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Radial mollifiers, mean value operators and harmonic

functions in Dunkl theory

Léonard GALLARDO∗ and Chaabane REJEB†

Abstract

In this paper we show how to use mollifiers to regularise functions relative to a
set of Dunkl operators in Rd with Coxeter-Weyl group W , multiplicity function k and
weight function ωk. In particular for Ω aW -invariant open subset of Rd, for ϕ ∈ D(Rd)
a radial function and u ∈ L1

loc(Ω, ωk(x)dx), we study the Dunkl-convolution product
u∗k ϕ and the action of the Dunkl-Laplacian and the volume mean operators on these
functions. The results are then applied to obtain an analog of the Weyl lemma for
Dunkl-harmonic functions and to characterize them by invariance properties relative
to mean value and convolution operators.

MSC (2010) primary: 31B05, 31C45, 47B39; secondary:33C52, 43A32, 51F15,

Key words: Dunkl-Laplacian operator, Dunkl convolution product, Generalized volume mean value
operator, Dunkl harmonic functions, Weyl’s lemma.

1 Introduction

Let R be a normalized root system in Rd and k ≥ 0 a multiplicity function on R.
The Dunkl-Laplacian operator associated to R and k, acting on C2(Rd)-functions is a
differential-difference operator of the form

∆kf(x) = ∆f(x) + 2
∑
α∈R+

k(α)
(⟨∇f(x), α⟩

⟨α, x⟩
− f(x)− f(σα(x))

⟨α, x⟩2
)
, (1.1)

where ∆ (resp. ∇ ) is the usual Laplace (resp. gradient) operator, R+ is a fixed positive
subsystem of R and σα is the reflexion directed by the root α (see [6]). We recall that R
is normalized if ||α||2 = 2 for all α ∈ R and that k is invariant under the action of the
Coxeter-Weyl group W generated by the reflections σα, α ∈ R.
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We know that the Dunkl-Laplace operator can be written ∆k =
∑d

j=1D
2
ξj
, for ξj , j =

1, . . . , d, an orthonormal basis of Rd and where for every ξ ∈ Rd, Dξ is the Dunkl operator
defined by

Dξf(x) = ∂ξf(x) +
∑
α∈R+

k(α) ⟨α, ξ⟩ f(x)− f(σα(x))

⟨α, x⟩
, (1.2)

with ∂ξf denoting the usual ξ-directional derivative of f (see [3] and [6]). These operators
are related to partial derivatives by means of the so-called Dunkl intertwining operator Vk
(see [5] or [6]) as follows

∀ ξ ∈ Rd, DξVk = Vk∂ξ. (1.3)

The operator Vk is a topological isomorphism from the space C∞(Rd)1 onto itself satisfying
(1.3) and Vk(1) = 1 (see [17]). Furthermore, according to [13] or [14], for every x ∈ Rd

there exists a unique probability measure µx on Rd with compact support contained in
the convex hull of the orbit of x under the group W , such that

∀ f ∈ C∞(Rd), Vk(f)(x) =

∫
Rd

f(y)dµx(y). (1.4)

For abbreviation and later use, we introduce the weight function

ωk(x) :=
∏

α∈R+
| ⟨α, x⟩ |2k(α) (1.5)

and the set D+
r (Rd), r > 0, of nonnegative radial C∞-functions with compact support

contained in the Euclidean closed ball B(0, r).

Let Ω ⊂ Rd be a (nonempty) W -invariant open set and ϕ a radial mollifier i.e. ϕ ∈
D+

r (Rd) with r > 0 small enough in order that the open set

Ωr :=
{
x ∈ Ω; dist(x, ∂Ω) > r

}
(1.6)

is nonempty.
For every u ∈ L1

loc(Ω, mk), with dmk = ωk(x)dx, we define the Dunkl-convolution product

u ∗k ϕ(x) :=
∫
Rd

u(y)τ−xϕ(y)ωk(y)dy, (1.7)

where τx, x ∈ Rd, are the Dunkl translation operators (see Annex A.2). Note also that a
very useful formula for the Dunkl translation has been obtained by M. Rösler ([15]) when
f ∈ C∞(Rd) is a radial function. In such case, the operator τx is given by

∀ y ∈ Rd, τxf(y) =

∫
Rd

f̃(
√

∥x∥2 + ∥y∥2 + 2 ⟨x, z⟩)dµy(z), (1.8)

where f̃ is the profile function of f defined by f(x) = f̃(∥x∥).
This formula shows that the Dunkl translation operators are positivity preserving on the
set of radial functions whereas this is not true in general ([12] or [16]).

1carrying its usual Fréchet topology.
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We turn now to the content and the organization of this paper. In section 2, we
recall the properties of the volume mean value operator M r

B, r > 0, acting on continuous
functions as follows

M r
B(f)(x) :=

1

mk(B(0, r))

∫
Rd

f(y)hk(r, x, y)ωk(y)dy. (1.9)

where y 7→ hk(r, x, y) is a compactly supported measurable function (called harmonic
kernel, see [8]) given by

hk(r, x, y) :=

∫
Rd

1[0,r](
√

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩)dµy(z). (1.10)

In section 3, we study the Dunkl convolution product (1.7). In particular, We will prove
that this function is well defined and is of class C∞ on Ωr. Moreover, we will show the
commutativity relations

∆k(u ∗k ϕ) = u ∗k ∆kϕ and M r
B(u ∗k ϕ) =M r

B(u) ∗k ϕ

and the following associativity property

(u ∗k ϕ) ∗k ψ = (u ∗k ψ) ∗k ϕ

In section 4, we apply the previous results to give some new properties of ∆k-harmonic
functions (i.e. fonctions u ∈ C2(Ω) such that ∆ku = 0). As a first result the show that
any ∆k-harmonic function on Ω is in fact of class C∞. Then we prove that ∆k-harmonic
functions can be characterized by the local-volume mean value property i.e.

∀ x ∈ Ω, ∃ rx > 0, ∀ r < rx, u(x) =M r
B(u)(x).

Finally we will establish the followingWeyl’s lemma: If u ∈ L1
loc(Ω, mk) satisfies ∆k(uωk) =

0 in distributional sense, then u coincides almost everywhere with a ∆k-harmonic function
on Ω.

Notations: Let us introduce the following functional spaces and notations which will be
used throughout the paper. For Ω a (nonempty)W -invariant open subset of Rd, we denote
by:
• L1

k,loc(Ω) = L1
loc(Ω, mk) the space of measurable functions f : Ω −→ C such that∫

K |f(x)|ωk(x)dx < +∞ for any compact set K ⊂ Ω.
• D(Ω) the space of C∞-functions on Ω with compact support.
• D′(Ω) the space of distributions on Ω (i.e. the topological dual of D(Ω) carrying the
Fréchet topology).
• S(Rd) the Schwartz space of C∞-functions on Rd which are rapidly decreasing together
with their derivatives.

• B(a, ρ) (resp.
◦
B(a, ρ)) the closed (resp. the open) Euclidean ball centered at a and with

radius ρ > 0.
• D+

r (Rd), r > 0, the set of radial mollifiers with support contained in B(0, r).
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2 The mean value operators

In this section, we will recall some facts about the volume and the spherical mean operators
in Dunkl setting.

Let (r, x, y) 7→ hk(r, x, y) be the harmonic kernel defined by (1.10). We note that when
the multiplicity function is the zero function, we have µy = δy, h0(r, x, y) = 1[0,r](∥x−y∥) =
1B(x,r)(y) and then our volume mean operator given by (1.9) coincides with the classical

one. We note also that if f ∈ C∞(Rd), the volume mean of f at (x, r) can also be written
by means of the Dunkl translation as follows (see [8]):

M r
B(f)(x) =

1

mk(B(0, r))

∫
B(0,r)

τxf(y)ωk(y)dy. (2.1)

The harmonic kernel has the following properties (see [8]):

1. For all r > 0 and x, y ∈ Rd, 0 ≤ hk(r, x, y) ≤ 1.

2. For all fixed x, y ∈ Rd, the function r 7−→ hk(r, x, y) is right-continuous and non
decreasing on ]0,+∞[.

3. For all fixed r > 0 and x ∈ Rd,

supp hk(r, x, . ) ⊂ BW (x, r) := ∪g∈WB(gx, r). (2.2)

4. Let r > 0 and x ∈ Rd. For any sequence (χε) ⊂ D(Rd) of radial functions such that
for every ε > 0,

0 ≤ χε ≤ 1, χε = 1 on B(0, r) and ∀ y ∈ Rd, lim
ε→0

χε(y) = 1B(0,r)(y), (2.3)

we have
∀ y ∈ Rd, hk(r, x, y) = lim

ε→0
τ−xχε(y). (2.4)

5. For all r > 0, all x, y ∈ Rd and all g ∈W , we have

hk(r, x, y) = hk(r, y, x) and hk(r, gx, y) = hk(r, x, g
−1y). (2.5)

6. For all r > 0 and x ∈ Rd, we have

∥hk(r, x, .)∥k,1 :=
∫
Rd

hk(r, x, y)ωk(y)dy = mk(B(0, r)) =
dkr

d+2γ

d+ 2γ
, (2.6)

where γ :=
∑

α∈R+
k(α) and dk is the constant

dk :=
∫
Sd−1 ωk(ξ)dσ(ξ). (2.7)

Here dσ(ξ) is the surface measure of the unit sphere Sd−1 of Rd.
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7. Let r > 0 and x ∈ Rd. Then the function hk(r, x, .) is upper semi-continuous on Rd.

8. The harmonic kernel satisfies the following geometric inequality: if ∥a−b∥ ≤ 2r with
r > 0, then

∀ ξ ∈ Rd, hk(r, a, ξ) ≤ hk(4r, b, ξ) (2.8)

Note that in the classical case (i.e. k = 0), this inequality says that if ∥a− b∥ ≤ 2r,
then B(a, r) ⊂ B(b, 4r).

9. Let x ∈ Rd. Then the family of probability measures

dηkx,r(y) =
1

mk[B(0, r)]
hk(r, x, y)ωk(y)dy (2.9)

is an approximation of the Dirac measure δx as r −→ 0. That is

∀ α > 0, lim
r→0

∫
∥x−y∥>α

dηkx,r(y) = 0 (2.10)

and if f ∈ C(Ω), then

∀ x ∈ Ω, lim
r→0

∫
Rd

f(y)dηkx,r = lim
r→0

M r
B(f)(x) = f(x). (2.11)

According to [10], the spherical mean of a C∞-function f defined on whole Rd is given
by

M r
S(f)(x) :=

1

dk

∫
Sd−1

τxf(ry)ωk(y)dσ(y), (2.12)

where dk is the constant (2.7) and τx is the Dunkl translation (see Annex A.2). Moreover,
M. Rösler has proved that there exists a compactly supported probability measure σkx,r on

Rd which represents the spherical mean operator (see [15]). More precisely, for f ∈ C∞(Rd),
the spherical mean of f at (x, r) ∈ Rd × R+ is given by

M r
S(f)(x) =

∫
Rd

f(y)dσkx,r(y), (2.13)

with
supp σkx,r ⊂ BW (x, r) = ∪g∈WB(gx, r). (2.14)

Clearly formula (2.13) shows that we can define the spherical mean at (x, r) of any con-
tinuous function on BW (x, r).

As a first link between the spherical and the volume operators, we have

Proposition 2.1 Let f be a continuous function on Ω. Then the formula

M r
B(f)(x) =

d+ 2γ

rd+2γ

∫ r

0
M t

S(f)(x)t
d+2γ−1dt (2.15)

holds whenever B(x, r) ⊂ Ω.
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Proof: When f ∈ C∞(Rd), (2.15) has been proved in [8]. Now if f ∈ C(Ω), x ∈ Ω and
r > 0 such that B(x, r) ⊂ Ω, the result follows by using (2.2), (2.13) and an uniform
approximation of f by polynomials on the compact set BW (x, r). �

At the end of this section, we will give some useful properties of the volume mean
operator when it acts on L1

k,loc(Ω)-functions. Firstly, note that thanks to (2.2) and to
the boundedness of the kernel hk, the function (x, r) 7→ M r

B(f)(x) is well defined for any
f ∈ L1

k,loc(Ω) whenever B(x, r) ⊂ Ω.
Secondly, we will need the following notations which will be used frequently in this paper:

rΩ := sup{r > 0; Ωr ̸= ∅}, (2.16)

with Ωr the open set defined by (1.6). Clearly, we have Ωr1 ⊂ Ωr2 whenever r2 ≤ r1 and
Ω = ∪r>0Ωr = ∪r<rΩΩr (note that, since Ω ̸= ∅, we have rΩ > 0). Moreover, since

Ωr =
{
x ∈ Ω; B(x, r) ⊂ Ω

}
, (2.17)

the open set Ωr, 0 < r < rΩ, is W -invariant.

Proposition 2.2 Let f ∈ L1
k,loc(Ω).

1) Let 0 < r < rΩ. Then the function M r
B(f) belongs to L1

k,loc(Ωr).

2) Let x ∈ Ω. Then the function r 7→M r
B(f)(x) is continuous on ]0, ϱx[ with

ϱx := dist(x, ∂Ω). (2.18)

Proof: 1) By compactness, it suffices to prove that M r
B(f)ωk ∈ L1(B(x0, R)) where

B(x0, R) is an arbitrary closed ball of center x0 and radius R included in Ωr . We have

I :=
∫
B(x0,R)

∣∣M r
B(f)(x)

∣∣ωk(x)dx

≤ 1
mk(B(0,r))

∫
B(x0,R)

( ∫
BW (x,r) |f(y)|hk(r, x, y)ωk(y)dy

)
ωk(x)dx

≤ 1
mk(B(0,r))

∫
B(x0,R)

( ∫
BW (x0,R+r) |f(y)|ωk(y)dy

)
ωk(x)dx

≤ mk(B(x0,R))
mk(B(0,r))

∫
BW (x0,R+r) |f(y)|ωk(y)dy < +∞,

where the second inequality follows from the relation hk(r, x, y) ≤ 1 and from the fact that
for every x ∈ B(x0, R) and every g ∈W , B(gx, r) ⊂ B(gx0, R+ r) ⊂ Ω.

2) By (2.6), it suffices to show that ϕ : r 7→
∫
Rd f(y)hk(r, x, y)ωk(y)dy is continuous on

]0, ϱx[. Since r 7→ hk(r, x, y) is right-continuous, by the dominated convergence theorem,
we can see that ϕ is also right-continuous on ]0, ϱx[.
Now, fix r ∈]0, ϱx[ and η > 0 such that ]r − η, r + η[⊂]0, ϱx[. Let (rn) be a sequence of
nonnegative real number such that rn −→ 0 as n −→ +∞.
Using (2.5), (1.10) and applying Fubini’s theorem, we obtain

|ϕ(r)− ϕ(r − rn)| ≤
∫
Rd

(∫
Ω
|f(y)|1]r−rn,r](

√
∥y∥2 + ∥x∥2 − 2 ⟨y, z⟩)ωk(y)dy

)
dµx(z)

=

∫
Rd

(∫
An

|f(y)|ωk(y)dy

)
dµx(z),
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where An = An(x, z) :=
{
y ∈ Ω, r − rn <

√
∥y∥2 + ∥x∥2 − 2 ⟨y, z⟩ ≤ r

}
. Since ∩nAn is

a hypersurface, by the dominated convergence theorem, we get

lim
n→+∞

∫
Rd

(

∫
An

|f(y)|ωk(y)dy)dµx(z) = 0.

Hence, by the previous relations, we conclude that ϕ is also left continuous. �

3 Dunkl convolution Product

The Dunkl convolution product has been defined by means of the Dunkl translation opera-
tors (see [18] and [14]). So that it has been considered only in some particular cases. Here,
we will prove that we can define the Dunkl convolution product of a function u ∈ L1

k,loc(Ω)

with a nonnegative and radial function f ∈ D(Rd) and we will study some properties of
this product.

For f, g ∈ S(Rd), the Dunkl convolution product is defined by

∀ x ∈ Rd, f ∗k g(x) :=
∫
Rd

τxf(−y)g(y)ωk(y)dy. (3.1)

We note that it is commutative and satisfies the following property:

Fk(f ∗k g) = Fk(f)Fk(g), (3.2)

where Fk is the Dunkl transform (see Annex A.1).

From (3.2), (A.8) and the injectivity of the Fk transform, we obtain the following relations

Lemma 3.1 Let f, g ∈ S(Rd). Then, for every x ∈ Rd, we have

(τxf) ∗k g = f ∗k (τxg) = τx(f ∗k g). (3.3)

Theorem 3.1 Let u ∈ L1
k,loc(Ω) and ϕ ∈ D+

ρ (Rd) with 0 < ρ < rΩ. Let

u ∗k ϕ(x) :=
∫
Rd

u(y)τ−xϕ(y)ωk(y)dy. (3.4)

Then

1) the function u ∗k ϕ is well defined on Ωρ and can be written

∀ x ∈ Ωρ, u ∗k ϕ(x) =
∫
Rd

u(y)τ−yϕ(x)ωk(y)dy (3.5)

=

∫
Rd

u(y)τxϕ(−y)ωk(y)dy, (3.6)

2) u ∗k ϕ belongs to C∞(Ωρ) and we have

∆k(u ∗k ϕ) = u ∗k ∆kϕ, (3.7)
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3) for all B(x, r) ⊂ Ωρ, we have

M r
B(u ∗k ϕ)(x) =M r

B(u) ∗k ϕ(x). (3.8)

Proof: 1) • For every ε > 0, we see that

∀ y ∈ Rd, 0 ≤ ϕ(y) ≤ ∥ϕ∥∞1B(0,ρ)(y) ≤ ∥ϕ∥∞φε(y),

where (φε) is a sequence satisfying (2.3) (with r = ρ). Using the positivity of the Dunkl
translation operators on radial functions, we deduce that

∀ y ∈ Rd, 0 ≤ τ−xϕ(y) ≤ ∥ϕ∥∞τ−xφε(y).

Letting ε→ 0 and using (2.4), we obtain

∀ y ∈ Rd, 0 ≤ τ−xϕ(y) ≤ ∥ϕ∥∞hk(ρ, x, y). (3.9)

Consequently, from the relations (2.2) and (3.9), we get that

supp τ−xϕ ⊂ BW (x, ρ). (3.10)

This implies that for all x ∈ Ωρ, the function y 7→ u(y)τ−xϕ(y)ωk(y) is integrable on Ω.
• The relation (3.5) follows from (A.13) and the relation (3.6) follows from (3.5) and
(A.10).

2) Let x0 ∈ Ωρ and R > 0 such that B(x0, R) ⊂ Ωρ. We shall prove that the function

u ∗k ϕ is of class C∞ on
◦
B(x0, R).

Define the function Φ on Rd × Rd by (see (A.9))

Φ(x, y) := τ−xϕ(y) = c−2
k

∫
Rd

Fk(ϕ)(ξ)Ek(−ix, ξ)Ek(iy, ξ)ωk(ξ)dξ.

We see that Φ is in C∞(Rd×Rd) and by (A.3) and the inequality |Ek(iy, ξ)| ≤ 1, for every
multi-indices υ ∈ Nd we get

∀ (x, y) ∈ Rd × Rd,

∣∣∣∣ ∂υ∂xυΦ(x, y)
∣∣∣∣ ≤ c−2

k

∫
Rd

|Fk(ϕ)(ξ)| ∥ξ∥|υ|ωk(ξ)dξ := Cυ < +∞.

On the other hand, from (3.10) we have

∀ x ∈
◦
B(x0, R), supp Φ(x, .) ⊂ BW (x, ρ) ⊂ BW (x0, R+ ρ) ⊂ Ω.

This implies that we can write

∀ x ∈
◦
B(x0, R), ∀ y ∈ Rd, Φ(x, y) = Φ(x, y)1BW (x0,R+ρ)(y).

Thus, for every multi-indices υ ∈ Nd, we deduce that

∀ x ∈
◦
B(x0, R), ∀ y ∈ Rd,

∣∣ ∂υ
∂xυ

Φ(x, y)
∣∣ ≤ Cυ1BW (x0,R+ρ)(y).
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Now, since uωk is locally integrable, this proves that we can differentiate under the integral
sign in (3.4) and we obtain the desired result.
Furthermore, using respectively (3.5), (A.11) and (A.13) (here note that we can use the
relation (A.13) because ∆kϕ is also a radial function2 (see [10])), we obtain

∆k(u ∗k ϕ)(x) =
∫
Rd

u(y)∆k[τ−yϕ](x)ωk(y)dy =

∫
Rd

u(y)τ−y[∆kϕ](x)ωk(y)dy

=

∫
Rd

u(y)τ−x[∆kϕ](y)ωk(y)dy = u ∗k ∆kϕ(x).

This completes the proof of 2).
3) We need the following lemma:

Lemma 3.2 Let f ∈ S(Rd) be radial. Then, for all r > 0 and a, b ∈ Rd, we have

τaτbf = τbτaf (3.11)

and
M r

B(τ−af)(b) =M r
B(τ−bf)(a). (3.12)

Proof of Lemma 3.2
• We obtain (3.11) from (A.8) and the injectivity of the Dunkl transform on S(Rd).
• Let r > 0 and a, b ∈ Rd. We have

M r
B(τ−af)(b) =

1

mk(B(0, r))

∫
Rd

τaf(−y)hk(r, b, y)ωk(y)dy

=
1

mk(B(0, r))

∫
Rd

τbτaf(−y)1B(0,r)(y)ωk(y)dy

=
1

mk(B(0, r))

∫
Rd

τbf(−y)hk(r, a, y)ωk(y)dy

=M r
B(τ−bf)(a),

where we have used respectively the relations (A.13) and (A.10) in the first equality, the
relation (2.1) in the second equality, the relations (3.11) and (2.1) in the third equality
and the relations (A.10), (A.13) in the last equality. �
Now, we turn to the proof of (3.8).
Let B(x, r) ⊂ Ωρ. By Proposition 2.2- 1), the function M r

B(u) belongs to L
1
k,loc(Ωr). This

proves, by assertion 1), that the function M r
B(u) ∗k ϕ is well defined on Ωρ+r.

2More precisely, we have ∆kϕ(x) = ( d2

dr2
+ d+2γ−1

r
d
dr
)ϕ̃(r), r = ∥x∥ and ϕ̃ the profile of ϕ.
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By 2), the function u ∗k ϕ is clearly in L1
k,loc(Ωρ) and for x ∈ Ωρ+r we have3

M r
B(u ∗k ϕ)(x) =

1

mk(B(0, r))

∫
BW (x,r)

(

∫
BW (x,r+ρ)

u(z)τ−yϕ(z)ωk(z)dz) hk(r, x, y)ωk(y)dy

=
1

mk(B(0, r))

∫
BW (x,r+ρ)

u(z)(

∫
BW (x,r)

τ−zϕ(y)hk(r, x, y)ωk(y)dy) ωk(z)dz

=

∫
BW (x,r+ρ)

u(z)M r
B

(
τ−zϕ

)
(x)ωk(z)dz

=

∫
BW (x,r+ρ)

u(z)M r
B

(
τ−xϕ

)
(z)ωk(z)dz

=
1

mk(B(0, r))

∫
BW (x,r+ρ)

u(z)(

∫
BW (x,ρ)

τ−xϕ(y)hk(r, z, y)ωk(y)dy) ωk(z)dz

=
1

mk(B(0, r))

∫
BW (x,ρ)

τ−xϕ(y)(

∫
BW (x,r+ρ)

u(z)hk(r, y, z)ωk(z)dz) ωk(y)dy

=M r
B(u) ∗k ϕ(x),

where,
- the first equality follows from the relations (2.2), (3.5), (3.10) and from the fact that

∀ y ∈ BW (x, r), BW (y, ρ) ⊂ BW (x, r + ρ) ⊂ Ω, (3.13)

-the second equality follows from Fubini’s theorem and (A.13),
-the third equality comes from the relation (1.9),
-the forth equality follows from (3.12),
-in the the fifth equality we have used the relations (1.9) and (3.10),
-in the sixth equality we have used (2.5) and Fubini’s theorem. Finally, using (2.2) and
(3.13), we obtain the last equality.
This completes the proof of the theorem. �

Remark 3.1 If u is of class C2 on Ω, then the relation (3.7) can be also written

∀ x ∈ Ωρ, ∆k(u ∗k ϕ)(x) = (∆ku) ∗k ϕ(x). (3.14)

Indeed, using respectively the relations (3.7), (3.4) and (A.11), we get

∆k(u ∗k ϕ)(x) =
∫
Ω
u(y)τ−x[∆kϕ](y)ωk(y)dy =

∫
Ω
u(y)∆k[τ−xϕ](y)ωk(y)dy. (3.15)

Now, we obtain the desired result by using the following integration by parts formula (see
[5] or [14]): Let f, g ∈ C1(Ω) such that g has compact support. Then, for all ξ ∈ Rd, we
have ∫

Ω
Dξf(x)g(x)ωk(x)dx = −

∫
Ω
f(x)Dξg(x)ωk(x)dx, (3.16)

with Dξ the ξ-directional Dunkl operator (see (1.2)). �
3Note that, in the integrals below, the consideration of the supports permits to justify the correct

application of Fubini’s theorem.
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Proposition 3.1 Let u ∈ L1
k,loc(Ω) and ϕ ∈ D+

ρ (Rd) with 0 < ρ < rΩ. If u is with
compact support, then u ∗k ϕ is also with compact support and

supp (u ∗k ϕ) ⊂ B(0, ρ) +W.supp u ⊂ Ω, (3.17)

with W.supp u := {gx, (g, x) ∈W × supp u}.

Proof: If x /∈ B(0, ρ)+W.supp u, then x−gy /∈ B(0, ρ) for every (g, y) ∈W×supp u. That
is ∥gx− y∥ > ρ for all y ∈ supp u and all g ∈ W . In other words supp u ∩BW (x, ρ) = ∅.
Hence, by (3.10), we obtain u ∗k ϕ(x) = 0. �

It is interesting to note that when u is a continuous function, we can write the Dunkl
convolution product in spherical coordinates as follows:

Proposition 3.2 Let u be a continuous function on Ω and let ϕ ∈ D+
ρ (Rd) with 0 < ρ <

rΩ (i.e. Ωρ is nonempty). Then, for all x ∈ Ωρ, we have

u ∗k ϕ(x) = dk

∫ ρ

0
ϕ̃(t)td+2γ−1M t

S(u)(x)dt, (3.18)

where ϕ̃ is the profile function of ϕ and dk is the constant given by (2.7).

Proof: At first we suppose that u ∈ C∞(Rd). By (A.14), we have

u ∗k ϕ(x) =
∫
Rd

ϕ(y)τxu(y)ωk(y)dy.

Then, using spherical coordinates, we can write

u ∗k ϕ(x) =
∫ ρ

0
ϕ̃(t)td+2γ−1

∫
Sd−1

τxu(tξ)ωk(ξ)dσ(ξ)dt.

Therefore, from (2.12) we deduce that the relation (3.18) holds in this case.
Let us now suppose only that u is a continuous function on Ω. Let (pn) a sequence of
polynomial functions such that pn −→ u as n −→ +∞ uniformly on the compact set
K := BW (x, ρ). Since τ−xϕ ≥ 0, by (A.12) we conclude that∣∣u ∗k ϕ(x)− pn ∗k ϕ(x)

∣∣ ≤ ∥τ−xϕ∥L1
k(Rd) sup

K
|pn(y)− u(y)| = ∥ϕ∥L1

k(Rd) sup
K

|pn(y)− u(y)|.

Hence
u ∗k ϕ(x) = lim

n→+∞
pn ∗k ϕ(x). (3.19)

Furthermore, as the probability measures σkx,t, 0 < t ≤ ρ, have compact support contained

in BW (x, t) ⊂ K = BW (x, ρ) (see (2.14)), we deduce

∀ t ≤ ρ, |M t
S(pn − u)(x)| ≤ sup

K
|pn(y)− u(y)|.
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This implies

lim
n→+∞

dk

∫ ρ

0
ϕ̃(t)td+2γ−1M t

S(pn)(x)dt = dk

∫ ρ

0
ϕ̃(t)td+2γ−1M t

S(u)(x)dt. (3.20)

From (3.19), (3.20) and the first step, we deduce that the relation (3.18) holds when the
function u is continuous on Ω. �
We have the following associativity result for the Dunkl convolution product:

Proposition 3.3 Let u ∈ L1
k,loc(Ω), ϕ ∈ D+

ρ (Rd) and ψ ∈ D+
r (Rd) such that Ωr+ρ is

nonempty (i.e. r + ρ < rΩ). Then

∀ x ∈ Ωr+ρ,
(
u ∗k ϕ

)
∗k ψ(x) = u ∗k (ϕ ∗k ψ)(x) =

(
u ∗k ψ

)
∗k ϕ(x). (3.21)

Proof: • From Theorem 3.1, the functions
(
u ∗k ϕ

)
∗k ψ and

(
u ∗k ψ

)
∗k ϕ are well defined

on Ωr+ρ.
• We claim that ϕ ∗k ψ is a nonnegative C∞-radial function on Rd with compact support
contained in B(0, r + ρ) which implies that u ∗k (ϕ ∗k ψ) is also well defined on Ωr+ρ.
Indeed, again by Theorem 3.1 we see that ϕ ∗k ψ is of class C∞ on Rd and using (3.17)
we obtain supp ϕ ∗k ψ ⊂ B(0, r + ρ). Furthermore, by the positivity of Dunkl translation
operators on radial functions, we deduce that the function ϕ ∗k ψ is nonnegative. Now,
using the fact that the Dunkl transform Fk is an isomorphism of the Schwartz space onto
itself and the relation (3.2), we can write that

ϕ ∗k ψ = F−1
k (Fk(ϕ)Fk(ψ)) .

Therefore, since Fk preserves the radial property (see the relation (A.6)), we deduce that
ϕ ∗k ψ is radial as claimed.
• For x ∈ Ωr+ρ fixed, we have

(
u ∗k ϕ

)
∗k ψ(x) =

∫
BW (x,r)

(
u ∗k ϕ

)
(y)τ−xψ(y)ωk(y)dy

=

∫
BW (x,r)

(∫
BW (x,r+ρ)

u(z)τ−yϕ(z)ωk(z)dz
)
τ−xψ(y)ωk(y)dy

=

∫
BW (x,r+ρ)

u(z)
(∫

BW (x,r)
τ−yϕ(z)τ−xψ(y)ωk(y)dy

)
ωk(z)dz

=

∫
BW (x,r+ρ)

u(z)
(∫

BW (x,r)
τ−zϕ(y)τ−xψ(y)ωk(y)dy

)
ωk(z)dz

=

∫
BW (x,r+ρ)

u(z)
(
ϕ ∗k τ−xψ

)
(z) ωk(z)dz

=

∫
BW (x,r+ρ)

u(z)τ−x

(
ϕ ∗k ψ

)
(z) ωk(z)dz

= u ∗k (ϕ ∗k ψ)(x).
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where we have used
-the relations (3.4) and (3.10) in the first line;
-the same relations in the second line with (3.13);
- Fubini’s theorem in the third line: the relation (3.9), the inequality hk(R, a, b) ≤ 1 and
the hypothesis u ∈ L1

k,loc(Ω) imply that we can use Fubini’s theorem;
-the relation (A.13) in the forth line;
-the relation (3.4) in the fifth line;
-relation (3.3) in the sixth line;
- the above properties of the function ϕ ∗k ψ and (3.10) in the last line.

Now, changing the role of ϕ and ψ, we obtain

(u ∗k ψ) ∗k ϕ(x) = u ∗k (ψ ∗k ϕ)(x).

Finally, by the commutativity of the Dunkl convolution product (see (3.2)), we conclude
the last equality in (3.21). �

4 Applications to ∆k-harmonic functions

In this section, we will give some properties of Dunkl harmonic functions. Let us introduce
the space Hk(Ω) of ∆k-harmonic functions on Ω.

In order to give further study of Dunkl harmonic functions, we first need some lemmata.
Let us consider the following radial function

φ(x) := a exp (− 1

1− ∥x∥2
)1B(0,1)(x), x ∈ Rd, (4.1)

where a is a constant such that x 7−→ φ(x)ωk(x) is a probability density.
For ε > 0, define the function

φε(x) =
1

εd+2γ
φ(
x

ε
). (4.2)

It is well known that φε is a radial mollifier i.e. φε ∈ D+
ε (Rd). We begin by the following

preparatory result:

Lemma 4.1 Let u be a continuous function on Ω. For 0 < ε < rΩ, define the function
uε by

∀ x ∈ Ωε, uε(x) := u ∗k φε(x) :=

∫
Rd

u(y)τ−xφε(y)ωk(y)dy. (4.3)

Then the sequence (uε)0<ε<rΩ satisfies

i) for every 0 < ε < rΩ, the function uε is in C∞(Ωε),

ii) for every x ∈ Ω, uε(x) −→ u(x) as ε −→ 0.

iii) for every 0 < r < rΩ and every x ∈ Ωr, we have M r
B(u ∗k φε)(x) −→ M r

B(u)(x) and
M r

S(u ∗k φε)(x) −→M r
S(u)(x) as ε −→ 0.
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Proof: The first assertion follows immediately from Theorem 3.1.

ii) Let x ∈ Ω. Applying (3.9) with ϕ = φε we get

∀ y ∈ Rd, 0 ≤ τ−xφε(y) ≤ aε−d−2γhk(ε, x, y).

Using (2.6), we can write

∀ y ∈ Rd, 0 ≤ τ−xφε(y) ≤ a
dk

d+ 2γ

1

mk[B(0, ε)]
hk(ε, x, y). (4.4)

Consequently, for every x ∈ Ω and every ε > 0 small enough, we have by (A.12) and (4.4)

|uε(x)− u(x)| ≤
∫
Rd

τ−xφε(y)|u(y)− u(x)|ωk(y)dy

≤ a
dk

d+ 2γ

1

mk[B(0, ε)]

∫
Rd

|u(y)− u(x)|hk(ε, x, y)ωk(y)dy.

This can be rewritten in the following form

|uε(x)− u(x)| ≤ a
dk

d+ 2γ
M ε

B

(
|u− u(x)|

)
(x). (4.5)

Thus from (2.11), we conclude the result.

iii) Let x ∈ Ωr. There exists ε0 > 0 such that x ∈ Ωr+ε0 . For ε ∈]0, ε0[, we have

∀ y ∈ BW (x, r), |u ∗ φε(y)| ≤
∫
BW (y,ε)

|u(z)|τ−yφε(z)ωk(z)dz

≤
∫
BW (x,r+ε0)

|u(z)|τ−yφε(z)ωk(z)dz

≤ sup
BW (x,r+ε0)

|u(y)|,

where in the last line we have used the relation (A.12).
According to (2.2), (2.14) and to the statement ii), the previous inequality implies that
we can apply the dominated convergence theorem to obtain the results of assertion iii). �

Lemma 4.2 Let u be a C2-function on Ω. Then, for any 0 < r < rΩ and any x ∈ Ωr, we
have

M r
S(u)(x) = u(x) +

1

d+ 2γ

∫ r

0
M t

B(∆ku)(x) tdt, (4.6)

and

M r
B(u)(x) = u(x) +

1

rd+2γ

∫ r

0

∫ ρ

0
M t

B(∆ku)(x) t dt ρ
d+2γ−1dρ. (4.7)

Remark 4.1 We have obtained in [8] that the relations (4.6) and (4.7) hold when u ∈
C∞(Rd). Furthermore, by polynomial approximation, we have extended them to any func-
tion u of class C2 on an arbitrary W -invariant open set Ω ⊂ Rd and any x ∈ Ω but with
the condition r ∈]0, ϱx/3[, ϱx being defined by (2.18).
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Proof: Step 1: Suppose that u is of class C∞ on Ω.
Let x ∈ Ω and r ∈]0, ϱx[ and let ϵ > 0 such that B(x, r + ϵ) ⊂ Ω. We can find ϕ ∈ D(Rd)
such that
1. ϕ = 1 on the compact set BW (x, r + ϵ/2),
2. supp ϕ ⊂ BW (x, r + ϵ),
3. 0 ≤ ϕ ≤ 1.
Therefore, the function f = uϕ is in C∞(Rd), supp f ⊂ BW (x, r + ϵ) and f = 1 on
BW (x, r + ϵ/2). According to Remark 4.1 and noting that the relations (4.6) and (4.7)
only involve the compact set BW (x, r) (through the supports of hk(r, x, .) and σkx,r), we
can replace f by u in theses formulas.

Step 2: Here, we will suppose that u ∈ C2(Ω). By (2.15), it is enough to prove (4.6). Fix
0 < r < rΩ, x ∈ Ωr and ε0 > 0 such that x ∈ Ωr+ε0 . By step 1, for every 0 < ε < ε0 we
have

M r
S(u ∗k φε)(x) = u ∗k φε(x) +

1

d+ 2γ

∫ r

0
M t

B(∆k[u ∗k φε])(x)tdt. (4.8)

Now, using (3.14) and Lemma 4.1 , we get

lim
ε→0

M t
B(∆k[u ∗k φε])(x) = lim

ε→0
M t

B([∆ku] ∗k φε)(x) =M t
B(∆ku)(x),

and following the proof of the statement iii) of Lemma 4.1, for every 0 < ε < ε0 we obtain

∀ t ≤ r, |M t
B(∆k[u ∗k φε])(x)| ≤ sup

BW (x,r+ε0)

|∆ku(y)|.

Therefore, we can use the dominated convergence theorem in the integral of (4.8) and
using again Lemma 4.1, we obtain the result by letting ε −→ 0. �

In the following result, we will characterize the ∆k-harmonicity by the global mean
value property.

Proposition 4.1 Let u ∈ C2(Ω). The following statements are equivalent

i) u ∈ Hk(Ω),

ii) u(x) =M r
S(u)(x) whenever B(x, r) ⊂ Ω,

iii) u(x) =M r
B(u)(x) whenever B(x, r) ⊂ Ω,

iv) M r
B(u)(x) =M r

S(u)(x) whenever B(x, r) ⊂ Ω.

Proof: i) ⇒ ii) It follows from (4.6).
ii) ⇒ iii) By (2.15), we obtain immediately the result.
iii) ⇒ iv) Let f ∈ C2(Ω) and let x ∈ Ω be fixed. By (4.6) and (2.15) the function
r 7→M r

B(f)(x) is of class C
2 on ]0, ρx[ and we have

d

dr
M r

B(f)(x) =
d+ 2γ

r

(
M r

S(f)(x)−M r
B(f)(x)

)
. (4.9)
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Now, from (4.9) clearly iii) implies iv).
iv) ⇒ i) Let x ∈ Ω. Using (4.9) and (2.11), we deduce that

∀ r ∈ [0, ρx[, M r
B(u)(x) = u(x).

Now, if we use (4.7) et we differentiate two times with respect to r, we getM r
B(∆ku)(x) = 0

for every r ∈]0, ρx[. Finally, by (2.11), we obtain ∆ku(x) = 0. �
Corollary 4.1 Every ∆k-harmonic function on Ω is of class C∞.

Proof: Let u be a ∆k-harmonic function on Ω. As u satisfies the spherical mean property,
by (3.18), we see that u = u∗k φε on Ωε. Therefore, u is of class C∞ on Ωε for every ε > 0
arbitrary small. �
Corollary 4.2 Every ∆k-harmonic function on Rd is real analytic.

Proof: Let f be a ∆k-harmonic function on Rd. Since f ∈ C∞(Rd) (by Corollary 4.1)
and Vk : C∞(Rd) −→ C∞(Rd) is a topological isomorphism, the function g := V −1

k (f) is
harmonic on Rd in the usual sense (i.e. ∆g = 0) as an immediate consequence of the
intertwining relation4 ∆kVk = Vk∆. It is well known that g is real analytic (see [1]) and
thus, using multi-indices υ = (υ1, ..., υd) ∈ Nd, can be written

g(x) =
∑
υ

aυx
υ, x ∈ Rd,

where aυ are real coefficients. If gN (N ∈ N) denotes the partial sum gN (x) :=
∑

|υ|≤N aυx
υ

(with |υ| = υ1 + · · ·+ υd), then gN −→ g as N → +∞ in the Fréchet topology of C∞(Rd).
Therefore Vk(gN ) −→ Vk(g) = f in the Fréchet topology. In particular, f is real analytic
as being the uniform limit of the polynomials 5 Vk(gN ) on each compact subset of Rd. �
Corollary 4.3 Let u be a function defined on Ω. Then u ∈ Hk(Ω) if and only if u ∈
L1
k,loc(Ω) and satisfies

u ∗k ϕ = u on Ωr (4.10)

whenever 0 < r < rΩ and ϕ ∈ D+
r (Rd) is such that ϕωk is a probability density.

Proof: Using the spherical mean value property and the relation (3.18) we see that any
∆k-harmonic function on Ω satisfies (4.10). Conversely, let u ∈ L1

k,loc(Ω) satisfying (4.10).
At first, by Theorem 3.1, clearly the function u is of class C∞ on Ω. On the other hand,
let x ∈ Ω and 0 < r < ρx be fixed. Let (φε) be a sequence as in (2.3) (i.e. such that
τ−xφε(y) −→ hk(r, x, y) as ε → 0). So, by the dominated convergence theorem, the
hypothesis

u ∗k
φε(x)

∥φε∥L1(Rd,mk)

= u(x)

implies that M r
B(u)(x) = u(x). Thus, u ∈ Hk(Ω) by the volume mean value property. �

In the following result, we will characterize de ∆k-harmonicity by the local mean value
property:

4which follows clearly from (1.3).
5Vk is a bijection of the space of polynomials of degree ≤ n onto itself ([6]).
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Theorem 4.1 Let u ∈ C2(Ω). The following statements are equivalent

i) u ∈ Hk(Ω),

ii) u satisfies the local spherical mean property i.e. for every x ∈ Ω, there exists rx > 0
such that ∀ r < rx, u(x) =M r

S(u)(x),

iii) u satisfies the local volume mean property i.e. for every x ∈ Ω, there exists rx > 0
such that ∀ r < rx, u(x) =M r

B(u)(x).

Proof: i) =⇒ ii) We know that the ∆k-harmonic function u satisfies the global spherical
mean property and then it satisfies also the local one.
ii) =⇒ iii) It is a direct consequence of (2.15).
iii) =⇒ i) Let x ∈ Ω. The local volume property and the relation (4.7) imply

∀ r < rx,

∫ r

0

∫ ρ

0
M t

B(∆ku)(x)tdtρ
d+2γ−1dρ = 0.

If we differentiate two times with respect to r, we obtain

∀ r < rx, M r
B(∆ku)(x) = 0.

Hence, according to (2.11), we get ∆ku(x) = 0. �
In order to prove a Weyl type lemma for Dunkl harmonic functions, we will clarify some

facts about the action of Dunkl operators on distributions. For a distribution T ∈ D′(Ω),
we define the weak Dunkl ξ-directional derivative of T (ξ ∈ Rd) by

∀ ϕ ∈ D(Ω), ⟨DξT, ϕ⟩ = −⟨T,Dξϕ⟩ .

Note that by the intertwining relation (1.3), the operator Dξ = Vk∂ξV
−1
k : C∞(Rd) −→

C∞(Rd) is continuous for the Fréchet topology. Moreover, since Dξ leaves the space D(Ω)
invariant, we deduce that Dξ : D(Ω) −→ D(Ω) is also continuous for the Fréchet topology.
This justifies that DξT is well defined as an element of D′(Ω).

In particular, if f ∈ L1
k,loc(Ω) i.e. fωk ∈ L1

loc(Ω), the weak Dunkl-Laplacian of fωk is
given by

∀ ϕ ∈ D(Ω), ⟨∆k(fωk), ϕ⟩ = ⟨fωk,∆kϕ⟩ =
∫
Ω
f(x)∆kϕ(x)ωk(x)dx. (4.11)

Theorem 4.2 Let u ∈ L1
k,loc(Ω) such that ∆k(uωk) = 0 in D′(Ω). Then, there exists a

Dunkl harmonic function h on Ω such that u = h a.e. on Ω.

Proof: Let 0 < ε < rΩ and let φε the function defined by (4.2). From Theorem 3.1, we
know that the function

uε(x) := u ∗k φε(x) :=

∫
Rd

u(y)τ−xφε(y)ωk(y)dy.
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is well defined and is of class C∞ on Ωε. Furthermore, using (3.15) and the fact that uωk

is weakly ∆k-harmonic on Ω, we can see that the function uε is (strongly) ∆k-harmonic
in Ωε.
• Let us now fix r such that 0 < r < rΩ. We claim that

uε1(x) = uε2(x) whenever x ∈ Ωr and ε1 + ε2 < r (4.12)

Indeed, since uε1 ∈ Hk(Ωr), by the spherical mean property and (3.18), we have

uε1 = uε1 ∗k φε2 = (u ∗k φε1) ∗k φε2 on Ωr.

If we change the role of ε1 and ε2, we also obtain

uε2 = uε2 ∗k φε1 = (u ∗k φε2) ∗k φε1 on Ωr.

Thus the relation (4.12) follows from the associativity property (3.21).
• Now, we will use the following lemma which follows from (4.5) and Lebesgue’s differen-
tiation theorem (see [11]):

Lemma 4.3 For almost every x ∈ Ω, uε(x) −→ u(x) as ε −→ 0.

Letting ε2 −→ 0 in the relation (4.12) and using Lemma 4.3, we deduce that u coincides
almost everywhere with the ∆k-harmonic function h := uε1 on Ωr. Since r can be taken
arbitrarily small, the proof of the theorem is complete. �
Remark 4.2 A version of Weyl’s lemma has been proved in [2] for ∆k-harmonic functions
f on whole Rd and under the additional assumption that the function f is locally bounded.

Now, we will characterize the strong ∆k-harmonicity by means of weak ∆k-harmonicity.
More precisely, we have

Corollary 4.4 Let u be a function defined on Ω. Then u ∈ Hk(Ω), if and only if u
satisfies : u ∈ L1

k,loc(Ω), ∆k(uωk) = 0 in D′(Ω) and u(x) = limr→0M
r
B(u)(x) for every

x ∈ Ω.

Proof: By integration by parts formula (3.16) and (2.11), we obtain the ’only if’ part. Let
us now prove the ’if’ part. By Theorem 4.2, there exists h ∈ Hk(Ω) such that u = h a.e.
on Ω. Therefore, for all x ∈ Ω, we have

∀ r ∈]0, ϱx[, M r
B(u)(x) =M r

B(h)(x) = h(x),

where ϱx is defined by (2.18). We obtain u = h on Ω by letting r → 0. �

Corollary 4.5 The space Hk(Ω) is closed for the L1
k,loc(Ω)-topology.

Proof: Let (un) be a sequence of ∆k-harmonic functions on Ω such that un −→ u in
L1
k,loc(Ω). As the functions unωk and uωk are in L1

loc(Ω), we have also unωk −→ uωk in
D′(Ω). In particular, ∆k(unωk) −→ ∆k(uω) in D′(Ω). Now, since un ∈ Hk(Ω), we deduce
that ∆k(uωk) = 0 in D′(Ω).
Finally, by Theorem 4.2 there exists a ∆k-harmonic function h on Ω such that u = h a.e.
in Ω. Thus u = h in L1

k,loc(Ω) and the result is proved. �
As a last result, we will improve Proposition 4.1 as follows
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Corollary 4.6 Let u be a function defined on Ω. The following statements are equivalent

i) u ∈ Hk(Ω),

ii) u is continuous on Ω and u(x) =M r
S(u)(x) whenever B(x, r) ⊂ Ω,

iii) u is continuous on Ω and u(x) =M r
B(u)(x) whenever B(x, r) ⊂ Ω.

Proof: i) ⇒ ii) It is obvious.
ii) ⇒ iii) By (2.15), clearly we obtain the result.
iii) ⇒ i) Let ε0 > 0 small enough. Since u satisfies the volume mean value property, from
(3.8) we see that the C∞-function u ∗k φε (ε < ε0) defined by (4.3) satisfies also

u ∗k φε =M r
B(u ∗k φε) on Ωr+ε0 ,

for any r such that 0 < r < r + ε0 < rΩ with rΩ given by (2.16). Thus, according to
Proposition 4.1, u ∗k φε ∈ Hk(Ωε0).
On the other hand, let K be a compact subset of Ωε0 . Noting that for all 0 < ε < ε0 and
all x ∈ K, supp τ−xφε ⊂ BW (x, ε) ⊂ BW (x, ε0) ⊂ KW := ∪g∈W g.K +B(0, ε0) and using
(A.12) and the fact that τ−xφε ≥ 0 , we can see that

∀ x ∈ K, ∀ ε < ε0, |u ∗k φε(x)| ≤
∫
KW

|u(y)|τ−xφε(y)ωk(y)dy ≤ sup
y∈KW

|u(y)|.

From this inequality and from the dominated convergence theorem, we deduce that when
ε tends to zero, u ∗k φε −→ u in L1(K,mk). In other words, u ∗k φε −→ u in L1

k,loc(Ωε0).
Finally, Corollary 4.5 and the continuity of u imply that u coincides with a Dunkl harmonic
function h on Ωε0 . As ε0 > 0 can be chosen arbitrary small, the result is proved.

�

A Annex

A.1 The Dunkl transform

In this Annex we recall some properties of the Dunkl transform (see [9] and [14] ).

• The Dunkl transform of a function f ∈ L1(Rd,mk) is defined by

Fk(f)(λ) :=

∫
Rd

f(x)Ek(−iλ, x)ωk(x)dx, λ ∈ Rd, (A.1)

where Ek(x, y) := Vk(e
⟨x,.⟩)(y), x, y ∈ Rd, is the Dunkl kernel which is analytically

extendable to Cd × Cd and satisfies the following properties (see [4], [6], [9] and [14])

1. for all x, y ∈ Cd, all λ ∈ C and all g ∈W ,

Ek(x, y) = Ek(y, x), Ek(x, λy) = Ek(λx, y), Ek(gx, gy) = Ek(x, y), (A.2)
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2. for all x ∈ Rd, y ∈ Cd and all multi-indices υ ∈ Nd,∣∣∣ ∂υ
∂yυ

Ek(x, y)
∣∣∣ ≤ ∥x∥|υ|max

g∈W
eRe ⟨gx,y⟩. (A.3)

• It is well known (see [9]) that the Dunkl transform Fk is an isomorphism of S(Rd) onto
itself and its inverse is given by

F−1
k (f)(x) = c−2

k

∫
Rd

f(λ)Ek(ix, λ)ωk(λ)dλ, x ∈ Rd, (A.4)

where ck is the Macdonald-Mehta constant given by ck =
∫
Rd e

− ∥x∥2
2 ωk(x)dx (see [7]).

Moreover, the following Plancherel theorem holds (see [9]): The transformation c−1
k Fk

extends uniquely to an isometric isomorphism of L2(Rd,mk) and we have:

∀ f ∈ L2(Rd,mk), ∥c−1
k Fk(f)∥L2(Rd,mk)

= ∥f∥L2(Rd,mk)
. (A.5)

• It is useful to note that if f ∈ L1(Rd,mk) is radial, Fk(f) is also radial. Precisely, using
spherical coordinates and Corollary 2.5 of ([15]), we have

Fk(f)(λ) = dk

∫ +∞

0
f̃(r)jγ+ d

2
−1(r∥λ∥)r

2γ+d−1dr, λ ∈ Rd, (A.6)

where dk is defined by the relation (2.7) and for λ ≥ −1/2, jλ is the normalized Bessel
function given by

jλ(z) = Γ(λ+ 1)
∑+∞

n=0
(−1)n

n!Γ(n+λ+1)

(
z
2

)2n
.

A.2 Dunkl’s translation operators

The Dunkl translation operators τx, x ∈ Rd, are defined on C∞(Rd) by (see [18])

∀ y ∈ Rd, τxf(y) =

∫
Rd

Vk ◦ Tz ◦ V −1
k (f)(y)dµx(z), (A.7)

where Tx is the classical translation operator given by Txf(y) = f(x + y). If f ∈ S(Rd),

τxf ∈ S(Rd) and using the Dunkl transform we have (see [18]):

∀ y ∈ Rd, τxf(y) = F−1
k [Ek(ix, .)Fk(f)](y) (A.8)

=
1

c2k

∫
Rd

Fk(f)(λ)Ek(ix, λ)Ek(iy, λ)ωk(λ)dλ. (A.9)

In particular, the relations (A.9) and (A.3) show that (x, y) 7−→ τxf(y) is of class C
∞ on

Rd × Rd.
The operators τx, x ∈ Rd, satisfy the following properties:

1) For all x ∈ Rd, the operator τx is continuous from C∞(Rd) into itself.
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2) For all f ∈ C∞(Rd) and y ∈ Rd, the function x 7−→ τxf(y) is of class C∞ on Rd.

3) For all f ∈ C∞(Rd) and all x, y ∈ Rd, we have

τxf(0) = f(x), τxf(y) = τyf(x). (A.10)

4) The Dunkl-Laplace operator ∆k commutes with the Dunkl translations i.e

τx(∆kf) = ∆k(τxf), x ∈ Rd, f ∈ C∞(Rd). (A.11)

5) for all f ∈ D(Rd), we have

∀ y ∈ Rd,

∫
Rd

τxf(y)ωk(y)dy =

∫
Rd

f(y)ωk(y)dy, (A.12)

6) Let f ∈ S(Rd) be radial. Then we have (see [8], Lemme 3.1)

τ−xf(y) = τ−yf(x) (A.13)

The following duality formula has been established by the authors (see [8], Proposi-
tion 2.1):

7) Let f ∈ C∞(Rd) and g ∈ D(Rd). Then, for all x ∈ Rd, we have∫
Rd

τxf(y)g(y)ωk(y)dy =

∫
Rd

f(y)τ−xg(y)ωk(y)dy. (A.14)
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