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ABSTRACT

In this work, we present an extended study of image represen-
tations for automatic target recognition (ATR). More specif-
ically, we tackle the issue of the image resolution influence
on the classification performances, an understudied yet ma-
jor parameter in image classification. Besides, we propose a
parallel between low-resolution image recognition and image
classification in a fine-grained context. Indeed, in these two
particular cases, the main difficulty is to discriminate small
details on very similar objects. In this paper, we evaluate
Fisher Vectors and deep representations on two significant
publicly available fine-grained oriented datasets with respect
to the input image resolution. We also introduce LR-CNN,
a deep structure designed for classification of low-resolution
images with strong semantic content. This net provides rich
compact features and outperforms both pre-trained deep fea-
tures and Fisher Vectors. We also present visual results of our
LR-CNN on Thales near-infrared images.

Index Terms— Automatic Target Recognition, Optronic
sensor, Fisher Vectors, Convolutional Neural Networks, Fine-
grained classification.

1. INTRODUCTION

Automatic target recognition (ATR) is becoming more and
more essential for several military applications. For exam-
ple, in embedded optronic systems, ATR enables to send, with
limited bandwidth, target information such as visual and lo-
calization information to a ground station. The development
of an efficient ATR system is however quite difficult since the
system must handle a variety of targets under a variety of con-
ditions. Moreover, usually acquired at long range, targets are
in these low-resolution images very similar to the background
or to other classes, hence very difficult to recognize. Since the
image recognition is fulfilled by an embedded system, the re-
sources for processing the input image are very limited, which
means compact image representations have to be designed.

Fig. 1. Examples of objects in the internal Thales images.
On the top row, we represent three different types of vehicles,
while on the bottom row we represent three salient objects
that are not vehicles. With these examples, we show that dis-
criminating a vehicle from a background element may be very
difficult, since background objects may look very similar to
vehicles.

Image classification and pattern recognition received a
lot of interest from Computer Vision and Machine Learn-
ing communities in the recent years [1]. Classification in
a fine-grained context is a challenging academic applica-
tion, which consists in distinguishing very similar classes.
Similarly to long-range targets recognition, to achieve this
discrimination, small details in the images have to be de-
tected and recognized. Many fine-grained oriented datasets
have been proposed to address this task, e.g. FGVC-Aircraft
[2], Caltech-UCSD Birds-200-2011 [3], 102 Category Flower
Dataset [4], PPMI [5]. In [5], one must determine whether
persons are playing or merely holding an instrument. As
shown in figure 1, this task requires spotting and recognizing
very small discriminating details. In the context of vehicle
recognition on Thales near-infrared images, we show on fig-
ure 1 that false alarms and vehicles may look very similar.
On the top row, we represent several vehicle images, while
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(a) Playing the harp (b) Holding the harp

Fig. 2. Examples of PPMI images. Discriminating between
people playing the instrument and people holding the instru-
ment is a difficult task, even for a human eye.

salient objects which are not vehicles (false alarms) are repre-
sented on the bottom row. The first false alarm (bottom left)
may look quite similar to a car (top left), and a container (bot-
tom right) resembles a truck (top right). Differentiating these
elements requires recognizing small discriminating parts in
the image.

Many methods have recently emerged to address the
fine-grained classification problem. Fisher Vectors [6], ex-
tending Bag of Visual Words (BoW) [7, 8, 9, 10, 11], have
achieved particularly good results on multiple image clas-
sification tasks [12]. Recently, deep networks [13, 14, 15]
and more specifically Convolutional Neural Networks have
also obtained outstanding performances on several large scale
image classification datasets [16, 17, 18]. Due to their com-
plex structure, these nets usually have several dozen mil-
lion weights: such complex architectures cannot be properly
trained on mid-scale datasets. However, recently, they have
successfully been used in a transfer fashion: the weights are
learned on a very large external dataset (e.g. ImageNet [19]),
then the net is used unchanged as a deep feature extractor
on the target dataset. Such pre-trained deep features have
proven very efficient as off-the-shelf features on a few mid-
scale datasets [20]. Smaller nets have also been designed
to be learned on lesser datasets [21], yet they have not been
adapted to fine-grained tasks.

In this paper, we first analyze the impact of the image
resolution on Fisher Vector and deep features performances.
In a context of embedded optronic systems, due to the car-
rier movements, objects can moreover be seen at different
sizes, which leads to consider feature robustness regarding a
wide range of image resolutions. Then, we propose LR-CNN
(Low Resolution Convolutional Neural Network), a deep
structure designed for classifying low resolution images in an
ATR context, based on the deep networks recently designed
for ImageNet classification [16, 17, 22]. For this compar-
ative study and the evaluation of our method, we provide
very detailed experiments on two major fine-grained oriented
datasets, FGVC-Aircraft [2] and PPMI [5], comprising im-
ages of mid- to high resolutions. To highlight the impact
of the resolution parameter, we generate a batch of datasets
in which all images have the same resolution. We extend

the work of [23] by illustrating LR-CNN performances on a
Thales near-infrared dataset, acquired with an air to ground
optronic sensor.

2. IMAGE REPRESENTATIONS

In this section, we first present the feature types introduced
above, then we discuss the issue of the image resolution.

FV features. Introduced by Perronnin et al. [6], Fisher Vec-
tor (FV) is a major Computer Vision representation which
has recently proven its efficiency in fine-grained contexts by
winning the Fine-Grained classification challenge 2013 [12].
This representation is based on three main steps. First, local
features are extracted on all training images. In this work, we
consider the well-known SIFT descriptor introduced by [24].
The distribution of these features is then estimated through
a Gaussian Mixture Model (GMM). Finally, for each image,
local features are encoded with respect to the first and second
order statistics of this GMM and aggregated. This resulting
aggregated vector is the image representation. In [25], Per-
ronnin et al. proposed two major steps to boost FV perfor-
mances. Following their work, FV z are power normalized
by applying the function sign(zi)× |zi|α to each element zi,
then the whole FV is further L2-normalized.

CNN features. A convolutional neural network (CNN)
is a succession of convolutional layers followed by fully-
connected layers. Each layer takes as input the output values
of the previous layer. Convolutional layers can be thought of
as a batch of filters applied on the image at different scales,
whereas fully-connected layers compute linear combinations
of all output values of the previous layer. For our study, we
use CNN-M network [17], which contains five convolutional
blocks and three fully-connected layers. This network was
trained on ILSVRC12 training set, which contains 1.2 million
images belonging to 1,000 classes [19]. In our experiments,
we use a part of this pre-trained network as a deep feature
extractor, similarly to what has been tested on Caltech-UCSD
Birds [20] or PASCALVOC [17]. More precisely, we extract
deep features at two specific levels of the network: (a) after
the first fully-connected layer and (b) after the last fully-
connected layer (both features have size 4096).

Resolution adaptation for feature computation. To show
the influence of resolution on the performances of these im-
age representations, we focus on seven specific resolutions
ranging from 200 × 200 to 10 × 10 pixels. On this purpose,
we generate, for each dataset [2, 5], 7 derived datasets, each of
them containing all images of the original dataset downsized
to a s × s pixel image. These datasets are then considered
as independent classification problems: for each resolution s,
classifiers are trained on images of size s × s and tested on
test images of size s× s. Both feature types presented above
are however very sensitive to these resolution changes. Due
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to its fixed structure, CNN-M requires a fixed 224 × 224 in-
put image size. Besides, small images do not enable comput-
ing enough SIFT, which highly affects FV computation. To
address both these issues, small s × s images are thus mag-
nified using a nearest-neighbour interpolation. This process
provides images with a large enough number of pixels with-
out altering the image quality obtained for small resolution.

3. LR-CNN

Standard deep networks used for large-scale image datasets
such as Krizhevsky-like structures [16] have achieved out-
standing performances on fine-grained classification of high
resolution images, yet they contain at least 60 million weights;
such a complex system cannot be learned properly on a
mid-scale dataset containing a few thousand training im-
ages. To address this issue, we present LR-CNN, a deep
structure adapted to low-resolution image classification in a
fine-grained context.

Architecture. Based on CNN-M structure, this architecture is
a version of structures adapted to fine-grained classification of
high resolution images scaled to suit a low resolution context.
On this purpose, we design a deep structure computing very
rich image representations through three convolutional lay-
ers and two fully-connected layers. All convolutional blocks
are composed of 64 filters, providing a large number of im-
age descriptors. Filters of the first convolutional layer have
size 5× 5, computing convolution at a global scale in the in-
put image. The responses to these filters are then cross-map
normalized. A max pooling step summarizes local informa-
tion in each response map. We introduce overlap in these
layers, providing a richer pooling step. The second convolu-
tional layer contains 64 filters of size 5 × 5. Max-pooling is
performed the same way as in conv1. The last convolutional
layer comprises filters of size 3× 3: this filter size appears to
be significant since it determines which proportion of the in-
put image is addressed. The number and size of the filters are
determined so that the network covers a proportion of the in-
put image which enables distinguishing small discriminating
details. These convolutional layers are followed by a fully-
connected layer, which computes a linear combination of all
outputs of third convolutional layer. A final fully-connected
layer computes the score of the input image for each class.
Non-linearities are introduced by applying function Rectified
Linear Units (ReLU) f(x) = max(0, x) to the responses of
filters from all layers. The outputs of this network are finally
normalized through a softmax step, computed as follows:

yk =
exk∑
k′ e

x′
k

(1)

where xk is the score of filter k from previous layer and yk
is the corresponding output. This structure is summarized in
table 1.

Training. Although backpropagation is a standard training
framework, this algorithm contains many details that need to
be controlled. The weights of the different layers in the CNN
are learned by iteratively correcting each weight with respect
to its contribution to the output loss. More specifically, at each
iteration t of this backpropagation algorithm, the weight w(t)

ijk

is updated of

∆w
(t)
ijk = m∆w

(t−1)
ijk − λεw(t−1)

ijk − εg(t)ijk (2)

where m is the momentum, ε is the learning rate, λ is the
weight decay and g(t)ijk is the gradient of the loss function with
respect to the weight wijk at time t. Through equation 2, it
can easily be seen that momentum and weight decay regulate
some inertia of the weight at previous time, and learning rate
regulates how much the weight is updated with respect to the
loss gradient. In our case, we use a log-loss cost function.

Some layers (usually the first fully-connected layer) may
have an important number of weights. To prevent the system
from overfitting, dropout [16] is used; this technique freezes
some of the weights at time t with probability p, which
lightens the network and thus prevents overfitting. Other
techniques like Dropconnect [26] have emerged, proposing
to drop connections instead of weights, however dropout
strategies lead to better results on the studied benchmarks.

Data augmentation further helps preventing overfitting.
This consists in multiplying the number of training images by
applying to them some transformations which leave the label
unchanged. In our case, images are reduced to 37× 37 pixels
in which five 32× 32 crops are sampled from the corners and
the center; each crop is flipped around the vertical axis.

4. EXPERIMENTS

We test FV and CNN features on the very challenging task
of fine-grained classification, using three significant publicly
available datasets. FGVC Aircraft [2] comprises 100 classes
of airplane variants, each containing 100 aircraft images.
PPMI [5] is a 4,800 image dataset of persons with musical
instruments. Each image contains a person and an instrument
out of a list of 12. The aim is to determine whether the person
is playing the instrument or merely holding it. For our exper-
iments, we use the on-line available 258 × 258 normalized
images.

Setups. For FV features, on both datasets, we extract multi-
scale dense gray-level SIFT [24]. We use a 64 gaussians
GMM and 1×1 + 2×2 + 4×4 spatial pyramids. The result-
ing FV feature of an image has a size 344064. Following [25],
FV are L2-normalized and power normalized with α = 0.5.
Fisher Vectors are implemented using VLFeat library [27].

For this study, we use the existing deep network CNN-M
from MatConvNet library [28] trained on ImageNet dataset
[19]. To show the importance of the choice of the deep fea-
ture, we extract features by using the output of different layers

3



OPTRO2016-064
Block Conv1 Conv2 Conv3 Fc4 Fc5

64 filters 5× 5, st.1 64 filters 5× 5, st.1 64 filters 3× 3, st.1 output size 128 output size 100
Details ReLU, contrast norm ReLU ReLU ReLU softmax

max. pool [3 3], st. 2 max. pool [3 3], st. 2 max. pool [3 3], st. 2

Table 1. LR-CNN structure, designed for small image classification in a fine-grained context.

of the network: the output of the second fully-connected layer
(CNNM19), for this is a very commonly used baseline in deep
feature analysis, and the output of the first fully-connected
layer (CNNM16). These features are then L2-normalized.

To avoid any misinterpretation due to scaling issues, we
choose to use linear classifiers. We use Crammer and Singer
optimization on the multi-class FGVC Aircraft and a stan-
dard L2-regularized L1-loss linear SVM on the binary PPMI
classification task. Both classifiers are implemented using Li-
blinear library [29].

Experiments on Thales internal dataset. Moreover, we
validate our approach on Thales near-infrared images. In this
experiment, we aim at recognizing and localizing the vehi-
cles on a large global image. These images have a size of
roughly 2, 000× 2, 000 pixels, and contain vehicles of a size
c.a. 25 × 25 pixels. Since the localization of each vehicle
within the image is not known in advance, the training and
evaluation protocol for our LR-CNN needs to be adapted. To
tackle the localization problem, we apply our LR-CNN in
a sliding window fashion on the whole input image. More
specifically, for each input image, we apply our LR-CNN on
32 × 32 patches of the image with a stride of 6 pixels, pre-
dicting a label for each of these image crops. To adapt our
LR-CNN to this particularly challenging context, we modify
the prediction layer in order to learn vehicle classes and one
false alarm class. With this adaptation, for each image patch,
our network is able to discriminate vehicles from background.
For this experiment, we train our LR-CNN on internal Thales
data, and test the network on a complementary internal image
set.

FV vs CNN on varying resolution. In figures 3 and 4, we
present classification performances vs input image size for
several resolutions sampled from 200×200 to 10×10 pixels.1

For FGVC-Aircraft, the performances range between 53.3%
and 19.2% for FV, 46.4% to 15.8% for CNNM19, 54.6% and
17.3% for CNNM16. The performances on PPMI vary from
86.0% to 70.9% for FV, from 87.4% to 69.0% for CNNM19,
from 89.7% to 70.9% for CNNM16.

We now focus on the impact of resolution on classifica-
tion performances. It is noticeable that each baseline has the
same bimodal behaviour on both datasets regarding resolu-
tion diminution. As long as the resolution remains quite high,
performances plateau: for FV, the performance loss on reso-

1Performances can be improved using external data and additional infor-
mation, but these processes are out of the scope of this paper.

Fig. 5. Example of two Airbus airplane images (top A380,
bottom A330-200) at resolutions 200 × 200 (left), 50 × 50
(middle) and 20×20 (right). Resolution degradation occludes
the discriminating details that enable distinguishing classes.

lutions 200 × 200 to 100 × 100 is 0.7% on FGVC Aircraft
and 0.4% on PPMI. Then, for all resolutions lower than these
critical values, the methods seem to get much more sensi-
tive to the image resolution: the FV performance gap between
resolutions 50 × 50 to 20 × 20 is 14.2% on FGVC Aircraft
and 4.2% on PPMI. MatConvNet deep features also show the
same behaviour: on FGVC Aircraft, CNNM19 features per-
formances drop of 3.3% from 200 × 200 to 100 × 100 and
of 20.2% from 100 × 100 to 20 × 20. To illustrate this be-
haviour, we show in figure 5 images of two Airbus variants
at different resolutions. At resolution 200 × 200, the variant
(A380) can easily be read on the fine and the fuselage of the
first airplane. One can even see that the A380 has two floors,
while the A330-200 only has one. When decreasing image
resolution, at 50×50 pixels, the variant is no longer readable.
However, it can still be guessed that the A380 has two floors.
Finally, critical resolution (20×20 pixels) makes it impossible
to distinguish either of these discriminating details.

We also show that FV reaches the best performances
on low-resolution images, although relative performances of
FV and CNN features strongly depend on the CNN layer
we choose as the image representation. Indeed, for features
extracted on top of the fully-connected part (CNNM16),
performances are competitive with those of FV at several
resolutions, or even better (e.g. on PPMI for resolutions
≥ 100 × 100). However, when extracting features at a
deepest level of the network (such as CNNM19), classifica-
tion performances drop. This behaviour, observed on both
datasets, tends to support the conclusion that the last layers of
a network are more specific to the learning dataset, whereas
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Fig. 3. Performances using FV and CNN-M features vs im-
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Fig. 4. Performances using FV and CNN-M features vs im-
age resolution on PPMI

the shallowest layers offer a more generic description of an
input image, as shown in [30]. It could however be interesting
to adapt the pre-trained weights of CNNM by fine-tuning the
network on the targeted tasks.

LR-CNN results. For initialization, the weights are drawn
from a gaussian distribution of mean 0 and standard deviation
0.01, and a 50% dropout is performed after the first fully-
connected layer. The weight decay is set at 0.01 and momen-
tum value is 0.9. The learning rate is set at 10−2, then gradu-
ally decreased down to 10−5 when the training error plateaus.
To fairly compare all features quality, we use this network as
a feature extractor: the output of conv3 is the image feature
(size 2304), and a linear SVM is used for classification.

In this work, we propose an architecture optimized for
low resolution image classification in a fine-grained context.2

This model obtains a 44.8% accuracy on FGVC-Aircraft,
outperforming FV (42.4%) as well as pre-trained deep fea-
tures CNNM16 (32.7%) and CNNM19 (27.2%). We show
that LR-CNN provides features capturing small details, thus
bringing a significant gain of performance over pre-trained
networks on fine-grained classification of low-resolution im-
ages. Our network benefits from learning “best practices“
such as dropout [16] as well as an advanced parametrization.
Filter size appears to be an important parameter, since per-
formances drop of 1.1% when upsizing filters of conv3 to
5 × 5. Having two fully-connected layers is another signifi-
cant improvement: accuracy drops of 4.3% when no hidden
fully-connected layer exists. LR-CNN obtains thus better
results than FV while providing a much smaller representa-
tion: while FV requires over 300k-dimensional features to
describe a 1k pixel image, LR-CNN only requires 2k dimen-
sions. Adapted from the deep structures designed for high
resolution images, this network has the capacity to compute
rich and compact image representations.

We also validate our approach on internal Thales images.

2It should be noted that due to the fixed structure of CNNs, a particular
strategy is required to test LR-CNN on other resolutions, and the resulting
performances would not be comparable.

On figures 6, 7 and 8, we present visual results of our network
applied in a sliding window fashion on Thales near-infrared
images. The predicted bounding boxes for correctly detected
vehicles are represented in green, while the predicted bound-
ing boxes for false alarms are represented in red. With these
representative examples, we show here that our approach
achieves promising results on real operational data in various
contexts. We show that our model achieves detecting very
small vehicles while only outputting a very small amount of
false detections in large global images.

5. CONCLUSION

We evaluate two very competitive features (Fisher-based and
CNN-based) on fine-grained public datasets with respect to
the image resolution. We highlight a bimodal behaviour: for
mid- to high-resolutions (≥ 100 × 100 pixels) performances
remain quite stable, then drop when reaching a critical reso-
lution (≤ 50 × 50 pixels). We also show the predominance
of FV over pretrained CNN features on low resolution im-
age datasets in a fine-grained context. Finally, we introduce
LR-CNN, a CNN structure optimized for classifying complex
low-resolution images, which outperforms pretrained CNN
and FV features while proposing much more compact fea-
tures. We also extend [23] by showing promising results of
our LR-CNN on Thales near-infrared images.
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Fig. 6. This figure is representative of contexts where the vehicles are relatively easy to recognize, yet the background may be
very textured in some parts of the image. We show that our network applied in a sliding window manner achieves detecting all
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alarm on this image. This salient object is quite difficult to apprehend, and could easily been mistaken for a vehicle by a human
eye.

6



OPTRO2016-064

Fig. 7. This image is representative of a situation where the vehicles may be occluded behind vegetation elements. Here, we
show that the correctly detected vehicles may be hardly recognizable for an untrained eye. Besides, we show that, although the
image is highly textured, LR-CNN only outputs a very small amount of false detections - only three in this case.

7



OPTRO2016-064

Fig. 8. This image is a scene containing a large number of vehicles and a large amount of noise elements - objects that may
look like vehicles. On this image, we show that our model achieves recognizing most of the vehicles that are present in the
scene, even vehicles that are partially occluded by other vehicles or background elements. Our model also outputs several false
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vehicles. Indeed, a large proportion of the false detections are containers, that can easily be mistaken for trucks or occluded
vehicles.
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