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Abstract—Statistical redundancies have been the dominant
target in the image/video compression standards. Perceptually,
there exists further redundancies that can be removed to further
enhance the compression efficiency.

In this paper, we considered short term homogeneous patches
that fall into the foveal vision as dynamic textures, for which
a psychophysical test was used to estimate their amount of
perceptual redundancies. We demonstrated the possible rate
saving by utilizing these redundancies. We further designed
a learning model that can precisely predict the amount of
redundancies and accordingly proposed a generalized perceptual
optimization framework.

Index Terms—Suprathreshold JND; Perceptual Video Coding;
Beyond HEVC

I. INTRODUCTION

The latest MPEG video compression standard, known as
high efficiency video coding (HEVC) [1], is a hybrid video
coding that utilizes both signal prediction and transform in
order to provide a compact representation of the video se-
quences. An entropy based binary coding (CABAC [1]) is
used to achieve the minimum amount of information to be
stored or transmitted over channels. These mechanisms (pre-
diction, transform and entropy coding) rely on the statistical
redundancies of the input signals, such as spatial and temporal
correlation. However, beside this, there are also perceptual
redundancies that can be further exploited to enhance the
coding performance.

It is well known that the human visual system can detect
differences when a certain threshold is crossed. The just no-
ticeable difference/distortion (JND), is the threshold at which
the change of certain physical quantity causes a perceptual
difference. It is of huge importance in many applications
involving perceptual optimization. An example of this, in
the scope of this paper, is permitting the coding system to
further compress the input signal, while assuring an equivalent
perceptual quality. In other words, exploiting the presented
perceptual redundancies in the input signal.

Typically, JND threshold is estimated based on low level
mechanisms of human vision, namely contrast sensitivity
[2][3]. Such methods are of limited scope, and can poorly
perform in the region of apparent distortion (suprathreshold
region) as indicated in [4]. According to this, we argue that

the threshold can be properly estimated from the natural im-
age sequences themselves, taking into account computational
features describing them.

Dynamic textures are specific components of the visual
signals, that are characterized by high spatial and temporal
homogeneity. They have been often suitable candidates for
perceptual optimization of video coding as they generally
possess details irrelevancies. Thus, replacing them by an
equivalent stochastic signal results in significant bitrate saving
[5] [6].

In this paper, we subjectively estimated the suprathreshold
JND profiles of a set of 25 dynamic textures, and provided a
regression model to estimate it. We demonstrate the amount
of bitrate saving that can be achieved by utilizing this model.

The rest of the paper is organized as follows: In Sec. II, the
details and results of the psychophysical test for redundancy
estimation are described. In Sec. III, a machine learning
approach for predicting the psychophysical test outcome is
presented. The discussion of the obtained results with their
relevance is given in Sec. IV, while the conclusion and future
work are given in Sec. V.

II. PERCEPTUAL REDUNDANCY ESTIMATION

A. Method and Apparatus

The perceptual redundancy, as discussed in Sec. I, refers to
the amount of possible further compression without altering
the visual quality of the decoded video. It can be estimated
using well-known psychophysical tests of threshold estima-
tion. In contrast to the classical tests like the method of
limits, method of constant stimuli or the method of adjustment
[7], there exist also adaptive methods that usually converge
with less number of trials. Examples of them are the famous
methods like PEST [8] and QUEST [9] methods. In this work,
we opted to use the state of the art method, known as Updated
Maximum-Likelihood (UML) Procedure [10], which can pre-
cisely determine threshold, along with the other parameters of
the psychometric function (slope and lapse rate [11]).

The UML method was used to measure the subjective
preference probabilities. Given a sequence encoded by HEVC
at two compression levels, the subjects would prefer one of
the decoded pairs against the other with a certain probability.
This probability is dependent on the relative compression



level, which is monotonically related to the relative rate (Rr)
between the two levels (R1 and R2), where the relative rates
is computed as follows:

Rr = (R2 −R1)/(R1) (1)

An example of the preference psychometric function is
given in Fig. 1. In this figure, we can see that sequences having
a large negative relative rate is not preferred (and vice-versa),
which reflects the fact that negative relative rate represents
lower bitrate due to higher compression, which would neces-
sarily results in lower visual quality. An interesting and most
informative point on the curve is the point of 50% preference
probability. This point is the one at which no clear preference
towards any of the compared pairs is present. It is commonly
known as the point of subjective equality. Ideally, this point
should correspond to the points where the compared videos
are exactly the same, which is the point of zero relative rate,
but it appears at relative rate of approximately -10% (Fig.
1). This can be interpreted in the way that the given video is
perceptually equivalent to the same video being compressed at
a higher compression level, namely the given video possesses
a certain amount of perceptual redundancy which can be
exploited to produce 10% bitrate saving.

The UML test was conducted with 25 naive observers, with
normal or corrected (to normal) vision. They received written
instructions on using the software as well as the task they have
to perform. A screen shot of the used software is shown in
Fig. 2, in which two videos are simultaneously shown, and the
observer task is to select the sequence with better perceived
quality.

The subjective test was conducted in a professional room
specifically designed for subjective testing. It complies with
the ITU recommendations regarding the room lighting and
screen brightness [12]. The used screen was a TVLogic
LVM401 with a resolution of 1920x1080 at 60Hz. The viewing
distance was 3H, where H is the screen height. The test
duration was less than half an hour for all of the observers.

Fig. 1. An example of the measured subjective preference pychometric
function. Red line represents the point of subjective equality.

Fig. 2. Screen shot of the software used for psychophysical experiment.

B. Material

In most of the tasks involving visual quality assessment,
the test materials are sequences having divergent contents,
extending from 5 to 10 seconds. However, other studies of
psychophysical threshold estimation uses simplistic signals
with controlled properties (bars, Wavelet-Gaussian patches).
In our work, which covers both perceptual quality assessment
and video compression, we believe that a combination of both
is required. In other words, we need to focus on natural videos,
having homogeneous properties.

The main goal of the video compression standard (HEVC),
is to provide the best trade-off between rate and distortion.
Thus, HEVC encoder selects the best prediction mode, split-
ting depth and etc according to the instantaneous rate and
distortion measure. The distortion computed with a limited
knowledge about the spatial and temporal part of the signal.
For this reason, this work concentrates on spatially small,
short term stimulus, having homogeneous properties, which
is referred to us as dynamic textures.

Accordingly, we collected 25 sequences from two dynamic
texture datasets, namely DynTex dataset [13], and BVI dataset
[14]. DynTex is a comprehensive dataset of 650 dynamic
textures that have been extensively used for research purpose,
while BVI is a new dataset designed mainly for subjective
testing. For both datasets, the 25 collected are of resolution
128x128, with temporal extent of 500 ms, which is a duration
of perceptual significance.

A circular windowed version of the sequences (as shown
in Fig. 3) is used in the experiment. The window radius
was chosen as 32 pixels, and the rest of the video were
gradually faded to the background level using gaussian filter.
This is done such that the signal falls within the foveal vision.
Temporally, as the initial signal is quite short, it was repeated
upon the end of the sequence with time reversal to avoid the
temporal discontinuity artifact.

The sequences were compressed to 3 quality levels (good,
medium, and bad) using the HEVC reference encoder (HM
16.2 [15]). This resulted in 75 source materials (SRCs), which
were compared to other compression levels (HRCs) to obtain
the preference probability using the UML procedure Sec. II-A



Fig. 3. Data set used in this work.

C. Results

The results of the psychophysical test are 75 psychometric
preference functions (Fig. 1), each representing the probability
of preferring a given HRC over another HRC. For each
function, the threshold of 50% probability of preference is
retained, which represents the point of subjective equality (Sec.
II-A). An example of one sequence is shown in Fig. 4, where
we can see that the redundancies to high quality region (low
QP) is higher than for low quality region (large QP).

The overall average relative rate from the three quality
points of all the sequences is shown in Fig. 5. We can see
clearly that for most of the sequences, the corresponding
subjective equality doesn’t appear at the same bitrate. This
clearly indicates that there are high perceptual redundancies,
that can be exploited to reduce the bitrate, while maintaining
an equivalent subjective equality.

III. PERCEPTUAL REDUNDANCY ESTIMATION VIA
FEATURES ANALYSIS

In this section, we discuss the possibility of predicting the
perceptual redundancy profile of a given dynamic texture.
Looking again at Fig 4, we can see that two things need to be
predicted. First is to predict whether there is a significant gain
when the perceptual redundancies are utilized, and second is
to estimate the amount of these redundancies. The first one is
a binary classification problem, while the second is regression
problem.

We aimed at using computationally simple features in both
the classification and regression problem. Accordingly, we
used the following set of descriptors: the standard Spatial
Information (SI) and Temporal Information [17], The Color-
fullness (CF) [18], Gray Level Cooccurrence Matrix (GLCM)
[16], and the set of dynamic texture descriptors defined in

Fig. 4. An example of relative rate at equivalent subjective quality. Error bars
correspond to 95% confidence interval.

Fig. 5. Overall average relative rate of all videos. Error bars correspond to
95% confidence interval.

[19]. The GLCM descriptor combines 4 features, that are
contrast, correlation, energy and homogeneity. Similarly, the
following descriptors are defined in [19] for normal flow
vectors: Divergence, Curl, Peakness and Orientations. For the
frame based features, such as SI and TI, we experimented
different temporal pooling strategies, such as temporal mean
and standard deviation.

For the binary classification problem, we found that the fol-
lowing set of features, accompanied by the compression level
(QP) of the tested quality points, provided the required trade-
of between number of features and the classification accuracy.
The selected features were: the temporal mean of GLCM
correlation and homogeneity, the Curl of normal flow, temporal
standard deviation and temporal minimum of the Colorfulness,
and finally temporal mean of GLCM homogeneity. Support
Vector Machine (SVM) was used as a classification tool with



the 6 defined features, as well as QP. To test the learning
performance of SVM, we performed a leave-one-out cross
validation test and measured the classification accuracy, which
is found to be 0.916. This indicates that binary classification
works quite well. The other performance metrics results in
Table I support this as well.

The other part, which is estimating the amount of perceptual
redundancies, is performed using a linear regression approach.
The target property of the regression model is to estimate
the maximum value of distortion, measured in Peak Signal to
Noise Ratio (PSNR), that the encoder can reach, without caus-
ing a perceptual difference compared to a given level of quality
associated with the considered QP. This value is denoted as
Max PSNR. Using the set of features mentioned earlier, we
experimentally found that the following subset of features are
the most significant ones: QP, maximum of SI, mean of TI,
standard deviation of GLCM Homogeneity, Energy, Contrast
and Correlation, mean of GLCM Homogeneity and Contrast.
Once more, the leave-one-out cross validation process was
employed, and obtained R-Squared value of 0.96, which also
indicates also goodness of the trained model (see Table II).

IV. DISCUSSION

Dynamic textures, possess a certain amount of perceptual
redundancies that depend on both the signal characteristics
and the compression level. Utilizing these redundancies, a
large supplementary coding gain can be obtained. Predicting
whether a significant gain can be produced, as well as esti-
mating the amount of perceptual fidelity, can be easily done
using computationally simple features.

According to the achieved results, we proposed a general
framework for perceptual optimization of the video compres-
sion standard (HEVC). The block diagram of the framework
is given in Fig. 6. In this framework, the input video signal
is analyzed and spatio-temporal features are computed (Sec.
III), next, the binary classifier decides whether a significant
coding gain can be obtained. If the condition is true, the linear
regression module estimates the maximum possible distortion
level, and finally the encoder increases the compression ratio
accordingly.

V. CONCLUSION

In this paper, the suprathreshold perceptual distortion ar-
tifacts were estimated for 25 homogeneous spatio-temporal
patches, referred as dynamic textures. For a given sequence, it
was shown that subjective equality between two patches can
occur at different bitrates. Exploiting this difference, we can
achieve significant bitrate saving.

The threshold can be precisely estimated using a linear
regression model. The model combines low level computation-
ally simple set of features. According to this, a perceptual op-
timization framework of HEVC encoding has been proposed,
as shown in Fig. 6.

The possible future outcome of this work is to apply
the proposed approach on compound scenes, such that the
perceptual redundancies of each spatio-temporal patch is well

Fig. 6. Proposed perceptual optimization framework of HEVC Encoding.

exploited. Higher overall bitrate saving, compared to the base
line encoder (HEVC), is expected.
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