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Abstract: Tasks such as distinguishing or identifying individual objects of interest require the
production of dense local clouds at the scale of these individual objects of interest. Due to
the physical and dynamic properties of an underwater environment, the usual dense matching
algorithms must be rethought in order to be adaptive. These properties also imply that the scene
must be observed at close range. Classic robotized acquisition systems are oversized for local studies
in shallow water while the systematic acquisition of data is not guaranteed with divers. We address
these two major issues through a multidisciplinary approach. To efficiently acquire on-demand
stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile
light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable
way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability
and light absorption of the underwater environment. Field experiments in the Mediterranean Sea
were used to assess the results.

Keywords: underwater 3D reconstruction; dense point clouds; low cost underwater micro-robot;
stereoscopic rig

1. Introduction

The medium term objective of this study is to develop a complete system dedicated to
precise thematic mapping of shallow underwater areas, from data acquisition to three-dimensional
reconstruction. Intended to be used by field experts without relevant engineering skills, the designed
system must meet the challenges posed by the study environment and provide comparable and
reproducible three-dimensional data on demand. For this, it has to be light-weight, agile, affordable,
easy to reproduce and highly automated.

This article starts with a survey of prior studies about mapping underwater environment in three
dimensions and their limitation in the specific context of optical imagery in shallow water. It then
presents the current state of the project and focuses on two majors issues. The first is the efficient
acquisition of on-demand stereoscopic pairs in small areas of shallow water using simple logistics.
The second is the reliable three-dimensional reconstruction from two views despite the dynamics
of the environment, the highly variable quality of the images and strong light absorption. In the

Sensors 2016, 16, 712; doi:10.3390/s16050712 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 712 2 of 30

last part, we present the results obtained from field experiments in the Mediterranean Sea to assess
our solutions.

2. Mapping the Underwater Environment in Three Dimensions

Three-dimensional mapping of submarine and subaquatic environments is important for many
applications such as security [1], industry [2], environment [3] or archeology [4]. Underwater sensors
for acquiring such data can mainly be grouped into two categories: acoustic and optical.

Those built on acoustic technology, such as sonars, are by far the most used. They can be used
over large distances as sound wave propagation underwater takes advantage of the high elasticity of
the medium [5,6]. Optical-based underwater sensors have to work closer to the observed scene due
to poor electromagnetic wave propagation underwater [7], thus providing a smaller swath. However,
they allow the acquisition of dense, multispectral and high resolution three-dimensional data.
Optical-based sensors can be active like LiDARs (time-of-flight sensors) and laser scanners (active
triangulation, structured light sensors) [8–14] or optical cameras (passive triangulation, temporal,
binocular or multiviews sensors). The sensors used in this study belong to the latter category.

2.1. Acquisition Systems for Optical Imagery: Mobile Sensors

If we consider the platforms dedicated to optical imagery in shallow water (.100 m deep)
in the literature, we identify towed vehicles [15,16] or robots [17–32]. The robotic vehicles are
either autonomous (AUV–Autonomous Underwater Vehicle) or wire-guided (ROV–Remotely Operated
Vehicle) [33]. Examples of AUVs are SeaBED (Woods Hole Oceanographic Institute) and its derivatives,
Girona500 and Sparus (Universitat de Girona), DAGON (Deutsches Forschungzentrum für Künstliche
Intelligenz), Oberon (Australian Centre for Field Robotics), Starbug (Commonwealth Scientific and Industrial
Research Organisation) or Aqua (Dalhousie, MacGill and York Universities). Lightweight ROVs include
vehicles such as Phantom series (Deep Ocean Engineering) or V8 series (Ocean Modules).

Apart from the Aqua prototype, these platforms, designed for greater depths, are most of the
time oversized when dealing with small, shallow water study areas (.2000 m2) and often involve
heavy logistics [25]. For these operational reasons, scientific work in shallow water mostly resorts
to divers [34–41]. However, in doing so, the systematic nature of the automatic acquisition is lost,
despite its importance for data completeness or acquisition process reproducibility. Recently, a new
generation of micro-ROV has appeared, such as OpenROV or VideoRay, but these are currently
mainly designed as wire-guided cameras rather than systematic acquisition systems and they do not
yet have the modularity needed to conduct advanced scientific work.

In addition, native stereoscopic optical payloads (such as the BumbleBee of Point Grey) are rare
and seldom allow changes in lens or baseline. Most of the time, rigs are built with professional sensors
(from TriTech, Kongsberg or DeepSea P&L for example) mainly developed for the offshore petroleum
industry. Their prices and sizes are in accordance with the great depths for which they were designed.
Most other sensors used are compact or reflex cameras (from Canon, Nikon or GroPro for example)
that are not designed to be easily controlled by a robotic system.

2.2. Processing Systems for Optical Imagery: Three-Dimensional Reconstruction Algorithms

Underwater studies have mostly been carried out to produce sparse point
clouds [17,24,27,29,30,36,42–46] where the density is interpolated by meshing and texturing.
These studies have mainly focused on the problem of registering these local clouds to obtain a model
of the whole study area. Conversely, dense reconstruction algorithms directly produce point clouds
with a finer granularity. As they seek to match all pixels of each view instead of a few sets of pixels,
their complexity is much higher. This is called the dense matching problem. Strategies have been
proposed to reduce the space of candidates and avoid the use of brute-force algorithms, thus making
this problem computationally solvable. We have classified them in three categories: geometric,
spatio-temporal and spatial neighborhood (see Figure 1):



Sensors 2016, 16, 712 3 of 30

• The geometric criterion exploits the epipolar constraint that links two stereoscopic views to
reduce the search of a corresponding pixel to a line [47,48].

• The spatio-temporal criterion treats disparity as a slight temporal movement and therefore the
corresponding pixel is sought near its original position in the first image [49,50].

• The spatial neighborhood criterion uses the proximity constraint : if one pixel is close to another,
so should their two corresponding pixels in the other view [51].
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Figure 1. Diagrams representing the three strategies to reduce the complexity of the dense matching
problem:geometric (left); spatio-temporal (center) and spatial neighborhood (right). The dark blue
square represents the pixel whose counterpart in the other view is being sought; light blue represents
the reduced search space defined by the criterion; in the right hand strategy green pixels are known
correspondences.

In the literature, most underwater dense pipelines are based on the geometric
criterion [21,26,32,52–56]. Some studies also employed this criterion [37,39–41] through the use
of software developed for the air environment such as the open-source software MicMac [57] or
the proprietary software Photoscan (Agisoft). The spatio-temporal criterion is rarely used in this
context but is nonetheless often found in structure-from-motion (SFM) strategies because of its
tracking capabilities [26]. As for the spatial neighborhood criterion, this approach of quasi-dense
reconstruction was mainly developed in the context of high disparity aerial imagery [58–60] and
is practically absent from underwater work. It is used in some studies [16,37,38,61,62] through
the open-source software PMVS (Patch-based Multi-View Stereo) [63] and in a recently developed
pipeline for an aquatic study [64], both times in combination with the geometric criterion.

The main drawback is that water greatly amplifies the effects of rays of light passing through
different diopters (water, air, housing glass, lens glass). The consequence is that it significantly
weakens the a priori pinhole hypothesis. Apart from Servos et al. [56] or Drap et al. [65], these studies
do not clearly specify whether they adapted the geometric criterion, used to densify the matching, to
the underwater environment (although they adapted their three-dimensional reprojection models).

Whatever their criterion, dense matching algorithms are very sensitive to the specificities of
underwater environment. Indeed, most usual pipelines have been developed to be used on static
or rather rigid scenes (such as objects, or indoor or urban areas) and they encounter difficulties when
faced with the dynamics and unstructured composition of natural environments [66]. Thus, moving
objects (fauna or flora) are usually rejected from the reconstruction or add errors in the final cloud [67].

In addition, the quality of shallow underwater images suffers from highly variable effects
(such as loss of sharpness, contrast and colors, inhomogeneous illumination or changing reflectance,
see Figure 2) which interfere with similarity measurements. These problems are mainly treated in the
literature by preprocessing the original data [16,25,27,43,45,52,54,68]. However, this often reinforces
noise and artifacts. Some studies [46,64,68] have also attempted to use multiple point detectors to
increase the quantity of extracted data. Residual errors are essentially dealt with by using filters.

Moreover, the high absorption of electromagnetic waves underwater, amplified by turbidity,
tends to lead to a big drop in visibility with an increase in the distance. This phenomenon could
make entire parts of the images devoid of real information and which should not be reconstructed.
In the literature, they are mainly removed manually from the final cloud, while some authors, like
Sedlazeck et al. [26], have tried to reject them automatically using background segmentation.
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Figure 2. Illustration of different optical characteristics of the aquatic environment. From left to
right: electromagnetic wave absorption causes elements to disappear beyond a certain distance; at
26 m deep, colors have all disappeared except in the blue-green bands; an example of turbidity in the
Atlantic water.

To conclude, this survey shows that in the general context and under the constraints introduced
in the preamble, the difficulties related to the dense three-dimensional reconstruction of the seabed
in shallow water using a simple logistics is not fully resolved in the literature.

3. Sensor: Our Agile Micro-System Dedicated to Optical Acquisitions in Shallow Water

The main objective of our in situ optical acquisition system is to provide data enabling direct
identification of individual objects of interest. To achieve this goal, acquisition must be done at the
correct scale, which sets the design of the main key parameters of the system.

3.1. Designing the Key Parameters of the System to Map at the Scale of Individual Objects of Interest

The approach used in this section is a version of the Extended Ground Truth (EGT)
methodology [69] adapted to an underwater environment. This methodology designs the theoretical
parameters of the system from the needs of the field experts. The Figure 3 presents the flowchart
we follow. Targeted objects of interest concerned by our study can be either mineral (such as rocks,
pebbles or stones), vegetable (such as forests, meadows, algae or seagrasses), animal (such as reef,
aggregation, corals, sea anemones, invertebrate or fish) or manufactured (such as ceramics, hulls,
apparels, walls or pipelines). Their typical size ranges from centimeter to decimeter. To directly
identify them, 12 to 15 pixels per object are needed [70–73]. So, the Ground Sample Distance (GSD, i.e.,
the physical section corresponding to the side of a pixel) for our targeted objects should range
from 0.6 mm for the finest analyses, to 25 mm for coarser ones (see Figure 4). To obtain the ranges for
the other key parameters we use representative technical characteristics of light-weight cameras.

GSD

Select a
sensor

Select a
vectorDimensions of the payload

Maximum relative travel speed

Costs
evaluation

Maximum working distance

Select a 
travel speed

Select a working
distance

from 0.6 to 25 mm
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2b 
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Figure 3. Adaptation to the underwater environment of the Extended Ground Truth (EGT)
methodology, used to design the key parameters of the system to perform acquisitions at the scale
of individual objects of interest. Some parameters, like the Ground Sample Distance (GSD) or the
stereoscopic overlap can be pre-set by the needs of the study.
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1.00 cm GSD 0.50 cm GSD 0.10 cm GSD 0.02 cm GSD

Figure 4. This series shows the level of detail available for the same scene according to a given GSD.
To identify the octopus among the rocks, a subcentimeter GSD is needed.

Ranging the GSD implies ranging the maximum distance to the target (Dmm, commonly called
the height in aerial photogrammetry). Equation (1) shows their relationship, where pmm is the
physical size of a pixel on the sensor and fmm its fixed focal length. Considering the magnifying
effect of water [7], the maximum distance to the targeted objects is ranged from 0.5 to 4 meters for
fine analyses and from 10 to 15 meters for coarse ones.

Dmm ≤ GSDmm × fmm

pmm
(1)

The distance to the target will influence the depth granularity (Gzmm, also known as depth
uncertainty) [74], that is, the ability of the system to resolve the depth of an object at a given distance.
As shown in Equation (2), it is constrained by the baseline (Bmm, i.e., the physical distance between
the optical centers of the two stereoscopic images).

Gzmm = GSD × Dmm

Bmm
(2)

For a given GSD, the greater the baseline, the finer the depth granularity. However, enlarging
the baseline reduces the stereoscopic overlap (Oprct, i.e., the common part of the scene shared by
the images of a stereopair) as we can see in Equation (3) (for dual camera systems), where Wpix is
the width of the images in pixels. It is generally recommended in aerial photogrammetry to have
a stereoscopic overlap of at least 60% (0.6) [75,76]. To favor dense local reconstruction conditions, a
greater overlap of at least 80% (0.8) is chosen. With our previously fixed GSD, it yields a baseline
from 5 to 30 cm for fine analyses, and a more relaxed one (up to 1–2 m) for coarser ones. As a
result, the obtained granularity ranges from 1 to 50 mm (fine studies) and from 125 to 250 mm
(coarse studies).

Bmm ≤ (1 − Oprct)× Wpix × GSDmm (3)

The previous considerations depend only on the optical part of the sensor. However, its
electronic part also constrains the system and introduces potential blurs on images. The exposure
time (Exps) is the length of time needed by the sensor to collect enough photons and convert them to
digital measurements. To prevent motion blur, the relative displacement of the observed scene to the
sensor during the exposure time must be smaller than the GSD. The synchronization time (Synchs) is
the length of time separating the two acquisitions of the same stereopair. To prevent synchronization
blur, the relative displacement of the observed scene during the synchronization time must also be
smaller than the GSD. Therefore, the maximum relative travel speed of the system (rsmm/s) has to be
dynamically adapted to in situ lighting and dynamic conditions (Equation (4)).

rsmm/s ≤
GSDmm

max(Exps, Synchs)
(4)
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Average exposure time in shallow water varies around 3 ms. It can rise to 70 ms when the
lighting is low or drops to 1 ms in very good conditions. As for an achievable synchronization rate, it
usually stands between 500 ms and 1 ms. Therefore, in an average case, the maximum relative speed
ranges from 0.1 m/s (detailed studies) to 2.5 m/s (coarse studies).

On our observation scale, the dynamism of the scene is no longer negligible and the use of a
single sensor (temporal stereopairs) is no longer possible: two sensors are required (simultaneous
stereopairs). In practice, obtaining a precise (higher than one hundredth of a second) and
stable synchronization of affordable, light-weight cameras is problematic, even with an electronic
simultaneous trigger. Figure 5 demonstrates how such synchronization times can be insufficient in
highly dynamic situations and the impact on matching algorithms.

Figure 5. Demonstration of the impact of synchronization during the matching stage in the presence
of highly dynamic movements: flickering illumination (illustrated on the left). The point detector and
sparse matching algorithms used for this test are described in Section 4. Top, a stereoscopic pair with
a synchronization time of slightly less than half of a second: 700 points detected, 375 matches, but
only 26 valid; Bottom, a stereoscopic pair with a better synchronization time of one thousandth of a
second: 700 points detected, 536 matches, 471 valid.

≠ clocks

ø no reset

≠ exposure≠ delay

ø no elec-
trical trigger full synchro

Clock Trigger Acquisition duration Delay Previous task

Figure 6. The main parameters involved in the synchronization of two cameras. Only the last case can
be considered fully synchronized: a common clock for the two devices; an external electronic trigger
to request acquisition; a fixed delay between the reception of the trigger and the physical action; the
ability of the sensor to reset the previous action and immediately begin the new one; and finally, a
fixed acquisition time common to both sensors.

Indeed, the electronic settings of these cameras (detailed in Figure 6) that allow a truly effective
synchronization are seldom accessible and need to be hacked. This situation should change with
the improved availability of open-firmwares. Figure 7 shows that with an adequate synchronization
time, it is possible to reconstruct in three dimensions very dynamic objects such as fauna, even with
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affordable, light-weight cameras. This result could be very interesting for underwater biologists who
work on statistical measurements of fish [77–81].

∼
3.

3
m

m
G

SD

Figure 7. Tridimensional reconstruction of fauna becomes possible with an adequate synchronization
time between cameras. Here a school of fish (mullet) taken with a synchronization time of less than
one thousandth of a second (left) and two views of the point cloud extracted from one stereopair with
the reconstruction algorithm we will present later (resolution reduced from 1280 × 960 to 700 × 525,
GSD is given accordingly).

Table 1 summarizes the theoretical key parameters which allow the design of the acquisition
system (vehicle and payload). To be able to dynamically adapt the relative travel speed to the ever
changing environmental conditions of shallow water and limit the impact of blurs, the vehicle and
sensor have to work closely together. As this kind of interaction cannot be achieved with off-the-shelf
micro-ROVs, we have developed our own robotic system.

Table 1. Summary of the key parameters needed to design the system given the GSD required by our
study and the common parameters of affordable, light-weight cameras. Picking a sensor will set the
parameter values within these ranges.

Ground Sample Distance GSDmm
0.6 mm 25 mm

(Fine Analyses) (Coarse Analyses)

Maximum distance of observation Dmm 500 to 4000 mm 10,000 to >15,000 mm
Baseline (for a 80% overlap) Bmm 50 to 300 mm 1000 to >2000 mm

Depth granularity Gzmm 1 to 50 mm 125 to 250 mm
Maximum Relative Speed Rsmm/s 100 mm/s 2500 mm/s

3.2. A Micro-System to Perform on Demand Acquisition in Shallow Water Using Simple Logistics

As the acquisition system is destined to be used by the field experts, it should meet criteria such
as agility, simple logistics, ease of reproducing. The operational agility of a system as well as the
logistical complexity involved in its transportation and deployment are mostly affected by weight
and size. As for ease of reproducing, which is important for operational flexibility and for facilitating
maintenance tasks, it involves both low costs and simple manufacturing process.

One of the biggest constraints on both size and weight comes from the propulsion system
(propellers, motors, controllers and batteries). Indeed, most cheap sealed motors currently available
(such as Seabotix) are significant in size (&20 cm, ∼700 g) and need to be supplied by a consequent
battery. To solve this problem, we adapted to underwater environment the efficient micro brushless
motors we had previously used on our aerial multirotors (UAVs) [82,83]. Although the dimensions
of the motors were kept (<5 cm, ∼50 g), we used a higher torque than in air (800 kV), which is more
appropriate for the aquatic environment and yields a 690 g thrust. To achieve this, we created a
marinization method enabling them to run in total immersion in salt water [84]. Figure 8 shows the
method which includes our latest improvements following a three years of field testing. A brushless
motor run barely 10 h in salt water (40 g/L) before seizing up. With our modifications, the same
motor showed no sign of wear after running hundreds of hours.
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Figure 8. Illustration of the procedure that we conceived to marinize brushless motors so they can run
in total immersion in salt water.

Concerning sensors, among the affordable solutions that comply with the range values set in the
previous section, we selected two small and complementary types of cameras: uEye and GoPro. The
uEyes are low-cost professional cameras. In the literature, they have been mounted as a stereoscopic
system for near real-time autonomous navigation of UAVs (Unmanned Aerial Vehicles) [85] and
as a single embedded camera in some underwater projects [86] for remote control purpose. They
need a computer to operate in order to trigger the shooting, retrieve the acquired images and
save them. We designed all this control pipeline to optimize the use of limited computation
resources of embedded units (parallel programming) and to be dynamically adaptive to the changing
environmental conditions. We conducted an experimental measurement of the synchronization time:
the comparison of the value of a digital counter (accurate to the thousandth of a second) on the two
views shows an accuracy of three-thousandths of a second, with no drift over the time.

The second type of camera, the GoPros are popular action cameras. They are characterized by
a good image quality even when compared to professional equipment [87]. They are autonomous in
energy and store the images on internal memory (no need for an external computer) but they are not
meant to be configured or controlled by a robotic platform. Some modification is therefore required.
Indeed, some functions (such as white balance or ISO) cannot be disabled because of the actual
proprietary firmware. With our modifications, we measured a synchronization time of half a second
using the time-laps mode and of three-hundredths of a second when using the synchronization cable
accessory (with a small drift over time).

Feature uEye rig GoPro rig
Res. (px) 1280 × 1024 3840 × 2880

Pix. size (µm) 5.3 1.60
Focale (mm) 8.0 2.5

Synch. Time (s) 0.003 0.500 / 0.030
Control Ad hoc Auto / Hack

Stockage Computer SDHC
Housing Custom-made Accessory

Weight (g) ∼ 450 ∼ 525
Dim. (cm) ∼ 22 × 8 × 8 ∼ 22 × 6 × 8

For a GSD between 0.6 and 25 mm
Pix. size / focale 0.66 0.64
Distance (mm) 1200 to >15000 1250 to >15000
Baseline (mm) 90 to 150 90 to 150

Depth Gran. (mm) 5 to 1250 5 to 1200
Rel. Speed (m/s) 0.05 to 0.80 0.01 to 0.80

Figure 9. The uEye (top left) and GoPro (bottom left) cameras, the built rigs (center) and their main
technical features (right).
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We built custom waterproof housings for the uEyes and high-speed sealed communication
cables which allow the communication with the robot. The built rigs enable the baseline to be adjusted
from 9 to 15 cm with a centimetric step. An illustration of both cameras, rigs and a table summarizing
the main technical features can be found in Figure 9 while Figure 10 provides sample images acquired
in a diving pool. Both rigs are mounted on the vehicle. The double acquisition is very useful when
access to the test areas is time limited. Indeed, their complementarity offers two different fields of
views of the same scene and the setting of different baselines allows two levels of granularity to be
captured in a single coverage.

from 1.0 to 4.6 mm GSD from 1.5 to 1.8 mm GSD from 0.6 to 1.7 mm GSD

from 0.3 to 1.0 mm GSD from 1.0 to 5.7 mm GSD from 0.8 to 5.3 mm GSD

Figure 10. Examples of lefthand images from stereopairs acquired by the uEye rig (top) and the GoPro
rig (bottom) in the diving pool.

Concerning the simplicity and the ease of duplication of the system, the design of our
micro-robot is inspired by MIT’s Seaperch pedagogical project [88,89] (Figure 11). Our sealing system
is simple, robust and allows the housing to be quickly opened and closed anywhere without tools.
It consists of a large pressure PVC (PolyVinyl Chloride) pipe and two machined transparent PMMA
(PolyMethyl MethAcrylate) caps maintained together by clamps and sealed with O-rings. The inner
frame is machined and locked to the cap with sealed connectors to enable communication between
inside and submerged elements. A large part of our system is made up of these submerged elements
to favor modularity (such as disposition, addition or removal). We designed an affordable method
using hot glue and heat shrink tube to achieve interchangeable wet connections for these blocks. They
are mounted on a drilled outer frame that allows air venting and water draining. It is made of PVC
pipes and fittings that interlock and can be easily reconfigured. The construction of our complete
structure only requires simple tools such as a cutting machine, saws or files.

Figure 11. The design of our agile micro underwater robot. From left to right: our prototype of the
micro pedagogical ROV SeaPerch which inspired our design; the sealing system we designed; the
model of the inner frame; the three-dimensional model of our robot.
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Figure 12. Built prototype of Ryujin. From left to right: two prototypes of Ryujin; the electronics
mounted on the internal frame; the rear cap with its sealed connectors; the payloads mounted under
the robot.

For greater flexibility, we designed the system as a hybrid: it can be used in both ROV and AUV
modes depending on the type of mission. To ensure the systematization of data acquisition required
in scientific robotic missions, the levels of automation implemented for the AUV mode can be used
in ROV mode. The experimental results of our depth control yield sub-decimetric precision. This is
sufficient to obtain the adequate mean distance of observation for ensuring the targeted GSD when
considering low sloping areas. The precision of our absolute travel speed control (resulting from the
integrated closed-loop of brushless motors) is lower than 5%. This helps to prevent most motion and
synchronization blurs.

The resulting prototype, Ryujin (Sea Dragon) was among the first micro hybrid robots built. Its
main features are summarized in Table 2. Ryujin is presented in Figure 12 and can be seen during
tests in a diving pool in Figure 13. Our prototype has currently been tested for about fifty hours in
a diving pool over a period of three years. Ryujin also successfully performed autonomously in a
port during two consecutive editions of the SAUC-E competition, a European student challenge for
autonomous underwater vehicles.

Figure 13. The underwater vehicle Ryujin during test sessions in the diving pool of Charenton-le-Pont.

Table 2. Main features of our hybrid micro-robot.

Ryujin Underwater Vehicle

Size 20 × 20 × 30 cm Depth rating 100 m
Weight 9 Kg (tested up to 30 m)

Autonomy ∼2 h Depth control accuracy ∼5 cm
Cost ∼2000 e Absolute speed control accuracy ∼5 %

This section concludes how stereoscopic pairs at the scale of individual objects of interest are
acquired by our system using simple logistics. The next section is dedicated to how our system
robustly processes these underwater data to extract their three-dimensional information.

4. Post-Processing Pipeline: Retrieving the Three-Dimensional Information from
Underwater Stereopairs

As seen in Section 2, three strategies can be used to create dense point clouds. Those using
geometric or spatio-temporal criterion inherently assume that corresponding pixels have a high
similarity score. Underwater, this systematic approach often fails in non textured areas resulting
from high absorption. Indeed, the pixels of such areas yield high similarity scores, but matching them
makes no sense. Because of its local adaptation abilities to detect these cases, we have chosen to rely
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solely on the spatial neighborhood criterion and designed an algorithm that propagates the matching
from the most reliable areas (the ones that are the most textured) to the areas that are less so.

An overview of our algorithm is shown in Figure 14. It starts by identifying the most textured
areas on the images. Pixels representative of these areas are then matched inside each stereopair to
form a robust subset called seeds. Afterwards, the matching is expanded in the neighborhood of
the seeds to enable a reliable densification in the underwater context. Finally, all matched pixels are
reprojected using the camera model to form the three-dimensional point cloud. In this section, we
describe all these steps in details.

3D
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Outliers

Suppression

Correlation
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Figure 14. Overview of our underwater three-dimensional reconstruction algorithm.

4.1. Robust Identification of the Most Textured Areas in Underwater Images

The first step of the three-dimensional reconstruction algorithm is to extract a subset of pixels
representative of the textured areas to form the seeds. Points of interest are naturally good seed
candidates as they present distinctive features and therefore allow a reliable match. Many aerial
interest point detectors have been used underwater. These include SIFT [90], SURF [91] and
Harris [92]. Méline et al. [46] and Skarlatos et al. [38] showed that SIFT and SURF detectors-descriptors
are particularly sensitive to speckle noise and vignetting effect which greatly weaken their
performance on underwater images. Conversely, the Harris detector focuses on textured areas
and marks their breaks. For these reasons, we decided to use the Harris detector to identify the
seed candidates.

However, the number of points of interest found by the Harris detector is highly sensitive to
the quality of the input image, as we can see on the images at the top of Figure 15. As the number of
seeds used to start the spreading strongly influences the quality of the final reconstruction, we suggest
changing the behavior of the algorithm. Our modification allows the number of detected points to be
monitored more independently of the quality of original images by using a closed-loop approach.

As a reminder, the first step of the Harris detector in its usual version gives a measurement of
interest to each pixel, called the Harris map. The second step deals with the selection of the feature
points. An arbitrary, universal and static threshold is used to separate the pixels of interest, (i.e., with
a high variability of texture, that is, a high value in the Harris map) from the other pixels. Finally, of
these, only local maxima are selected over small areas to form the final set of Harris points.

This second step holds the key to controlling the number of extracted points. Simply
thresholding the histogram of the Harris map at the required number would not supply an adequate
solution as it does not take into account the spatial distribution of the selected points. Therefore, we
propose another kind of modification to reach our goal. A first initial threshold is set as a percentage
of the maximum value of the Harris map to fit to the real measurements. Then, a first set of spatially
selected interest points is computed. If the number of points in this set is not included in the desired
range of the number of interest points, then a new threshold is calculated and the process loops. The
decimation part that extracts feature points from the Harris map (thresholding and selection of local
maxima) is repeated until the obtained number of interest points complies with the request.

To converge as quickly as possible towards the objective, the distance between the obtained
number of points and the boundaries of the target range is calculated. The value of the new threshold
is adjusted in proportion: if we are far from the goal, a huge modification will help to get closer
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effectively. Conversely, a small one will prevent oscillations around the target range. This closed-loop
approach is inspired by proportional correctors used in the field of control and automation [93].
Two examples of our adaptive thresholding results are shown in Figure 15. The flowchart of our
modified Harris algorithm is detailed in Figure 16. At the end of this step, we have acquired a subset
of pixels representative of the most textured areas of each image of a stereopair.

Arbitrary static threshold (usual Harris detector)

Adaptative threshold (our contribution)

Figure 15. Adaptation of the Harris detector to the variable quality of underwater images.These
images were all taken in a lake by a single camera in close proximity to each other (<5 m) and within
a few minutes. The detected Harris points are represented by red circles. The static threshold of the
usual algorithm is arbitrarily set at 189: we obtained only 20 points on the first image, 200 on the
second and 2078 on the third. For the first series with our adaptive thresholding, the target interval
is set at [500–600] and we obtained 500 points for the three images with thresholds that converged
at 108, 167 and 231. For the second series, the interval is set at [1000–1100] and we respectively
obtained 1023, 1000 and 1004 points for final thresholds at 95, 144 and 213.

IMAGE For each
pixels

Harris
measure

HARRIS MAP

Thresholding

Local Maxima
selection 

SET OF
INTEREST POINTS

Check
range

Distance 
to bounds

Adjust
threshold 

Figure 16. Flowchart of our modified Harris detector algorithm dedicated to the
underwater environment.
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Our adaptive version of the Harris detector belongs to the same algorithmic class as the usual
one. The selection step is of linear complexity. To keep the number of iterations of this step as low
as possible, we suppose that temporarily close images have a high probability of having a similar
quality. So, we use the previously calculated threshold as the initial value to process the following
image. On a representative set of images, we observe that, in practice, the convergence is obtained
in less than five iterations. The computational time difference (i.e., number of processor cycles)
between the usual Harris detector and our adaptative version is less than 5%. A limit to the adaptive
ability of the algorithm must be imposed: the image is rejected if too many image pixels are selected
as points of interest.

4.2. Creation of a Reliable Set of Seeds

To fulfill the set of seeds, the Harris points detected in the two images of the stereoscopic pair
must be matched. A correlation measure is used to evaluate the similarity. Potential matches whose
value is too low are rejected. To be efficient, this operator supposes that there is little to no rotation
and only small translations between the two views. This is our case, because our stereoscopic rig is
rigid, synchronized and has a small baseline. By default, the fast SSD (Sum of Squared Differences)
criterion is used. It gives good results on submarine views with no strong color differences. When
the matching percentage is too low, the algorithm switches to the more robust but more complex
ZNCC (Zero-mean Normalized Cross-Correlation) criterion. The size of the correlation window is
important: small ones do not have enough information to obtain a reliable discrimination whereas
big ones are time consuming. In our case a 13 × 13 window offers the best compromise on average.

Figure 17. Result of the seed generation step of our algorithm on an underwater Stereopair
(Lac Pavin, Auvergne): out of 969 initial interest points, 517 are successfully matched (53%).

Figure 18. Result of seed generation using an implementation of the SIFT algorithm [94]
(same stereopair as Figure 17): out of 954 initial interest points, 263 are successfully matched,
(i.e., 27% points).
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Figure 17 shows the results of the seed generation step of our algorithm on an underwater
stereopair: 53% of the detected interest points are matched. In comparison, Figure 18 presents the
results of an implementation of a sparse matching algorithm based on the SIFT detector-descriptor
on the same stereopair. To facilitate the comparison, the target range of our algorithm was fitted to the
number of interest points found by the SIFT algorithm. As a previous result, our algorithm matches
almost 50% extra points than SIFT for this stereopair.

Quantity alone is not sufficient to ensure the quality of dense reconstruction. It is also necessary
to ascertain the reliability of the seeds, that is, of the sparse matching. Filtering algorithms classify
each matched pair as inlier (reliable information) or outlier (error). To achieve this without relying on
the geometry, we designed a filtering algorithm based on a statistical criterion applied over the local
vector flow.

A matched vector is a useful way to spatially represent the relationship between two matched
points and is defined by their coordinates placed in the same image plane. For each matched vector
~vi, our filtering algorithm starts to extract the local vector flow, which is the subset of matched vectors
in the neighborhood of ~vi. Then it computes the number of matched vectors of the local flow that
have similar norm and direction. If this number is too low, then ~vi is considered an outlier and is
removed from the list of candidate vectors. Otherwise, as an inlier, it is added to the list of seeds.

Isolated pairs are systematically eliminated, which is preferable as the areas they represent
would not provide a reliable spread. Figure 19 shows a result of our filtering algorithm: more
than 75% of the initial matched vectors are valid. All outliers are efficiently filtered, and, as expected,
some isolated inliers are excluded by the statistical criterion. For this test, they represent less than 2%
of the outliers. If necessary, one way to reduce these false outliers is to increase the desired number
of initial interest points.

Figure 19. Illustration of our filtering step based on a statistical criterion applied over the local vector
flow. Out of the 969 detected interest points, 660 initial matched vectors have been formed. Then, all
vectors that are not consistent with the local flow are rejected (143, in red) and the others (517, in blue)
form the list of reliable seeds (78% of the matched points are inliers).

To assess our seed generation algorithm and produce some general statistics, we created an
underwater image database. This database is composed of about 100 underwater stereoscopic pairs.
The images were taken in various lighting conditions and in various environments (such as lakes,
rivers or seas). The images are subsampled from 3840 × 2880 to 700 × 525 pixels.

As seen before, a key point of our algorithm is that it allows a target number of interest points
to be selected. This ability really distinguishes it from more usual algorithms dedicated to sparse
matching. Therefore, we compute the number of inliers (seeds) and outliers obtained according to
the number of interest points requested (target ranges). For each range from [100–200] to [3900–4000],
computations are done on the whole database. The results are shown as a graph in Figure 20.
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The ratio of inliers versus outliers is stable (±4% only over all the ranges) even when the number
of interest points is very low or very high. In general (median), our algorithm can extract 53% of
seeds from the initial interest points (73% in the best cases and 28% in the worst cases). Furthermore,
only 23% of the initial matches become outliers (7% in the best cases and 46% in the worst cases) and
no false inliers have been found. Given these results, we can consider that our algorithm is robust to
the number of interest point requested.

Implementations of SIFT and SURF detectors-descriptors available in the OpenCV library have
been used to process the image database. The results obtained are presented in the tables of Figure 20.
Overall, SURF performs a little bit better than SIFT (46% versus 35% median value), but we must note
that SURF is very irregular in its results and beyond 1000 points of interest the median rate falls
below 40%. The filter also often lets through some outliers (3–5). Conversely, SIFT is more stable and
unfiltered outliers are less common (one or two occasionally). However, it presents a low ratio of
inliers compared to the number of interest points and this ratio further decreases with the increase in
the number of points.

15
0

55
0

95
0

13
50

17
50

21
50

25
50

29
50

33
50

37
50

10
0%

Median
Inliers

Outliers

Min-Max

Matches

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

Number of initial points of interest

N
um

be
r o

f i
nl

ie
rs

/o
ut

lie
rs

 fo
rm

ed
 d

ur
in

g 
th

e 
m

at
ch

in
g

Number of seeds
Our algorithm

Range Median Min Max

All 53% 28% 73%

[500 - 600] 55% 31% 76%
(305) (170) (419)

[900 - 1000] 55% 33% 75%
(526) (317) (714)
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950 (median) 35% 6% 72%
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Figure 20. General statistics obtained from a sample of 200 images taken in six different stretches of
water. Left, the chart provides the statistical results of our algorithm and right, the statistical results
are compared with those obtained by SURF and SIFT on the same sample images.

To allow the comparison of the results, the median number of interest points detected by SURF
or SIFT is used to set the target range of our algorithm. Our algorithm obtains a higher median
percentage of seed generation: 55% versus 46% (SURF) and 55% versus 35% (SIFT). To conclude, our
algorithm generally yields better results and is much more consistent in its behavior.

4.3. Spreading of the Matching and Automatic Exclusion of Areas without Information

Once the seed generation is done, the next step of our reconstruction algorithm is to recursively
spread the matching in the neighborhood of these seeds in order to produce a dense disparity map.
As seen before, a seed is a couple of matched pixels: SL in the left view and SR in the right one.
The neighborhood of each seed is independently studied and is used as a local starting point for
the growth of its own region. Let us call WL a square 5 × 5 window centered on SL and WR the
corresponding one on SR. These two windows describe the neighborhood of a seed. Each pixel PWL of
WL is individually evaluated to search for a corresponding pixel. For a given pixel PWL, which has not
yet been matched, a matching candidate is sought in a 3 × 3 window, centered on the equivalent pixel
PWR of WR. This yields nine candidate pixels, whose similarity to PWL is assessed by a correlation
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measurement. If the best score is not too low, the corresponding candidate is matched with PWL and
the color information is saved. Their disparity is calculated and then refined at a subpixel level to
enhance the depth granularity of the system. This interpolation is performed by seeking the exact
position of the correlation paraboloid peak. The subpixel disparity is saved to complete the disparity
map. A new match can be better than one already saved in the disparity map because search windows
overlap (candidate pixels are side by side). In this case, the new PWL corresponding pixel is saved
and the former is released and may be evaluated again if it falls in a new WL.

Each point matched in the neighborhood of a seed becomes a new seed to spread the matching
in its own neighborhood. As long as there are seeds to study, the regions will continue to grow in this
way. We then distinguish two possible configurations: collision or expansion. Indeed, regions near
each other will meet soon and stabilize around a border. Still unmatched pixels PWL of current studied
windows WL can replace former matches if they give a better result. This will refine the border, but
the situation will stabilize because PWL pixels that are already matched are not reconsidered. The
respective spreading of these regions in this direction will then be blocked. Conversely, if there is
no collision, the regions may extend as long as matches are found. The more we move away from
the original seeds, the more we depart from the reliable textured areas. Indeed, nothing matches
more easily than two points in a somewhat "uniform" area. We therefore limit the spreading within
a radius around the original seeds, and areas without real information are thereby automatically
excluded from the final reconstruction. An optimum situation is obtained with a sufficient number of
seeds and a small radius of expansion.

Figure 21 presents two examples of the densification step demonstrating the automatic exclusion
of unreliable areas and shows the obtained disparity maps. The flowchart of our matching
densification algorithm is provided in Figure 22.
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Figure 21. Matching densification by propagation and automatic exclusion of areas without real
information. Two stereopairs taken in the lake of Plage Bleue, France (top) and over the Thistlegorm
shipwreck, Egypt (bottom). Left: identification of the most textured areas (modified Harris points);
Center: seed generation (vector flows); Right: dense matching by spreading (disparity maps). On the
disparity maps, the excluded areas are in black. The disparity is represented in grayscale: the higher
the value (lighter gray), the greater the disparity, the closer to the camera.
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Figure 22. Flowcharts of our dense matching by propagation.

4.4. Reprojection and Three-Dimensional Point Cloud

To finalize the process and obtain a dense and colored point cloud, we have to reproject each
pixel of the disparity map in the camera frame. A pinhole model is used to simplify the perspective
transformation performed by the sensor when recording the scene information as an image. This
model uses several parameters of the sensor (such as focal length, optical center positions, radial
and tangential distortion parameters, pixel ratio, etc.) which are usually estimated by calibration.
However, in our context, the huge differences in physical propagation of light in water, glass and
air create significant effects that invalidate the pinhole model. This model can nevertheless yield
a satisfactory approximate reprojection, provided that all these new diopters are considered as
additional sensor lenses [21,37,38,45,95,96].

Indeed, by artificially increasing the focal length of the sensor, the image plane is virtually moved
backwards, thereby redressing all re-projected rays to compensate the bending effect of the diopters.
Furthermore, by altering the radial distortion coefficients, the focal length can be locally adjusted to
handle the differences in the refractive index regarding the angle of incidence: this creates an artificial
curvature of the image plane. The drawback is that this approximation is accurate only for a given
distance of observation.

From an operational point of view, these artificially altered parameters can also be estimated by
calibration, but this has to be done in the presence of the diopters. That is why the calibration must
be performed in situ, directly in the waters of the mission. For our in situ calibration, we used a flat
asymmetric chessboard target (45 × 45 cm, 9 × 10 squares). The procedure of acquiring calibration
data is the same as in air, except that the distance to the target must be constant and equal to the
distance of observation required by the study.

Figure 23 illustrates all the steps of our three-dimensional reconstruction algorithm on three
examples. As we used a fixed baseline (rigid rig), the in situ calibration needs only to be done
once per mission. Furthermore, as the cameras are in the same plane with parallel optical axes,
this simplifies the geometry of the system and therefore simplifies the calculations used for the
reprojection [97]. In addition, the knowledge of the baseline (distance between the two cameras)
allows the reconstruction of the scene at the right scale factor.
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about 0.6 mm GSD about 0.9 mm GSD about 0.8 mm GSD

Figure 23. Illustration of the processing pipeline on sample images acquired in lakes with a single
GoPro (no rig, small displacements, resolution reduced from 3840 × 2880 px to 700× 525 px and GSD
given accordingly). From top to bottom: original lefthand image of the stereopair, identification of
the most textured areas (modified Harris points), seed generation (vector flows), dense matching by
spreading (disparity maps), and finally three-dimensional reprojection (colored point clouds).
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5. Results of Field Missions in the Mediterranean Sea and Analysis

In this section, we report on how our work stood up to experimental field conditions. This
analysis completes the results presented in the previous sections. This location presents many
interesting features like clear water or varied seabed which offers both texture and relief (such as
screes, rocks, seagrasses or cliffs, as seen in Figure 24). In addition, sufficient depths (4–15 m deep)
are accessible near the coast without the use of a boat. All these conditions are representative of the
experimental setting exposed in the preamble. The mission took place over three days in August 2013
and two days in late October 2013. The size of the study area was approximately 1000 m2, and is
shown in Figure 25.

Figure 24. Illustrations of the diversity of the seabed in the study area at Cap de Nice.From left to
right: screes, rocks, seagrasses and cliffs.

Figure 25. The study area at Cap de Nice is marked by the green square on both satellite image (Google
Maps©) and airborne view (Bing Maps©) and two photographs on the right show the launching
platform below the Sea Trail.

5.1. Equipment of the Field with Landmark Patterns

Using markers on the field as control points is a common practice in photogrammetry as well as
in computer vision. By conducting real measurements on these markers, such as depth or position,
they enable the establishment of a scaled reference frame. The latter is used to control the accuracy
of the three-dimensional reconstruction. Concerning these markers, underwater literature shows two
main possibilities: rules (alternating bands of color representing known distances) and archaeological
markers (labels with numbers and colors) [98].

These solutions are not optimal for computer vision algorithms. Indeed, as rules are a periodic
repetition of the same pattern, it creates indecision in an automatic process. This problem does not
occur with archeological markers as they are all different, but their spatial extent is lacking, which do
not ensure their detection on images.

The landmark patterns we designed (Figure 26, left) are a compromise of what is done in aerial
and computer vision work [99] and were inspired by the feedback given in Skarlatos and Rova [100].
Our landmarks are large (20 × 20 cm) to be easily detected on images and composed of colored tiles
acting as scale factors (equivalent to rules). Each landmark has a unique pattern of numbers, targets
and colors which facilitate its identification together with its spatial orientation. After feedback from
the first mission, the original white tiles were replaced by gray ones to avoid overexposure problems
with the cameras.
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Figure 26. Left, the underwater landmark patterns we designed and used to equip the study area; and
right, the sketch of the study area realized from in situ notes.

We observed from field experience that a compromise between spatial and vertical equirepartion
of the landmarks gives a wealth of information on the three-dimensional morphology of the scene. In
our case that means around thirty landmark patterns.

The ground truth measurements from the landmark patterns supplemented by in situ notes made
it possible to draw rough maps of study areas. This summary spatial information is very useful for
operational decision making (see Figure 26, right).

5.2. Analysis of the Obtained Results

Concerning the acquired data, the system was used in ROV mode with an automatic depth
control and was systematically accompanied by a diver (Figure 27). The uEye and GoPro rigs were
used for the acquisition. Sample images acquired by both sensors are shown in Figure 28. The
primary objective to visually identify individual objects of interest is successful. The experimental
GSD can be measured on images containing a landmark. The knowledge of its depth combined with
the depth measurement of the robots allows the distance between the sensor and the landmark to be
estimated, and so the theoretical GSD. As expected, the experimental and theoretical GSD are close:
the residual difference can be explained by our error in depth measurements (±5 cm).

Figure 27. For the in situ acquisition, the robot is equipped with both rigs (uEye and GoPro). It is
used in ROV mode with an automatic depth control and is accompanied by a diver who oversees
the operation.
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about 0.3 mm GSD from 1.0 to 1.4 mm GSD from 1.2 to 1.8 mm GSD

from 0.4 to 1.2 mm GSD from 0.8 to 1.2 mm GSD from 0.4 to 1.8 mm GSD

Figure 28. Examples of lefthand images of stereopairs acquired by the uEye rig (top) and
GoPro rig (bottom).

Approximately 20, 000 stereopairs were acquired over the whole area. However, numerous
acquisitions in low light conditions are blurred. So, the closed-loop allowing to adapt the vehicle
speed to the sensor needs has to be improved. We extracted several dense point clouds from
this dataset, some of which are illustrated in Figure 29. These results were used to analyze the
performance of our post-processing pipeline.

Concerning the robustness to the quality of the input images, the various point clouds we
produced show that the adaptive threshold step we added in the Harris detector is crucial. Indeed,
on the images we acquired under quite similar conditions, the final thresholds found by our algorithm
for a given target range of interest points vary in an interval of 20%.

Furthermore, we acquired images with very low light conditions (close to sunset time) to test the
limits of our adaptive thresholding. The input images have a narrow spectrum as all their dynamics
are contained within 15% of their full range [0–255]. The adaptive thresholds converge to a value
about 80% lower than that of the general case. The extracted interest points are still reliable as we can
see on the obtained point clouds, shown in Figure 30.

Concerning the density of the created point clouds, our results show that our algorithm allows
the dense matching of 60% to 85% of the pixels of the images considering stereoscopic pairs with
an overlap rate between 70% to 90%. The measured density of the point clouds is consistent with
the GSD of the acquisitions. As an example, measurements on the first two point clouds presented
in Figure 29 show that we obtain about 1–2 points per square centimeter for a corresponding GSD
between 7 mm and 5.5 mm for the first cloud, and about 6–7 points per square centimeters for a
corresponding GSD of about 3 mm for the second cloud.

Concerning the accuracy of the created point clouds, as it is related to the scale of the
acquisition, we will evaluate it with respect to the GSD. Reconstruction errors come from multiple
sources such as matching (accuracy of the interpolation), calibration (estimation of the sensor
parameters) or reprojection (approximation of the model or significant difference with the calibration
distance). Quantifying these errors requires comparing the numerical metrics of the clouds to
corresponding ground truth metrics. We have performed these in situ measurements on characteristic
objects such as rocks using a measuring tape. The results obtained, some of which are shown
in Table 3, lead us to estimate an accuracy less than two times the GSD (a < ±2 × GSD).
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Figure 29. Examples of three local point clouds of the seabed, each extracted from one stereopair
(two views). Left, the clouds in real color and right, the same clouds in scale color (the reprojection
is relative to the cameras, the closer the point to the camera, the warmer the color). The image
resolution has been reduced from 3840 × 2880 px to 700 × 525 px (the GSD is given with respect
to the sub-sampled images).
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Figure 30. Test of the limits of our adaptive thresholding with two stereopairs acquired in very low
light conditions. Left: the two point clouds obtained from the original stereopairs (no preprocessing).
Center: the histograms of the input images show that all their dynamics are concentrated on less
than 12% of the full range (0–255) for the first, and less than 6% for the second. Right: the lefthand
images of the stereopairs with a manually greatly enhanced contrast for the purpose of illustration.

Table 3. A sample of measurements performed in situ on rocks (ground truth) with a measuring tape
and their corresponding measurements on the point clouds extracted at a given GSD. The accuracy is
less than twice the GSD. Considering our very close observation scales, the imprecision on the actual
measurements of great distances becomes much larger than the average inaccuracy of the model, thus
these ground truth measurements cannot be considered significant for assessing the precision of the
reconstruction (see the fourth line of the left table).

GSD Ground T. Cloud Meas. Error GSD Ground T. Cloud Meas. Error
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

10 875 862.7 −12.3 0.8 433 434.1 1.1
10 298 307.2 9.2 0.8 427 427.8 0.8
10 49 42.3 −6.7 0.8 350 349.1 −0.9
8 1273 1248.6 −24.4 0.6 220 219.5 −0.5
3 732 734.2 2.2 0.6 170 170.8 0.8
3 218 216.7 −1.3 0.6 113 112.9 −0.1

We should discuss some points about the relevance of such assessment. In situ measurements
are difficult to carry out with a great precision [98,101]. Indeed, the accuracy of the measuring tool
in itself is only ±1 mm. Moreover, the greater the measured distance, the more inaccurate it is,
because of the issue to maintain the tape tension or to stay in the horizontal plane. We estimate
an in situ measurement error of about 2% of the measured distance. When ground truth inaccuracy
becomes much larger than the average inaccuracy of the reconstruction, the measurements cannot
be considered significant for assessing the precision of the reconstruction. In addition, another
difficulty is that it is difficult to rely exactly on the same anchor points between the actual and
numerical measurements.

Therefore, we performed another set of measurements on small objects. Indeed, this reduces the
ground truth error because we can use a more accurate measurement tool (±0.05 mm). On the other
hand, it allows better control of the anchor points as we can extract the studied object from the field.
To be relevant, these objects should have structural and physical characteristics (such as shape, texture
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or color) comparable to that of the objects composing our study areas. The chosen objects are abalone
shells and Figure 31 shows the three-dimensional reconstruction obtained and the small set of actual
measurements we have conducted. The difference between the numerical estimated distances and
the actual ones are about once the GSD (a < ±1 × GSD), which is coherent with the in situ results.

Figure 32 shows that the point cloud obtained by our pipeline from 2 subsampled views is
consistent with that obtained by the MicMac multiview software from 18 views in full resolution.
The number of points obtained by our algorithm is three times higher than that of the MicMac (even
if we consider the suppression of the unreliable points on the border of the point cloud) despite using
a lesser amount of information. However, as expected, given the higher number of points of view
used, the final MicMac result shows a more regular cloud with lower occlusion areas.

∼ 0.25 mm GSD ∼ 0.25 mm GSD

Figure 31. Assessment of the accuracy of our reconstructions from ground truth measurements.
(Top), two abalone shells (Haliotidae) found in the study area, of about 5 × 3 centimeters digital
measurements, and their respective point clouds (scale colors). (Bottom), digital measures on the
point cloud (color mode) of the first abalone shell (Left) and actual measures on the object (Right).
The difference is about ±0.2 mm, i.e., about one time the GSD.
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Figure 32. Two-view and multi-view reconstruction of a same area. Left, a local point cloud extracted
from two subsampled views (700 × 525 px) with our algorithm (the scale-colored cloud is shown
in the inset to give a better idea of the relief). Right, a point cloud extracted from 18 views in full
resolution (3840 × 2880 px) with the multi-view reconstruction software MicMac [57].
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6. Conclusions and Future Work

In this article, we have discussed the problem of obtaining local dense three-dimensional
reconstruction at the scale of individual objects of interest in shallow water using light-weight tools.
We transversely address the problem on both acquisition and image processing. To efficiently acquire
stereoscopic pairs on demand on small shallow water areas using simple logistics, we have designed
one of the smallest agile and replicable acquisition systems: a hybrid underwater micro-robot
equipped with modular optical stereo-rigs. To achieve a dense matching in the underwater
environment, we proposed robust solutions to the relative movements of the scene (synchronization
and travel speed control), to the versatile quality of the acquired images (adaptive thresholding) and
to the strong light absorption that makes entire portions of an image completely devoid of information
(robust detection of textured area and propagation strategy). Finally, we presented an analysis of the
results obtained during two short acquisition campaigns in the Mediterranean Sea.

Future work will involve the registration and merging of our dense local clouds to obtain
a coherent representation of a whole underwater area. We are also currently working on a
method to facilitate the underwater calibration procedure and improve the estimation of our
intrinsic parameters.
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