
HAL Id: hal-01332029
https://hal.science/hal-01332029v1

Submitted on 15 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the isofunctionality of network access control lists
Malek Belhaouane, Joaquin Garcia-Alfaro, Hervé Debar

To cite this version:
Malek Belhaouane, Joaquin Garcia-Alfaro, Hervé Debar. On the isofunctionality of network access
control lists. ARES 2015: 10th International Conference on Availability, Reliability and Security, Aug
2015, Toulouse, France. pp.168 - 173, �10.1109/ARES.2015.78�. �hal-01332029�

https://hal.science/hal-01332029v1
https://hal.archives-ouvertes.fr

On the Isofunctionality of
Network Access Control Lists

Malek Belhaouane, Joaquin Garcia-Alfaro and Hervé Debar
Institut Mines-Telecom, Télécom SudParis
CNRS Samovar UMR 5157, Evry, France

{malek.belhaouane, joaquin.garcia alfaro, herve.debar}@telecom-sudparis.com

Abstract—In a networking context, Access Control Lists
(ACLs) refer to security rules associated to network equipment,
such as routers, switches and firewalls. Methods and tools to
automate the management of ACLs distributed among several
equipment shall verify if the corresponding ACLs are functionally
equivalent. In this paper, we address such a verification process.
We present a formal method to verify when two ACLs are
isofunctional and illustrate our proposal over a practical example.

Keywords: Network Security, Computer Security, Authoriza-
tion, Access Control, Policy Analysis, Policy Management.

I. INTRODUCTION

The use of information and communication technologies
is growing rapidly. Corporate networks, always in constant
metamorphose, shall face the expansion of network security
threats, and constantly update their security strategies. These
strategies must be consolidated in network equipment such as
routers, switches and firewalls. Such equipment represent the
first line of defense against network attacks, and are crucial to
protect the corporate assets. They are in charge of supervising
data flows and deciding, e.g., which ones to accept or to
reject according to the Access Control Lists (ACLs) defined by
network administrators. The task of authoring and managing
ACLs becomes complex and error-prone [1], [2].

The need for tools to help network administrators in the
network management process is increasing. Several tools have
been proposed in the literature to assist administrators. For
instance, numerous studies [3]–[9] focused on the detection
and the resolution of anomalies in ACLs such as conflicts and
misconfigurations. Other researchers worked on the bottom up
and top down problem [10], [11]. This way, they propose
methods and tools to automate the migration of an ACL from a
network equipment to another. Finally, some work was carried
out on analyzing the performance of network equipment and
optimizing them by modifying their ACLs [12]–[15].

Generally, all the proposed tools and methods are either
transforming an ACL to a more optimized one, or compar-
ing the characteristics of two ACLs. As a consequence, the
proposed tools and methods are manipulating two ACLs that
implement the same security policy. Before comparing the
characteristics of two ACLs, we need to prove that they are
functionally equivalent or in other terms, isofunctional. In this
paper, we address the isofunctionality concept and develop a
formal method to verify when two ACLs are isofunctional.

Paper Organization – Section II presents our motivation.
Section III provides some necessary definitions. Section IV

presents our isofunctionality verification proposal. Section V
illustrates our proposal over a practical example. Section VI
provides related work. Section VII closes the paper.

II. MOTIVATION

There are several situations that justify the necessity of ver-
ifying that two ACLs are isofunctional. For instance, to comply
with their corporate security directives, network administrators
often need to upgrade or replace some equipment. Such new
equipment can come from different vendors and possibly use
different languages. Existing tools proposed in the literature
allow to transform the ACLs of different vendor equipment
[16], [17]. After the transformation process, the administrator
needs to verify that the new ACLs are functionally equivalent
to the initial ones. In other words, it should be verified that
the equipment implementing the new ACLs provide the same
treatment for all data flows they will need to handle.

Network administrators may also need to address incon-
sistencies in the deployment of ACLs, such as conflicting or
redundant rules. Solutions have been proposed in the literature
to detect and resolve such anomalies [1], [4], [7]. After using
them, the administrator will have two ACLs: the initial ACL
and the resulting ACL where the anomalies were fixed. The
administrator needs to verify again that the two ACLs are
functionally equivalent. Similarly, network administrator often
need to compare the characteristics of ACLs written under the
assumption of different equipment capabilities [18]. This can
be necessary to evaluate their latency during the execution of
an equivalent process, in order to decide the most convenient
deployment. In order to conduct the evaluation analysis, the
isofunctionality of the different ACLs needs to be verified.
Otherwise, the analysis will be biased.

In all the aforementioned situations, we observe the neces-
sity of verifying the isofunctionality of two or more ACLs.
In the following sections, we present our proposal to conduct
such a verification process.

III. DEFINITIONS

Consider network security equipment as network entities in
charge of controlling the traversal of packets across network
segments. Then, assume such packets triggering queries into
the network security equipment. For each received query, an
access control decision shall be conducted by the network
equipment, according to an Access Control List (ACL). In
turn, an ACL consists of a list of rules that define the precise
actions that must be performed upon queries satisfying certain

conditions. Concretely, each rule is specified by a predicate and
a decision. A predicate in a rule is a boolean function over of
a set of attributes to identify a certain type of queries matched
by the rule. The decision represents the action that the network
security equipment shall perform. Next, we provide some more
formal definitions about the aforementioned concepts.

Definition 1 (ACL): An Access Control List (or ACL for
short) is a set of m rules, such as:

r1 : P1, decision1
r2 : P2, decision2

. . .
rm : Pm, decisionm

where Pi is the predicate for the ith rule and decisioni ∈ D
is an access control decision. D denotes a finite set of access
control decisions. In other words, every rule is composed of a
predicate and a decision, being a predicate a boolean function
over of a set of attributes used to describe queries.

Definition 2 (Attribute): An attribute is any characteristic
of a network packet to which a value may be assigned. Let A
denote a set of attributes. Let a ∈ A be an attribute. Then, the
attribute domain of a, denoted as Va, is the set of values that
can be taken by a.

Example 1: Assume that the attributes that characterize
a network packet are: Source address, Destination address,
Source port and Destination port. The domain of the attribute
Source port is Vsource port = [0, 65535]

Definition 3 (Predicate): A predicate is a Boolean-valued
function over attributes. Let P be a predicate over a set of n
attributes of A, then P is represented as follows:

P : An → {True, False}

where n is the number of attributes composing P .

Example 2: For a better illustration of the aforementioned
concepts, assume the following example. Let attributes a1,
a2, a3, a4 correspond to Source address, Destination address,
Source port and Destination. Let δ1 = {192.168.1.[1, 100]},
δ2 = {[1024, 49151]}, δ3 = {172.16.10.50} and δ4 =
{[80, 443]} be attribute value sets such that δ1 ⊂ Va1 , δ2 ⊂
Va2

, δ3 ⊂ Va3
and δ4 ⊂ Va4

. Then, we can define predicate
P as P = (a1 ∈ δ1) ∧ (a2 ∈ δ2) ∧ (a3 ∈ δ3) ∧ (a4 ∈ δ4).

Definition 4 (Default rule predicate): Each ACL has a de-
fault rule. The predicate of the default rule shall match
all the possible packets received by the network security
equipment. Formally, let a1, a2, . . . , an ∈ A be attributes.
Let Va1 ,Va2 , . . . ,Van be their respective domains. Then, the
default rule predicate is expressed as follows:

Pdefault = ((a1 ∈ Va1
) ∧ (a2 ∈ Va2

) ∧ · · · ∧ (an ∈ Van
))

Definition 5 (Query): The function of a network equip-
ment is to associate to each query it receives a decision
according to its ACL. Therefore, a query represents the net-
work packet that transits over the equipment. Formally, let
a1, a2, . . . , an, be n attributes of a set of attributes A, such
that every attribute represents a given field of a network
packet. Let v1, v2, . . . , vn, be n attribute values such that

v1 ∈ Va1
, v2 ∈ Va2

, . . . , vn ∈ Van
. Then, a query q is

represented as follows:

q = (a1 = v1) ∧ (a2 = v2) ∧ · · · ∧ (an = vn)

Definition 6 (Query interval): Set of queries whose at-
tributes satisfy the conditions of a given ACL rule. Like pred-
icates, query intervals are represented as Boolean expressions.

Definition 7 (Query space): A set of query intervals QS =
{Q1, Q2, . . . , Qp} that satisfies the following properties:

• Query intervals in QS are mutually disjoint, i.e.,
∀QS′ ⊂ QS, ∀Q ∈ QS\QS′, then(∨

∀Q′∈QS′

Q′

)
∧Q = False

• Let Q be the set of all possible queries, then any query
in Q matches a query interval in QS, i.e., ∀q ∈ Q,
∃Qi ∈ QS, 1 ≤ i ≤ p, such that q ∧Qi = True

Definition 8 (Decision Space): A decision space is com-
puted by applying the rules of an ACL over the query intervals
of a query space. The goal is to map to each query interval
those rules matching the interval and their corresponding
decision. Formally, let QS be a query space and A an ACL.
Then, the decision space of QS over the rules in A is a set of
triples {Interval, Rules,Decision}, such that Interval is a
query interval in QS, Rules contains those rules in A whose
predicates match the queries in Interval, and Decision is
defined as follows:

Decision =

∅ : Rules = ∅

∅ : ∃ri, rj ∈ Rules, decisionri 6= decisionrj

D : ∀r ∈ Rules,D = decisionr

Definition 9 (Isofunctionality): Two ACLs A and B are
isofunctional if, no matter the queries they receive, they are
always equivalent in function to their decision results. In other
words, any query issued to ACL A gets exactly the same
decision result than if issued to B, and vice versa.

IV. OUR PROPOSAL

This section presents our proposal for the verification of
isofunctionality among two ACLs. Algorithm 1 performs the
main actions associated to the verification process. As input,
it receives the two ACLs that we want to compare. Some
further operations are described by the auxiliary functions
GetQuerySpace (cf. Algorithm 2), GetDecisionSpace
(cf. Algorithm 3) and CompareDecisionSpaces (cf. Al-
gorithm 4). Notice that the process has two different phases.

During the first phase (cf. Algorithm 1, lines [1-4]), the
process computes the query space, QA, from ACL A. It checks
then the query intervals of QA against the ACL rules of
both A and B. Next, it computes the decision spaces DAA
and DBA associated to the query space QA. This is done by
applying respectively ACLs A and B. Likewise, it compares
the two decision spaces DAA and DBA. If both are equal,
it is concluded that any query issued to A gets exactly the

Algorithm 1 CheckIsofunctionality(A,B)
1: QA ← GetQuerySpace(A)
2: DAA ← GetDecisionSpace(QA,A)
3: DBA ← GetDecisionSpace(QA,B)
4: Output← CompareDecisionSpaces(DAA,DBA)
5: if Output = False then
6: return False //A and B are non-isofunctional
7: else
8: QB ← GetQuerySpace(B)
9: DBB ← GetDecisionSpace(QB,B)

10: DAB ← GetDecisionSpace(QB,A)
11: Output← CompareDecisionSpaces(DBB,DAB)
12: if Output = False then
13: return False //A and B are non-isofunctional
14: else
15: return True //A and B are isofunctional
16: end if
17: end if

Algorithm 2 GetQuerySpace(ACL)

1: Output← ∅
2: Predicates← False
3: for all r ∈ ACL do
4: Interval← Predicater ∧ ¬Predicates
5: Predicates← Predicates ∨ Predicater
6: Output← Output ∪ {Interval}
7: return Output

same decision results than if issued to ACL B. Otherwise, it
is concluded that the two ACLs are non-isofunctional.

During the second phase (cf. Algorithm 1, lines [8-11]), it
is computed the query space QB. Using QB, decision spaces
DAB and DBB (associated to QB) are obtained by applying,
respectively, ACLs A and B. Once compared the two decision
spaces, if DAB and DBB are equal, it is concluded that ACLs
A and B are isofunctional. Otherwise, it is concluded that they
are non-isofunctional.

Algorithm 2 describes auxiliary Function GetQuerySpa-
ce. Its input is an ACL. Each element in the ACL is a rule
with a predicate and decision (cf. Definition 1). To simplify,
we use notation Predicater as an abbreviation of predicate
of rule r. The output of Algorithm 2 is the query space (cf.
Definition 7) of the ACL. Algorithm 2 iterates over each rule
r in the ACL and extracts all query intervals (cf. Definition 6)
by processing each rule predicate with regard to all other rule
predicates in the ACL. In the end, all query intervals stored in
variable Output are returned to the main function.

Algorithm 3 describes auxiliary Function GetDecision-
Space. It processes the query intervals of a query space, and
returns the corresponding space of decisions (cf. Definition
8) with regard to the rules of an ACL. Each element of the
decision space is returned to the main function as a set of three
elements: a query interval (Interval), a set of the rules that
match the query interval (Rules) and a decision associated to
the query interval (Decision). Within the outer loop of Algo-
rithm 3 (lines [2-24]), each query interval in set QuerySpace
is processed. A first nested loop (lines [5-15]) parses the ACL
rules, and stores in Inclusion (line 6) the overlapping portion
of the query interval with Predicater. If Inclusion is not

Algorithm 3 GetDecisionSpace(QuerySpace,ACL)

1: Output← ∅
2: for all QueryInterval ∈ QuerySpace do
3: Interval← QueryInterval
4: Rules← ∅
5: for all r ∈ ACL do
6: Inclusion← QueryInterval ∧ Predicater
7: Exclusion← QueryInterval ∧ ¬Predicater
8: if Inclusion 6= False then
9: Rules← Rules ∪ {r}

10: end if
11: if Exclusion 6= False then
12: QueryInterval← Exclusion
13: else
14: //Leave inner loop
15: end if
16: Decision← ∅
17: for all r ∈ Rules do
18: if Decision = ∅ then
19: Decision← Decisionr
20: else if Decision 6= Decisionr then
21: Decision← ∅
22: //Leave inner loop
23: end if
24: Output← Output ∪ {Interval, Rules,Decision}
25: return Output

False (lines [8-10]), then the corresponding rule is stored
added to Rules, meaning that the predicate of such a rule
matches the query interval. Similarly, the non-overlapping
portion of the query interval with Predicater is stored in
Exclusion (line 7), representing portions in QueryInterval
unmatched by rule r. If Exclusion is not False, then some
more portions in QueryInterval still require being processed.
Otherwise, all portions in QueryInterval have already been
processed, and the function moves to the following nested loop.

Algorithm 4 CompareDecisionSpaces(A,B)
1: for all {IntervalA, RulesA, DecisionA} ∈ A do
2: for all {IntervalB , RulesB , DecisionB} ∈ B do
3: if IntervalA ∧ IntervalB = True then
4: if DecisionA 6= DecisionB then
5: return False
6: end if
7: end if
8: return True

The goal of the second nested loop (lines [17-23]) is to
extract the decisions associated to the query intervals. Prior
triggering the loop (line 16), the decision is initialized to an
empty set, meaning that the decision associated to the query
interval that is being processed has not yet been defined. Then,
the loop is triggered to iterate over the rules previously derived
during the first inner loop. A verification process to identify
intervals with different treatments is conducted. Indeed, if the
decision set by the first rule differs from the decision of other
rules, the value of the decision is left as an empty set and the
execution of the loop ends, meaning that the query interval has

different treatment by the rules of the ACL1. When the loop
ends, each triple {Interval, Rules,Decision} is stored and
returned to the main function when the outer loop ends.

Finally, Algorithm 4 describes Function CompareDeci-
sionSpaces. It iterates over the query intervals of two
decision spaces, and compares the value of their corresponding
decisions. Whenever the decisions of two equivalent intervals
differ, the function ends the execution and returns False to
the main function. Otherwise, if there is full consistency, it
returns True.

V. APPLYING THE VERIFICATION PROCESS

This section illustrates a practical application of our iso-
functionality verification process. Assume the corporate net-
work depicted in Figure 1. Two network segments are separated
by a Firewall. The Firewall shall comply with the following
policy requirements:

• All traffic from hosts in 192.168.10.64/26 to
hosts in 172.16.50.0/24 are allowed, except
those connections using a Telnet service (port 23).

• Only Web connections (port 80) from other
hosts in 192.168.10.0/24 to hosts in
172.16.50.0/24 are allowed.

Assume we want to verify the isofunctionality of two dif-
ferent ACLs that implement the policy requirements described
above. The two ACLs are written with respect to different
constraints. For instance, ACL A represented in Table I, has a
default rule set to DENY ALL, while ACL B represented in
Table II has a default policy ACCEPT ALL.

The goal is to verify if ACL A and ACL B are isofunc-
tional following the process described in Section IV. First, let
us identify the attributes used to express the ACL rules. Three
attributes can be identified: Source address (a1), Destination
address (a2) and Destination port (a3). Such attributes have
the following domains:

• Va1
= {192.168.10.[0, 255]}

• Va2
= {172.16.50.[0, 255]}

• Va3
= {[0, 65535]}

For simplicity reasons, we assume that the elements of
the decision set D hold only two access control decisions:
ACCEPT and DENY. Therefore, D ={ACCEPT, DENY}.

TABLE I: ACL A

A1: {192.168.10.[64,127] ,172.16.50.[0.255] ,23 }, DENY
A2: {192.168.10.[64,127] ,172.16.50.[0.255] ,any }, ACCEPT
A3: {192.168.10.[0.255] ,172.16.50.[0.255] ,80 }, ACCEPT
A4: {any ,any ,any }, DENY

Phase 1: The first step of the process consists on extracting
the query space of ACL A, QA, by applying Algorithm 2
(Function GetQuerySpace). Consider the first two rule
predicates of ACL A:

1Notice that a straightforward modification of Algorithm 3 is possible, in
case ACLs with different treatments is deemed necessary.

TABLE II: ACL B

B1: {192.168.10.[64,127] ,172.16.50.[0,255] ,23 }, DENY
B2: {192.168.10.[0,63] ,172.16.50.[0,255] ,[0,79] }, DENY
B3: {192.168.10.[0,63] ,172.16.50.[0,255] ,[81,65535] }, DENY
B4: {192.168.10.[128,255] ,172.16.50.[0,255] ,[0,79] }, DENY
B5: {192.168.10.[128,255] ,172.16.50.[0,255] ,[81,65535] }, DENY
B6: {any ,any ,any }, ACCEPT

• PredicateA1 = a1 ∈ {192.168.10.[64, 127]}
∧ a2 ∈ {172.16.50.[0, 255]} ∧ a3 ∈ {23}

• PredicateA2
= a1 ∈ {192.168.10.[64, 127]}

∧ a2 ∈ {172.16.50.[0, 255]} ∧ a3 ∈ [0, 65535]

After initializing the variable Predicates to False, the
first iteration of Algorithm 2 starts. This leads to the following
results:

• Interval← PredicateA1
∧ ¬Predicates

= PredicatesA1
∧ True = PredicateA1

• Predicates← Predicates ∨ PredicateA1

= False ∨ PredicateA1 = PredicateA1

At the end of the first iteration, the first query interval
Interval = PredicateA1 = a1 ∈ {192.168.10.[64, 127]} ∧
a2 ∈ {172.16.50.[0, 255]} ∧ a3 ∈ {23} is added to the query
space, QA.

The second iteration leads to the following results:

• Interval← PredicateA2
∧ ¬Predicates

= PredicateA2
∧ ¬PredicateA1

• Predicates← Predicates ∨ PredicateA2

= PredicateA1
∨ PredicateA2

At the end of the second iteration, the query inter-
val Interval = a1 ∈ {192.168.10.[64, 127]} ∧ a2 ∈
{172.16.50.[0, 255]} ∧ (a3 ∈ [0, 22] ∨ a3 ∈ [24, 65535]) is
added to QA.

By applying the same operations over all the rule predicates
in ACL A, the query space QA represented in Table III is
obtained.

TABLE III: Query Space: QA

Q1 = a1 ∈ {192.168.10.[64, 127]} ∧ a2 ∈ {172.16.50.[0, 255]}
∧ a3 ∈ {23}

Q2 = a1 ∈ {192.168.10.[64, 127]} ∧ a2 ∈ {172.16.50.[0, 255]}
∧ (a3 ∈ [0, 22] ∨ a3 ∈ [24, 65535])

Q3 = (a1 ∈ {192.168.10.[0, 63]} ∨ a1 ∈ {192.168.10.[128, 255]})
∧ a2 ∈ {172.16.50.[0, 255]} ∧ a3 ∈ {80}

Q4 = (a1 ∈ {192.168.10.[0, 63]} ∨ a1 ∈ {192.168.10.[128, 255]})
∧ a2 ∈ {172.16.50.[0, 255]} ∧ (a3 ∈ [0, 79] ∨ a3 ∈ [81, 65535])

The second step of the process is to compute decision
spaces DAA and DAB associated to QA after applying,
respectively, ACL A and ACL B. Consider the second query
intervals of QA:

Q2 = a1 ∈ {192.168.10.[64, 127]}
∧ a2 ∈ {172.16.50.[0, 255]}
∧ (a3 ∈ [0, 22] ∨ a3 ∈ [24, 65535])

172.16.50.0/24	

Firewall	

ACL	

192.168.10.0/24	

192.168.10.64/26	

Fig. 1: Sample Network

To explain the execution of Algorithm 3, let us show its
steps by using query interval Q2 and ACL A. The outer loop
variables are initialized as follows:

• Interval← Q2

• Decision← ∅

• Rules← ∅

The first iteration of the first inner loop starts with r = A1.
The following results are computed:

• Inclusion← Q2 ∧ PredicateA1 = False

• Exclusion← Q2 ∧ ¬PredicateA1 = Q2

Notice that the overlapping portion is empty. Therefore,
Inclusion equals False, meaning that rule does not match
any query of the query interval Q2. Since the non-overlapping
portion contains Q2, a second iteration is conducted, following
the statement Q2 ← Exclusion = Q2. The variables after this
second iteration are as follows:

• Inclusion← Q2 ∧ PredicateA2
= Q2

• Exclusion← Q2 ∧ ¬PredicateA2
= False

Now, since the overlapping portion is equal to Q2, meaning
that the predicate of the rule matches all the queries in Q2.
Therefore, rule A2 is added to variable Rules.

The same rationale is applied until the last iteration of the
first inner loop, in order to store all the rules matching the
query interval Q2. In the end, the only rule stored in variable
Rules is A2.

The decision of the query interval Q2 is set in the
second inner loop. As Rules contains only one rule, A2,
and Decision = ∅, then the decision of A2 is affected to
Decision. This leads to Decision = {ACCEPT}.

Following the same operations, decision spaces DAA and
DAB (see Table IV) are computed.

TABLE IV: Decision Spaces DAA and DAB

QA Rules (A) Rules(B) Decision (A) Decision (B)
Q1 A1 B1 DENY DENY
Q2 A2 B6 ACCEPT ACCEPT
Q3 A3 B6 ACCEPT ACCEPT
Q4 A4 B2,B3,B4,B5 DENY DENY

In the first column of Table IV, we have the query interval
extracted from ACL A. The second column contains the rules
of ACL A that match the query interval in QA. The third
column contains the rules of ACL B that match the query
interval in QA. The fourth and fifth columns illustrate the
decisions associated to each query interval, with respect to
either ACL A or ACL B.

Notice that DAA and DAB are equivalent. Therefore, it can
be concluded that any query issued to ACL A gets exactly the
same decision result than if issued to ACL B.

Phase 2: Once ensured that all query intervals extracted
from ACL A get exactly the same decision from ACL A or
ACL B, Algorithm 1 starts the second phase of the isofunc-
tionality verification process.

TABLE V: Query Space: QB

Q′
1 = a1 ∈ {192.168.10.[64, 127]} ∧ a2 ∈ {172.16.50.[0, 255]}

∧ a3 ∈ {23}

Q′
2 = a1 ∈ {192.168.10.[0, 63]} ∧ a2 ∈ {172.16.50.[0, 255]}

∧ a3 ∈ [0, 79]

Q′
3 = a1 ∈ {192.168.10.[0, 63]} ∧ a2 ∈ {172.16.50.[0, 255]}

∧ a3 ∈ [81, 65535]

Q′
4 = a1 ∈ {192.168.10.[128, 255]} ∧ a2 ∈ {172.16.50.[0, 255]}

∧ a3 ∈ [0, 79]

Q′
5 = a1 ∈ {192.168.10.[128, 255]} ∧ a2 ∈ {172.16.50.[0, 255]}

∧ a3 ∈ [81, 65535]

Q′
6 = (a1 ∈ {192.168.10.[64, 127]} ∧ a2 ∈ {172.16.50.[0, 255]}

∧(a3 ∈ [0, 22] ∨ a3 ∈ [24, 65535])) ∨ ((a1 ∈ {192.168.10.[0, 63]}
∨ a1 ∈ {192.168.10.[128, 255]})∧a2 ∈ {172.16.50.[0, 255]}
∧ a3 ∈ {80})

The second phase starts by extracting the query space
of ACL B, QB, by applying Function GetQuerySpace.
Following the same rationale than the first phase, the query
space QB represented in Table V is extracted.

Then, the decision spaces DBB and DBA are computed, in
conformity to QB after applying receptively ACL B and ACL
A. Table VI presents the decision spaces DBB and DBA.

Notice that DBB and DBA are again equivalent. This means
that any query issued to ACL B gets exactly the same decision
result than if issued to ACL A. Therefore, we can finally
conclude that ACL A and ACL B are isofunctional.

TABLE VI: Decision Spaces DBB and DBA

QB Rules (B) Rules(A) Decision (B) Decision (A)
Q′

1 B1 A1 ACCEPT ACCEPT
Q′

2 B2 A4 ACCEPT ACCEPT
Q′

3 B3 A4 ACCEPT ACCEPT
Q′

4 B4 A4 ACCEPT ACCEPT
Q′

5 B5 A4 ACCEPT ACCEPT
Q′

6 B6 A2, A3 DENY DENY

VI. RELATED WORK

The verification process presented in this paper is a com-
plementary method for the management of ACL analysis that
require from isofunctionality verification. Analysis of network
ACLs is a well-known topic and several studies have been
carried out. Existing solutions include the discovery and reso-
lution of anomalies of already deployed ACLs, and verification
of ACLs prior enforcement.

Studies focusing on the analysis of already deployed net-
work ACLs typically aim at discovering and fixing conflicts
and redundancies [1]. Chomsiri and Pornavalai [6] propose
a method of analyzing ACL rules using Relational Algebra to
discover all the anomalies and relations between rules. Garcia-
Alfaro et al. [7], [8] propose the discovery and removal of
inconsistencies among distributed security policies enforced
over firewalls and intrusion detection systems. Similarly, Hu
et al. [4], [5] propose an anomaly management framework
that permits the systematic detection and resolution of ACL
anomalies by adopting a rule-based segmentation technique to
identify ACL anomalies and derive effective resolutions.

Solutions for the verification of ACL rules at higher
abstraction layers have also been proposed. Liu and Gouda
[3] propose some firewall verification methods to crosscheck
firewall ACLs and properties. Nelson et al. [19] propose a
configuration analysis tool that allows users to check policies
against security goals. Laborde et al. [20] address the problem
of deploying security policies with regard to generic system
functionalities. Finally, Yang and Lam [21] propose a tool
(Atomic Predicate Verifier) to verify network properties using
a set of atomic predicates extracted from ACL rules.

VII. CONCLUSION

The management of network Access Control Lists (ACLs)
refers to the task of authoring and maintaining security rules
associated to network equipment, such as routers, switches
and firewalls. Methods and tools conceived to assist during
those processes must verify if the ACLs distributed among
different equipment are functionally equivalent. In this paper,
we have addressed such a verification process. We have
presented a formal method to verify when two ACLs are
isofunctional. We have also illustrated our proposal over a
practical example. Future work aims to extend the concept of
isofunctionality to general-purpose access control models.

Acknowledgements — Authors acknowledge support from
the EC Framework Program, under the PANOPTESEC project
(GA 610416), as well as Spanish Ministry of Science and
Innovation (project TIN2011-27076-C03-02 CO-PRIVACY).

REFERENCES

[1] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security
policies,” Communications Magazine, IEEE, vol. 44, no. 3, pp. 134–141,
March 2006.

[2] ——, “Dynamic rule-ordering optimization for high-speed firewall
filtering,” in 2006 ACM Symposium on Information, Computer and
Communications Security, ser. ASIACCS ’06, 2006, pp. 332–342.

[3] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
Networks, vol. 51, no. 4, pp. 1106–1120, 2007.

[4] H. Hu, G. Ahn, and K. Kulkarni, “Detecting and resolving firewall
policy anomalies,” IEEE Trans. Dependable Sec. Comput., vol. 9, no. 3,
pp. 318–331, 2012.

[5] ——, “FAME: a firewall anomaly management environment,” in 3rd
ACM Workshop on Assurable and Usable Security Configuration,
SafeConfig 2010, Chicago, IL, USA, October 4, 2010, 2010, pp. 17–26.

[6] T. Chomsiri and C. Pornavalai, “Firewall rules analysis,” in 2006
International Conference on Security & Management, SAM 2006, Las
Vegas, Nevada, USA, June 26-29, 2006, 2006, pp. 213–219.

[7] J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia, “Analysis
of policy anomalies on distributed network security setups,” in 11th
European Symposium on Research in Computer Security (ESORICS
2006), Hamburg, Germany, September 18-20, 2006, 2006, pp. 496–511.

[8] J. Garcia-Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete
analysis of configuration rules to guarantee reliable network security
policies,” International Journal of Information Security, vol. 7, no. 2,
pp. 103–122, 2008.

[9] J. Garcı́a-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S. M. Perez, and
J. Cabot, “Management of stateful firewall misconfiguration,” Comput-
ers & Security, vol. 39, pp. 64–85, 2013.

[10] J. Vaidya, V. Atluri, and Q. Guo, “The role mining problem: finding a
minimal descriptive set of roles,” in 12th ACM symposium on Access
control models and technologies. ACM, 2007, pp. 175–184.

[11] E. J. Coyne, “Role engineering,” in ACM Workshop on Role-based
access control. ACM, 1996, p. 4.

[12] G. Misherghi, L. Yuan, Z. Su, C. Chuah, and H. Chen, “A general
framework for benchmarking firewall optimization techniques,” IEEE
Transactions on Network and Service Management, vol. 5, no. 4, pp.
227–238, 2008.

[13] M. R. Lyu and L. K. Y. Lau, “Firewall security: Policies, testing
and performance evaluation,” in 24th International Computer Software
and Applications Conference (COMPSAC 2000), 25-28 October 2000,
Taipei, Taiwan, 2000, pp. 116–121.

[14] A. Tapdiya and E. W. Fulp, “Towards optimal firewall rule ordering
utilizing directed acyclical graphs,” in 18th International Conference
on Computer Communications and Networks (ICCCN 2009), San
Francisco, California, August 3-6, 2009, 2009, pp. 1–6.

[15] E. W. Fulp, “Optimization of network firewall policies using directed
acyclic graphs,” in IEEE Internet Management Conference, 2005, pp.
10–15.

[16] Firewall Builder, Last Access: 2014, available at http://fwbuilder.org.
[17] Athena Firepac, Last Access: 2014, available at http://www.solarwinds.

com/athena-security-products.aspx.
[18] S. Preda, N. Cuppens-Boulahia, F. Cuppens, and L. Toutain,

“Architecture-aware adaptive deployment of contextual security poli-
cies,” in 5th International Conference on Availability, Reliability and
Security, February 2010, Poland, 2010, pp. 87–95.

[19] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The margrave tool for firewall analysis.” in 24th USENIX Large
Installation System Administration Conference (LISA 2010), 2010.

[20] R. Laborde, M. Kamel, F. Barrère, and A. Benzekri, “Implementation
of a formal security policy refinement process in wbem architecture,”
Journal of Network and Systems Management, vol. 15, no. 2, pp. 241–
266, 2007.

[21] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” in 2013 21st IEEE International Conference
on Network Protocols, ICNP 2013, Göttingen, Germany, October 7-10,
2013, 2013, pp. 1–11.

