)]Ð→ Ψ∗OY0(1)
≃Ð→ OỸ (−E)⊗ π∗OY (1).

Now, we have the following commutative diagram

π∗p∗ [ΩX(logD)⊗O(−D)] > π∗p∗Ω > OỸ (−E)⊗ π∗OY (1)

π∗p∗ [ΩX(logD)⊗O(−D)]

=

∨
> π∗p∗ΩX(logD)

∨
> π∗OY (1)

∨

According to what we just said, the image of the composition of the two maps at the top is J . The
image of the composition of the two maps at the bottom is

π∗OY (1)⊗ π∗p∗O(−D) = π∗OY (1)⊗ π∗O(−p−1(D))

= π∗OY (1)⊗O(−p̃−1(D) −E),

where p̃−1(D) is the strict transform of p−1(D) under the blowing-up π. Hence, we find

J = π∗OY (1)⊗O(−E)⊗O(−p̃−1(D)).

Twisting by Ψ∗OY0(−1) ≃ O(E)⊗ π∗OY (−1), we obtain

Ψ∗IZ0 ⋅OỸ = J ⊗OỸ (E)⊗ π∗OY (1) = O (−p̃−1(D)) .

Since p−1(D) is a divisor on Y , the subscheme p̃−1(D) is also a divisor, and its ideal sheaf is
invertible. This proves the result.
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By the previous proposition, the universal property of blowing-ups (see [Har77]) implies that
the morphism Ψ ∶ Ỹ = BlZ(Y )Ð→ Y0 factors through BlZ0(Y0)Ð→ Y0.

Hence, there is a morphism BlZ(Y ) Ψ̃Ð→ BlZ0(Y ), lifting and resolving the birational map Ψ0.
In the same manner, we prove that there exists a morphism

BlZ0(Y ) Φ̃Ð→ BlP(OD⊗O(D)) P (TX(− logD)⊗O(D))

lifting and resolving the map Φ0.
Since PX (TX(− logD)⊗O(D)) is canonically isomorphic to Y , and since the subvarieties P (OD ⊗O(−D))

and P (OD) are image of each other via this isomorphism, we see that Φ̃ and Ψ̃ must be biholomor-
phic, and inverse of each other modulo the natural isomorphism

BlP(OD(D))P (TX(− logD)⊗O(D)) ≃Ð→ BlZY.

Therefore, we obtain the following result.

Proposition 4.1.2. Let (X,D) be a log-pair with smooth boundary, let Y = P (TX(− logD))
p
Ð→X

and Y0 = P (TX)
p0Ð→ X, the logarithmic and standard projectivized tangent bundles. The projection

map p∣p−1(D) admits a section, realizing a closed immersion D Ð→ Y , whose image we will denote
by Z. Denote by Z0 the image of the canonical closed immersion P(TD)↪ P(TX). Then the natural
birational map Y ⇢ Y0 induces an isomorphism of projective manifolds :

BlZY
≃Ð→ BlZ0Y0.

Moreover, if π ∶ BlZY Ð→ Y and π0 ∶ BlZ0Y0 Ð→ Y0 denote the respective blowing-ups, then the
strict transform of p−1(D) corresponds under this isomorphism to the exceptional divisor of π0. In
the same manner, the strict transform of p−1

0 (D) under π0 corresponds to the exceptional divisor of
π.

Proof. We proved the first part of the proposition in the previous discussion. The claim about the
exceptional divisor of π0 follows easily from our proof of the invertibility of Ψ∗IZ0 ⋅OBlZY , with the
same notations than before. The result for the exceptional divisor of π follows in the same way.

Keep the same notations as before, and let E,E0 be the exceptional divisors of the respective
projections π,π0.

Proposition 4.1.3. On Ỹ , we have the following isomorphism of line bundles :

π∗OY (1) ≃ π∗0OY0(1)⊗OỸ O(E)

Proof. This isomorphism is just the morphism v appearing in (14), restated with the new notation
π0 = Ψ.

Proposition 4.1.4. The restriction of π∗OY (1) to E is trivial.

Proof. We already saw that OY (1)∣Z is trivial. Thus, it is clear that π∗OY (1) is trivial when
restricted to E = π−1(Z).
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We see from this result that if W ⊂ Y0 is a subvariety with strict transform under π0 denoted by
W̃ , we can compute the maximal intersection of OY0(1) with W in terms of intersection numbers
of W̃ with π∗OY (1) and E. Indeed, we have

c1(OY0)
dimW ⋅W = c1(π∗0OY0)

dimW ⋅ W̃
= c1(π∗OY ⊗O(−E))dimW ⋅ W̃
= c1(π∗OY )dimW ⋅ W̃ + (−1)dimWEdimW ⋅ W̃
= c1(OY )dimW ⋅ π(W̃ ) + (−1)dimWEdimW ⋅ W̃ .

We will see in the next sections that in the case where (X,D) is a toroidal compactification, we
can estimate the first term of the right hand side of this last equation, in terms of the Bergman
metric on X ∖D. As for the second member, we can prove a more general result, for any log-pair
with smooth boundary. To estimate the intersection numbers with E ⊂ Ỹ , we must first determine
the normal bundle NE/Ỹ .

Proposition 4.1.5. There is a canonical isomorphism

N∗
Z/Y ≃ p∗ (ΩX ∣D) . (15)

Proof. As we saw earlier, there is an exact sequence of OY -modules

p∗ΩX ⊗OY OY (−1) ιÐ→ IZ Ð→ 0,

which gives, after taking the tensor product with OZ :

(p∗ΩX ⊗OY OY (−1))⊗OY OZ Ð→ IZ ⊗OY OZ Ð→ 0.

Because of Proposition 4.1.4, OY (−1)⊗OY OZ ≅ OZ , so the previous surjective map becomes

p∗ΩX ⊗OY OZ Ð→ IZ ⊗OY OZ Ð→ 0,

We have IZ ⊗OY OZ ≃ N∗
Z/Y as OZ-modules, and the following isomorphism of locally free sheaves

holds on Z :
p∗ΩX ⊗OY OZ ≃ p∗ (ΩX ⊗OX OD) .

Therefore, we get the following surjective morphism of locally free sheaves of OZ-modules :

p∗ (ΩX ⊗OX OD)↠ N∗
Z/Y .

Since a surjective morphism between two locally free OZ-modules of the same rank is an isomor-
phism, this gives the result.

The exceptional divisor is isomorphic, as a D-scheme, to P(NZ/Y ) = P∗(N∗
Z/Y ). We saw in

Proposition 4.1.2 that the canonical isomorphism BlZY ≅ BlZ0Y0 associates E with the strict trans-
form of p−1

0 (D) under π0. Since P(TD) has codimension one in p−1
0 (D), this strict transform is

actually isomorphic to p−1
0 (D). Therefore,

Ψ∣E ∶ E Ð→ p−1
0 (D) ≃ P(ΩX ∣D) (16)

is an isomorphism. It makes sense to ask whether it is induced by the isomorphism of vector bundles
of (15). The next proposition shows that it is actually the case.
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Proposition 4.1.6. When restricted to E, the morphism π0 induces an isomorphism E Ð→ p−1
0 (D) ≅

P(ΩX ∣D), determined by the isomorphism of OE-modules (15).

Proof. The morphism π0 is induced by the following morphism of OỸ -modules :

π∗ (p∗ΩX ⊗OY OY (−1)) π∗ιÐ→ OỸ ≅ π∗IZ .

If we take the tensor product with OE , since π∗OY (−1)∣E is trivial, we get a morphism of OE-
modules

π∗p∗ΩX ⊗OỸ OE Ð→ π∗IZ ⊗OỸ OE .
which, according to the projection formula, can be seen as a morphism of the form

π∗(p∗ΩX ⊗OY OZ)Ð→ π∗ (IZ ⊗OY OZ) .

This is induced by the isomorphism of Proposition 4.1.5. Consequently, we see that the isomorphism
π0∣E ∶ E Ð→ p−1

0 (D) = P(ΩX ∣D) is induced by (15), as we claimed.

5 Nefness of the cotangent bundles

In the rest of the text, (X,D) will be a toroidal compactification.

With what has been introduced until now, we can use the results of [BT15] to determine a con-
dition for ΩX to be nef. For this, we let Y = PX(TX(− logD)), with its canonical projection p and

tautological bundleO(1)log, and Y 0 = PX(TX), with its projection p0 and tautological bundleO(1)0.

We start by proving that ΩX(logD) is always nef.

Proof of Theorem 3. Let C ⊂ Y be an irreducible curve. If C /⊂ p−1(D), it follows from Proposition
3.1.3 that c1O(1)log ⋅C ≥ 0.

If C ⊂ p−1(D) = P(TX(− logD)∣D), the result is given by the next lemma.

Lemma 5.0.1. The restriction ΩX(logD)∣
D

is nef.

Proof. This is a basic application of the properties of the logarithmic conormal sequence. Recall
that we have the following exact sequence of OX -modules :

0Ð→ ΩX Ð→ ΩX(logD) resÐ→ OD Ð→ 0.

If we take the tensor product with OD, we get

0Ð→ T or1
O
X
(OD,OD)Ð→ ΩX ⊗O

X
OD Ð→ ΩX(logD) ⊗O

X
OD Ð→ OD Ð→ 0. (17)

We have T or1
O
X
(OD,OD) = N∗

D/X
, and on D, we can express the conormal exact sequence as

0Ð→ N∗

D/X
Ð→ ΩX ⊗O

X
OD Ð→ ΩD Ð→ 0.

Therefore, the sequence (17) breaks to give the logarithmic conormal sequence

0Ð→ ΩD Ð→ ΩX(logD)⊗O
X
OD Ð→ OD Ð→ 0.

Since the boundary is made of abelian varieties, ΩD is trivial on any component of D. Consequently,
the vector bundle ΩX(logD)∣D is an extension of trivial bundles, hence is nef.
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Let us mention the following result, first step in our study of the nefness of ΩX .

Proposition 5.0.1. When restricted to D, the cotangent bundle Ω1
X

is nef.

Proof. As stated in [Mok12], for any component Db of D, the neighborhoods Ω
(N)

b introduced
in Section 2 are isomorphic to tubular neighborhoods of the zero section of the normal bundle
Nb Ð→Db. Consequently, we have

ΩX ∣
Db

≃ N∗
b ⊕ΩDb ≃ N

∗
b ⊕Cn−1,

since Db is an abelian variety. Moreover, for any such component Db, the conormal bundle N∗
b is

positive ([Mok12]). Thus, ΩX ∣
Db

is sum of a trivial bundle and of an ample bundle on Db, hence is

nef.

We will now make use of the results we proved in Section 4 to estimate the intersection numbers
of the type c1O(1)0 ⋅C, where C is a curve of Y 0, not included in the boundary. To do this, we will
pull back all our objects to the blowing-up BlZY . Let Ỹ denotes this blowing-up, that we endow
with its natural projections π and π0, respectively onto Y and Y 0.

Proposition 5.0.2. Let C ⊂ Y be a curve such that p0(C) /⊂D. Then

c1O(1)0 ⋅C ≥ ( 1

n + 1
(KX +D) −D) ⋅ p0(C).

Proof. We denote by C̃ the proper transform of the curve C by the blowing-up π0. Then Proposition
4.1.3 gives

c1O(1)0 ⋅C = π∗0 (c1O(1)0) ⋅ C̃
= π∗ (c1O(1)log −E) ⋅ C̃,

Moreover, thanks to Proposition 3.1.3, we obtain

π∗ (c1O(1)log) ⋅ C̃ = c1O(1)log ⋅ π(C̃)

≥ ∫
Y ∩π(C̃)

i

2π
Θ(ĥ∗)

= ∫
Y ∩C

i

2π
Θ(ĥ∗).

The Bergman metric being of constant sectional curvature equal to −2 with our choice of normal-
ization, the following equality is true at any point (x, [v]) ∈ Y , for any ξ ∈ T(x,[v])Y :

i

2π
Θ(ĥ∗)(x,[v]) ⋅ (ξ, ξ) ≥ −

i

2π

ΘTX (v, v, ξ, ξ)
∣∣v∣∣2

≥ 1

π
ωBerg(ξ, ξ),

so

π∗ (c1O(1)log) ⋅ C̃ ≥ ∫
X∩p0(C)

1

π
ωBerg.
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However, because of Proposition 2.2.2, we obtain

∫
X∩p0(C)

1

π
ωBerg =

1

n + 1
(KX +D) ⋅C.

Besides, since E is an irreducible component of (p ○ π)−1(D), we have

E ⋅ C̃ ≥D ⋅ (p ○ π)(C̃) =D ⋅ p0(C).

We can now prove our main result on the nefness of ΩX .

Proof of Theorem 5 . Consider an irreducible curve C ⊂ Y0. First assume that p0(C) ⊂D. Accord-
ing to Proposition 5.0.1, the bundle ΩX ∣

D
is nef. Since C can be seen as a curve of the projective

space P(TX ∣
D
), we see that ∫C c1(O(1))Y0 ≥ 0.

Assume now that C ∩ Y ≠ ∅. Then, according to Proposition 5.0.2, we have

∫
C
c1(O(1))Y 0

≥ 1

n + 1
∫
p0(C)

c1 (KX + (1 − (n + 1))D).

In addition, since σ ramifies to an order larger than 7 along the boundary, we have

∫
p0(C)

c1 (KX + (1 − (n + 1))D) ≥ ∫
p0(C)

c1 (σ∗ (KX +D) − n + 1

7
σ∗D).

Therefore,

∫
p0(C)

c1 (KX + (1 − n + 1

2
)D) ≥ (degσ)∫

σ(p0(C))
c1 (KX

′ + (1 − n + 1

7
)D′)

≥ (degσ)∫
σ(p0(C))

c1 (KX
′ + (1 − n + 1

2π
)D′),

(18)

since (D ⋅ (σ ○ p0(C))) ≥ 0 (the divisor D and the curve σ ○ p0(C) are in normal intersection). The
line bundle KX + (1 − n+1

2π
)D is nef by [BT15], so the last term of (18) is non-negative, which gives

the result.

6 Immersed submanifolds of X

As we explained earlier in Section 3, we can prove Theorem 4 using simple estimates on singular
metrics. We want to show now that if we restrict ourselves to the study of immersed submanifolds,
we can use the results of the sections 4 and 5 to obtain better bounds on the ramifications needed.

Let W be a smooth manifold of dimension p, and let qW ∶ P(TW ) Ð→ W be its projectivized

tangent space. Suppose we have an immersion f ∶W Ð→ X (which we do not assume to be injec-
tive), such that f(W ) /⊂D. Let W = f−1(X) be the open part of W .

The immersion f induces a well defined morphism P(TW )
f̃
Ð→ Y 0. Let W1

q
Ð→ P(TW ) be the

blowing-up of P(TW ) with respect to f̃−1(Z0). All these manifolds take place in the following fibre
square :
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W1
g̃
> Ỹ

P(TW )

q
∨

f̃
> Y

π0∨

Then, we have the following equalities of intersection numbers on P(TW ) :

[c1O(1)P(T
W

)]
2p−1

= [f̃∗c1O(1)0]
2p−1

= [q∗f̃∗ c1O(1)0]
2p−1

= [g̃∗π∗0 c1O(1)0]2p−1

= [g̃∗ (π∗ c1O(1)log −E)]2p−1

where the last equality comes from Proposition 4.1.3. Since π∗O(1)log∣E ≃ OE , we finally obtain

[c1O(1)P(T
W

)]
2p−1

= [g̃∗ π∗c1O(1)log]
2p−1 + (−E)2p−1 ⋅W1. (19)

The line bundle O(1)log is nef on Y by Theorem 3, so g̃∗ π∗O(1)log is nef on Ỹ , and

[g̃∗ π∗c1O(1)log]
2p−1 = vol (g̃∗ π∗O(1)log) .

Consequently, Proposition 3.1.3 gives the inequality

[g̃∗ π∗c1O(1)log]
2p−1 ≥ ∫

W1

[g̃∗ ( i

2π
Θ(ĥ∗))

2p−1

] ,

where we denoted by W1 the open part q−1(P(TW )) ⊂ W1.

Since blowing-up along f̃−1(Z0) induces an isomorphism on q−1
W (f−1(X)) = f̃−1(Y ), this is

actually means that

[g̃∗ π∗c1O(1)log]
2p−1 ≥ ∫

f̃−1(Y )
f̃∗ [ i

2π
Θ(ĥ∗)]

2p−1

(20)

Proposition 6.0.1. The following inequality holds :

∫
f̃−1(Y )

f̃∗ [ i

2π
Θ(ĥ∗)]

2p−1

≥ deg(f)(2p − 1

p
)
(KX +D)p ⋅ f(W )

(n + 1)p
.

Proof. We can project the integral we want to compute onto W :

I ∶= ∫
f̃(Y )

f̃∗ [ i

2π
Θ(ĥ∗)]

2p−1

= ∫
f−1(X)

(qW )∗f̃∗ [
i

2π
Θ(ĥ∗)]

2p−1

. (21)

We will follow the ideas of [Div16] to estimate the integral of f̃∗ [ i
2πΘ(ĥ∗)]2p−1

in terms of the
pull-back of the Bergman metric onto W . Take P ∈ f−1(X), and choose a coordinate neighborhood
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U of P such that the map f ∣U lifts to a map which takes its values in Bn. We will also denote this
lift by f . We can assume that the coordinate on U are centered at P = 0, and that f(P ) = f(0) = 0.
In addition, up to a linear change of coordinates on U and a unitary change of coordinates on Bn,
we can assume that around 0, f is of the form

(z1, ..., zp)↦ (z1, ..., zp,0, ...,0) +O(∣z∣2).

The Bergman metric in the usual coordinates (z1, ..., zn) on Bn admits the canonical form of (3) :

hBerg =
(1 − ∣∣z∣∣2)∑i dzi ⊗ dzi + (∑i dzi)⊗ (∑i dzi)

(1 − ∣∣z∣∣2)2
.

Thus, at 0, we have hBerg = I +O(∣z∣2).
Let us use (6) to evaluate the integral of f̃∗Θ(ĥ∗) along the fiber of qW at P . We get:

∫
P(TPW )

f̃∗ [ i

2π
Θ(ĥ∗)]

2p−1

= ∫
P(TPW )

[ i

2π
Θ ( ĥ∣TU

∗
)]

2p−1

= ∫
P(TPW )

⎡⎢⎢⎢⎢⎣

1

π
ωFShP − i

2π

⟨v ,ΘP (h)v⟩
∣∣v∣∣2hP

⎤⎥⎥⎥⎥⎦

2p−1

≥ (2p − 1

p
)∫

P(TPW )

⎡⎢⎢⎢⎢⎣

ωFShP
π

⎤⎥⎥⎥⎥⎦

p−1 ⎡⎢⎢⎢⎢⎣
− i

2π

⟨v ,ΘP (h)v⟩
∣∣v∣∣2hP

⎤⎥⎥⎥⎥⎦

p

, (22)

where the last inequality holds since all the forms appearing in the Newton binomial are positive.
Now, remark that in the coordinates we chose on U , we have

−ΘP (h) = (∑
i

dzi ∧ dzi) In + (∑
i

dzi ⊗ e∗i ) ∧ (∑
i

dzi ⊗ ei) .

Hence, when evaluated on any unitary vector v ∈ TPU , we obtain

− i
2
⟨v ,ΘP (h)v⟩ = 2v∗ ∧ v∗ + ωBerg ∣v⊥ , (23)

where v⊥ ⊂ TPU denotes the subspace of vectors orthogonal to v for hP . Since all the forms
appearing in this equation are positive, we have

[− i
2
⟨v ,ΘP (h)v⟩]

p

≥ [v∗ + v∗ + ω∣v⊥]
p = ωpBerg.

This gives

∫
P(TPW )

f̃∗ [ i

2π
Θ(ĥ∗)]

2p−1

≥ (2p − 1

p
) [
ωBerg

π
]
p

∫
P(TPW )

⎡⎢⎢⎢⎢⎣

ωFShP
π

⎤⎥⎥⎥⎥⎦

p−1

= (2p − 1

p
) [
ωBerg

π
]
p

Finally, we obtain, integrating on f−1(X) :

I ≥ (2p − 1

p
)∫

f−1(X)
[
f∗ωBerg

π
]
p

.
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Proposition 2.2.2 allows us to write

I ≥ (2p − 1

p
)
⎡⎢⎢⎢⎣

f∗ (KX +D)
n + 1

⎤⎥⎥⎥⎦

p

= deg(f)(2p − 1

p
)
(KX +D)p ⋅ f(W )

(n + 1)p

Remark. When p ∈ {1, n}, we can be more precise in this inequality. Suppose first that p = 1.
The equation (23) can be replaced with

− i
2
⟨v,ΘP (h)v⟩ = 2v∗ ∧ v∗ = 2 f∗ωBerg,

so, when continuing the computations, we finally find

∫
f̃−1(Y )

f̃∗ [ i

2π
Θ(ĥ∗)] ≥ 2 deg(f)

(KX +D) ⋅ f(W )
n + 1

.

Suppose now that p = n. Then (22) becomes an equality, and in addition

[− i
2
⟨v ,ΘP (h)v⟩]

n

= [2v∗ + v∗ + ω∣v⊥]
n = 2 ωpBerg.

Thus, finishing the computations gives the equality

∫
f̃(Y )

f̃∗ [ i

2π
Θ(ĥ∗)]

n

= 2(2n − 1

n
)deg(f)

(KX +D)n ⋅ f(W )
(n + 1)n

.

In particular, we obtain the following inequality of intersection numbers, using the fact that 2(2n−1
n

) =
(2n
n
) :

c1O(1)2n−1
log ≥ (2n

n
)
(KX +D)n

(n + 1)n
. (24)

Remark. Using Hirzebruch’s proportionality principle, we can prove that the inequality (24) is ac-
tually an equality. See [Mum77].

We will now compute the term (−E)2p−1 ⋅W1 appearing in (19).

Let EW be the proper transform of P (TW ∣
f−1(D)

) ↪ P (f∗TX ∣D) = f̃−1(p−1
0 (D)) under the

blowing-up q. We have then EW = g̃−1(E), and

(−E)2p−1 ⋅W1 = − (E∣E)
2(p−1) ⋅ (W1∣E) = − (g∗ E∣E)

2(p−1) ⋅EW .

According to Proposition 4.1.6, there is an isomorphism E ≃ P (TX ∣D), and OE(−1), the tauto-
logical line bundle of this projectivized space, is isomorphic to the normal bundle OE(E). More-
over, EW is isomorphic to P(TW ∣WD

) as a blowing-up along a smooth divisor, and the morphism
EW Ð→ E is given by

EW = P (TW ∣
f−1(D)

)
f̃DÐ→ P (TX ∣D) ≃ E,
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where f̃D = f̃ ∣
f̃−1(p−10 (D))

. Thus, we can use the functoriality of tautological bundles under pull-backs

to write f̃∗DOE(1) = OEW (1), which gives the formula

(g∗ E∣E)
2(p−1) ⋅EW = ∫

EW
c1 (f̃∗DOE(1))

2(p−1) = ∫
EW

c1 (OEW (1))2(p−1) . (25)

We will now estimate this last intersection number in terms of c1(ND/X). Since D admits a

tubular neighborhood in X, we can write the following isomorphism of vector bundles over D :

TX ∣
D
≃ TD ⊕ND/X ≃ On−1

D ⊕ND/X . (26)

We see that we can choose a metric hD on TX ∣D whose curvature decomposes locally in the following
way in the splitting (26) :

Θ (TX ∣
D
) =

⎛
⎜⎜
⎝

0 0

0 Θ(ND/X)

⎞
⎟⎟
⎠
.

Thus, according to (6), we can write

i

2π
Θ(OEW (1))(x,[v]) = −

i

2π
Θ(ND/X)y

⟨τ(w), τ(w)⟩hD
∣∣w∣∣2hD

+ 1

π
f̃∗Dω

FS ,

where (y, [w]) = f̃D(x, [v]), and τ ∶ TX ∣D Ð→ ND/X denotes the canonical projection, which by our
choice of metric is orthogonal.

Integrating ( i
2πΘ(OEW (1))(x,[v]))

2(p−1)
over a fibre EW,x of the projection EW Ð→ f−1(D), for

some x ∈ f−1(D), we get

∫
EW,x

c1 (OEW (1))2(p−1) = [− i

2π
Θ(ND/X)y]

p−1

∫
EW,x

∣∣τ(w)∣∣2hD
∣∣w∣∣2hD

(ω
FS

π
)
p−1

,

with y = f(x). However, ND/X is negative on D, so the form − i
2πΘ(ND/X) is positive. Hence, we

get

∫
EW,x

c1 (OW0(1))
2(p−1) ≤ [− i

2π
Θ(ND/X)y]

p−1

∫
EW,x

∣∣w∣∣2hD
∣∣w∣∣2hD

(ω
FS

π
)
p−1

= [− i

2π
Θ(ND/X)y]

p−1

.

Thus, integrating over f−1(D), we obtain

(−E)2p−1 ⋅W1 ≥ −∫
f−1(D)

[− i

2π
Θ(ND/X)]

p−1

= − (−D∣W )p−1 = (−D)p ⋅W. (27)

Remark. If dimW = n, we can simplify the previous computations. Suppose for example that
W = X. Then (−E)2p−1 ⋅ W1 is just the maximal intersection of (−E). We have seen that
E ≃ P(TX ∣

D
) and that OE(E) is isomorphic to the tautological line bundle OE(−1). Hence,

(−E)2n−1 = − [c1OE(E)∣E]
2(n−1) = − [c1OE(1)]2(n−1) = −∫

D
sn−1(TX ∣

D
).
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Since TX ∣D ≃ On−1
D ⊕ND/X , we find sn−1(TX ∣

D
) = (−1)n−1c1(ND/X)n−1. This means that

(−E)2n−1 = −∫
D
(−1)n−1c1(ND/X)n−1 = (−D)n.

In this case, we actually find an equality in (27).

Putting everything together, we have proved the following result :

Proposition 6.0.2. Let W
f
Ð→ X be an immersion of a smooth manifold W of dimension p, not

necessarily injective, such that f(W ) /⊂ D. Then if OW (1) is the tautological bundle of P(TW ), we
have the following inequality :

c1OW (1)2p−1 ≥ [(2p − 1

p
) 1

(n + 1)p
(KX +D)p + (−D)p] ⋅ f∗ [W ] , (28)

where f∗ [W ] = deg(f) ⋅ f(W ) denotes the image cycle of W . If p = 1, we have the more precise
inequality

degKW = c1OW (1) ≥ [ 2

n + 1
(KX +D) −D] ⋅ f∗ [W ] , (29)

and if p = n, we have the equality (via [Mum77])

c1OW (1)2n−1 = [(2n

n
) 1

(n + 1)n
(KX +D)n + (−D)n] ⋅ f∗ [W ] . (30)

We are now able to prove our refined result on the type of embedded subvarieties of X.

Proof of Theorem 6. Let W
f
Ð→X be an immersion, whose image is not included in the boundary,

with dimW = p. Let OW (1) be the tautological bundle on the projectivized bundle P(TW ), and let

f̃ ∶ P(TW )Ð→ Y be the morphism induced by f . Then (28) gives, since (KX +D)∣
D
≃ OD :

c1OW (1)2p−1 ≥ [(2p − 1

p
) 1

(n + 1)p
(KX +D)p + (−D)p] ⋅ [f(W )] (31)

= C [(KX +D)p + (− 1

C1/p
D)p] ⋅ f∗ [W ]

≥ C [(KX′ +D′)p + (− 1

l C1/p
D′)p] ⋅ σ∗f∗ [W ]

= C [(KX′ + (1 − 1

l C1/p
D′))p] ⋅ σ∗f∗ [W ]

(32)

with C = (2p−1
p

) 1
(n+1)p . According to [BT15], KX′ +(1−λ)D′ is ample for λ ∈ ]0, n+1

2π
[, so we see that

the last term of (32) is positive as soon as lC1/p > 2π
n+1 , i.e. if

l(2p − 1

p
)

1/p

> 2π.

This is true if l > maxk
2π

(
2k−1
k

)
1/k = 2π. Thus, if l ≥ 7, OW (1) has positive maximal intersection.

Since l ≥ 7, OW (1) = f̃∗OY0(1) is nef because of Theorem 5, so we deduce from our previous
calculations that it must be a big line bundle.

26



Remark. In the case where W is a curve, the better inequality (29) permits to prove that for any
étale cover X Ð→ X ′ ramifying at order at least 4 on any boundary component, all curves C ⊂ X
not included in D are hyperbolic.

References

[AMRT10] Avner Ash, David Mumford, Michael Rapoport, and Yung-Sheng Tai, Smooth compact-
ifications of locally symmetric varieties, second ed., Cambridge Mathematical Library,
Cambridge University Press, Cambridge, 2010, With the collaboration of Peter Scholze.

[BKT13] Yohan Brunebarbe, Bruno Klingler, and Burt Totaro, Symmetric differentials and the
fundamental group, Duke Math. J. 162 (2013), no. 14, 2797–2813.
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