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Abstract The main function of a grand piano action is to throw the hammer up to the strings by pushing down the key. In the
line of previous studies, a model based on rigid body approximations and nonlinear junctions is proposed. The rigid
body approximation is discussed in some details. The major challenges addressed here pertain to the simulation of
the model: (i) predicting the force exerted by the key on the finger in reaction to a given displacement at the end
of the key, (ii) efficiently and accurately capturing the non-smooth character of the motion due to contact and dry
friction, which are known to be crucial for the touch of the pianist. The presented predictions of the key force (in
other words, the haptic characterization of the piano action) are successful. Combined with a high sensitivity to the
complexity of the model, this comparison between measured and simulated forces to a given motion constitutes an
excellent validation of the model, as opposed to the usual comparisons between motions in response to prescribed
forces. Regarding (ii), non-smooth numerical methods have been used instead of regularization. This allows for the
time step being chosen according to physics only and avoids the reduction needed for numerical reasons, resulting
in computations about a few hundred times faster than those reported in recent literature. The use of non-smooth
dynamics hence opens doors to industrial and haptic applications.
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1. Introduction A piano keyboard can be seen as an interface between the pianist and the vibrating
ensemble (strings and soundboard). It consists in a set of nearly identical planar actions, each associated
with one single note (a note is produced by 1, 2 or 3 coupled strings). As an interface, the role of one
piano action (Figure 1) is to transform the pianist gesture into the motion of a hammer towards the strings
(description of the sequence in the caption of Figure 1, also illustrated in Figure 11). Among other
requirements (maintenance, ease of making, etc.), a piano action is designed as to favour the precision
with which the pianist controls the velocity with which the hammer hits the strings and the instant at
which this contact occurs. A fundamental property of the piano action is to free the hammer from the
mechanism before it hits the strings (escapement) and to catch it afterwards, further away from the string
than the position at which it has escaped from the mechanism. This guarantees that the pianist can push
the key without preventing the strings from vibrating. This article focuses on the grand piano action. It is a
complex mechanism: the assembly of dozens of elements comes as the product of a few major inventions,
particularly by Cristofori and Érard, and decades of refinements. It emanates over a very long period of
time (typically: two centuries), mostly from trial-and-error processes rather than from predictive studies: a
somewhat unusual situation for a sophisticated object still produced today.

Several dynamical models of the piano action have been proposed, from very simple models to complex
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Figure 1: Scheme of an action, without the damper. Note that the key, the whippen and the hammer rotate
around fixed axes (with a slight complication for the key) whereas the axes of the lever and the jack are
attached to the whippen. Under the push exerted by the pianist (on the right end of the key), the key pivots
and lifts the whippen. The {whippen–lever–jack} assembly then lifts the hammer until the jack reaches
the escapement button. At that time, the jack begins to pivot (with respect to the whippen). This motion
makes the hammer escape. The key and the {whippen–lever–jack} ensemble continue the same motion
until the key is blocked by the punch rail (bottom right felt of the diagram) whereas the hammer travels on
its own towards the strings, hits them, and comes back on the lever. Since the jack is now out of the way
of the roller, the hammer can push the lever which rotates clockwise (with respect to the whippen) until
the tail of the hammer meets the backcheck and stops its motion. The two functions—escapement of the
hammer, catch far from the strings—are ensured. Subtleties of the repetition are not discussed here. More
details of the main steps are given in Fig. 11.

ones. In our opinion, the output of this large body of literature is hampered with the key question of the
validation of the proposed models. In [36], we showed that the validation of any complex dynamical model
of the piano action can hardly be ensured by comparing measured and simulated displacements of the key,
in response to a given force exerted on the key. Unfortunately, this is what most, if not all, papers adopt as
their validation procedure. The rationale behind our statement goes as follows. It turns out that when a key
is pushed by a realistic stroke, or a ramp of similar level and duration, or even a step of similar level, the
displacement of the key is very smooth, see Fig. 8, Fig. 9 or [16]. As this displacement can be fitted by a
curve with a very limited number of parameters (one or two), it is unlikely to be sensitive to the accuracy
of a complex model. By contrast, the complexity of the dynamics is reflected in the reaction force of the
key exerted against any simple-profile imposed displacement. The conclusion of [36] is that measured
and simulated forces should be compared instead of displacements. Comparing measured to simulated
accelerations may be an alternative provided that a level of force comparable to at least a mezzoforte
musical level is used.

Simplified models (e.g. [27, 28]), as well as more complex ones (e.g. [10, 13]) have been proposed.
An overview of these models is given in Table 1. Most of them are presented as valid by their authors
although they display very different degrees of complexity. As explained above, the validation methods
used cannot provide solid conclusions, although some of them may of course be valid.

In this article, we expose a model of the grand piano action and a method to simulate it in quasi-real
time. It is validated by using the displacement at the end of the key as the input and the reaction force as
the output. Since modelling the damper does not seem to present special difficulties, this part has been
ignored in this paper for the sake of simplicity and clarity of the conclusions. Its inclusion in the model is
left for future studies. By piano action, in what follows, we understand without damping, corresponding
to the musical situation when the forte pedal is engaged.

The present model is based on the same approximations and physical components as complex models
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Reference Input Output DOF(s) Simulation methods

[9] force –

[28] force (step-wise) displacements, velocities
(very smooth: only 10
points)

2 numerical (2 ODEs)

[26] force (constant) –

[11] constant velocity and
constant acceleration (key)

displacement, velocity
(hammer)

2 closed-form expression

[27] measured force (key) displacement (hammer) 2

[38] simple force profile (key) displacements (key, hammer) 3 numerical (solved with DYNAST)

[13] measured force (key) displacements (hammer, key) 5 DYNAFLEXPRO generates ODEs
solved in MATLAB (ODE15 stiff
solver)

[10] measured force (key) displacements (hammer, key) 5 MATLAB using Simulink /
StateFlow

[15, 16] measured force (key) displacements (hammer, key,
whippen)

5 DYNAFLEXPRO generates ODEs
solved in MAPLE (lsode
Livermore)

[20] force kinematics 5 index-3 DAE transformed to ODEs
and solved in MATLAB

[4] force profile (key) kinematics 6 ROBOTRAN

[23] measured force (key) displacements (key, hammer,
whippen)

5 ODEs solved in MATLAB (ODE15
stiff solver)

Table 1: Schematic literature review of the grand piano action models

available in the literature (see Sect. 2.1 for the rigid-body approximation, Sect. 2.2 for the general
description of the degrees of freedom, Sect. 2.3 and Sect. 2.4 for the treatment of joints and contacts).
Less usual in the context of the physics of musical instruments, the mathematical treatment of the model is
based on Measure Differential Inclusions (Sect. 2.5). Presumably, dry friction (whether in hinges or in the
three contact zones) generates a salient feeling for the pianist. Its non-smooth character is also used by
technicians when they adjust the action. For these reasons, we adopted dedicated methods for non-smooth
systems instead of regularizing the model as it has been done in the literature so far. Although more
mathematically sophisticated, this treatment avoids introducing a regularization parameter(s) which is a
numerical artefact. Additionally, it is computationally more efficient and avoids using time steps several
orders of magnitude smaller than the smallest physical characteristic time. All the computation times that
we found in the literature are reported in Table 2. The most recent one ([23]) reports a simulation time of
910 s for a rigid body model. The corresponding physical duration is not explicitly given, but based on the
duration of the corresponding figure (200 ms), this would correspond to a factor of 4550 from simulated
duration.

2. Model We consider the wooden and other solid parts of the piano action as five bodies moving in a
plane (two-dimensional model).

2.1. The rigid-body approximation All the bodies are supposed to be rigid. Some papers in the
literature have examined and dealt with the flexibility of the hammer-shank and it has also been argued
that the flexibility of the key might be felt by the pianists [7, 16]. For these reasons, the degree to which
the rigid-body approximation is valid is examined here. One considers that the approximation alters the
dynamics in a consistent way when (a) the period of the first mode of vibration of one piece is longer than
5 ms, corresponding to one fourth of the duration of the fastest keystroke (≈ 20ms in the forte nuance) and
(b) the piece itself is significantly flexible compared to the flexibility induced by its environment (namely,
the felts).
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[38] “Because ours is a stiff system and the action topology is changing during simulation (e.g., depending
on the position of the action, the hammer looses contact with the jack), a simulation of 1 sec in real
life takes about 4 hours on a 486DX33 IBM PC-compatible computer. This is one reason why we are
working on a reduced-parameter model.”

“Running on a Digital Equipment Corp. DEC 5000/33 work- station, the simulation of 1 sec in real life
took about 15 sec with the reduced model.”

[27] “The realization of a multi-instrument active keyboard may require the design of a complex dynamic
simulator, in which all parts composing the real mechanism are included. This approach, however, is
very expensive in terms of computation and may be unsuitable for real-time operation.”

[15] “Running a complete simulation, for the system with the force profile in Figure 2.11 as the input to the
piano action, requires about 75 minutes on a 2.4 GHz PC computer. This is true for the case when the
hammer shank and the connection of the key to the ground have been modelled with a flexible beam
and a prismatic-revolute joint, respectively. However, the Maple environment is not the most efficient
platform for running simulations in terms of time, and the simulation time can be significantly reduced
by implementing the model and solvers in a dedicated, compiled language such as C.”

[23] “The computational cost of the flexible shank is not insignificant. Simulation process (CPU) time is
almost doubled (1720 s) as compared to that for a rigid hammer shank (910 s).”

Table 2: Excerpts of the literature relating to the duration of the simulations.

First, a very rough approximation of the period of the first mode of vibration of each piece is estimated
using a clamped-beam model. For each body, the section of the equivalent beam is chosen rectangular
of width b and height h corresponding to the dimensions of the body’s smallest cross section, so that the
area is S = bh and the moment of inertia of the section is I = bh3/12. The density and Young’s modulus
along the grain correspond to those of the hornbeam (case of this Renner action [34]) or hard maple:
ρ ≈ 750kgm−3 and E ≈ 12GPa. The first modal frequency of a clamped-free beam is given by

f1 =
1.8752

2π

1
L2

√
EI
ρS

(2.1)

where L is the length of the beam. Results are reported in Tab. 3 and call for a more thorough study of the
key and the hammer (by inspection, it is clear that the flexibility of the other pieces is very small).

Part (cf. Fig. 1) L (m) b (m) h (m) 1/( f1 τ)

key 0.380 0.015 0.025 1.8

whippen 0.060 0.010 0.008 0.14

jack 0.025 0.005 0.005 0.039

lever 0.030 0.005 0.005 0.056

hammer 0.130 0.005 0.005 1.0

damper 0.070 0.010 0.02 0.076

Table 3: Order of magnitude of the approximate dynamical characteristic parameters of each element of
the action.

For these two pieces, slightly more elaborate models are presented in Appendix A. The first modal
frequencies are estimated as fkey = 355Hz and fhammer = 39Hz, corresponding to ( fkeyτ)−1 = 0.56 and
( fhammerτ)

−1 = 5.1. The ratio is correct for the key but not for the hammer. This may be related with the
tuners’ practice of "sounding the hammer shanks".1

1 According to piano technicians, the sound of a note is sensitive to the "quality" of the shank. In order to select shanks (before
gluing the hammer’s head), a common practice consists in listening to the sound they emit when thrown on the floor (for
example).

4



As mentioned above, the rigid body approximation may be invalid for the hammer and the key if their
flexibility (see Appendix A for the precise definition) is significantly lower than the apparent flexibility
induced by felts. The situation is analysed in details in the second part of Appendix A. Considering
rigid boundaries and linear elasticity leads to ψe

key = 1.5×10−5 mN−1 and ψe
hammer = 1.2×10−3 mN−1.

Taking into account felts at the boundary of a rigid model yields ψ f
key = 9.5×10−5 mN−1 and

ψ f
hammer = 4.8×10−3 mN−1. In other words, felts contribute more to flexibility than elasticity in a

static model of the piano action, by at least factors of 6 and 4 for the key and hammer, respectively. A
fortiori, the influence of the flexibilities of the key and of the hammer is even less in a mobile piano action.

In conclusion, due to its relatively low first modal frequency, the vibrations of the key and the hammer
may influence the dynamics of the whole mechanism. However, their relatively small flexibility leads to
the assumption that this influence is rather small, at least compared to the level of the differences which
will be observed between simulations and measurements. The dynamics of the hammer has been studied
in [2] and taken into account in [16]. The former study had concluded that no influence of the dynamics of
the hammer on the sound could be predicted. The author of the latter study concludes from force-driven
simulations that the only observed significant influence of the flexibility of the hammer shank occurs
during the contact with the string. This is consistent with the evaluation presented here of the rigid body
approximation. As far as haptics is concerned, the most important phases are before escapement and when
the key meets the front rail punching. Because the hammer has already escaped from the mechanism when
it hits the string, the flexibility of the hammer is assumed to have no effect on the touch and is not taken
into account here.

Roller
Contact with Coulomb friction

Hinges with dry and viscous friction
Rotational spring
Weights
Felt material

K

J

W

H
L

Figure 2: Schematic representation of the physical elements considered in the model.

2.2. The degrees of freedom Within the frame of the rigid-body approximation, each element
except the key is rotating around a mechanical axis inserted in the action frame or in the whippen. The
motion of each body is considered to have only one degree-of-freedom described by θX where X can be
W, J, L or H for the Whippen, the Jack, the repetition Lever or the Hammer, respectively.

The fixture of the key—a vertical thick pin, called balance rail key pin which goes throughout a hole in
the key—represents a typical traditional wood-work. In this case, two degrees of freedom are involved:
rotation around a horizontal axis and vertical translation. The vertical motion is limited by the small
piece of felt between the main frame and the key. The rotational motion is restrained by the elasticity of
wood and by the friction between wood and the balance rail key pin. At an early stage of this study, it
proved difficult to repeat the experiments to the degree of precision that was desirable for comparing them
with the simulations of the model. Overcoming it would have required estimating separately rotation and
translation. Instead, we preferred to block the translation motion of the key (by replacing the small felt
with a metallic ring of the same thickness) when measuring the dynamics and to prescribe that the motion
of the key is a rotation around a fixed axis in the simulation. Although such a modification would not be
acceptable in practice (it makes the action fairly noisy), this is yet a very minor alteration of the action
from the mechanical standpoint.
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2.3. Joints The hinge joints (blue dots in Figure 2) are modelled as dry- and viscous-frictional elements.
Dry friction torques are taken as

Cd(θ) = cd sign θ̇ (2.2)

sign : θ̇ ∈ R 7−→


−1 if θ̇ < 0

[−1,1] if θ̇ = 0

1 if θ̇ > 0

(2.3)

where θ̇ is the corresponding angular velocity, cd is a coefficient determined experimentally (see Sect. 3)
and sign is a set-valued function (see Sect. 4 for the numerical treatment within the framework of
non-smooth dynamics)]. Viscous friction torques are given by:

Cv(θ) = cv θ̇ (2.4)

where cv is also a coefficient determined experimentally (see Sect. 3).
In order to ensure the repetition capability, the jack and the repetition lever must be pulled back to

their resting position on the whippen once the forces exerted by escapement button and the hammer
(when blocked by the backcheck) have vanished. This function is ensured by two springs (which may be
combined into one single metal thin rod as in Figure 2). In some piano actions (including ours), a spring
is also inserted between the whippen and the main frame. The torque exerted by any of these springs is
generically given by

Cs(θ) = κ(θ −θ0) (2.5)

where κ is the stiffness of the spring, θ its angular extension and θ0 its resting angular position (see Sect. 3
for values).

2.4. Contacts Twelve different contacts may occur in this 5-dof-system. There is a felt in each of the
contact zones, which somehow smoothens contact forces in the normal direction. Note that contrary to
a regularisation approach where the numerical efficiency directly depends on the stiffness of the felts,
numerical methods adopted here allow for an efficient simulation for any stiffness and even rigid contacts,
opening doors to efficient sensitivity analyses. In the model, a felt is treated as a very small mass attached
to its supporting element by means of a nonlinear viscous spring (Kelvin–Voigt model). The following
phenomenological visco-elastic compression law has been retained [6]:

Ffelt(δ ) = k δ
r +bδ

2
δ̇ (2.6)

where δ denotes the compression of the felt and Ffelt denotes the corresponding reaction force of the felt.
References for experimental estimations for the parameters k, r and b are given in Sect. 3. Since [5], it has
been observed that the loading curves of the hammer felt were nearly velocity-independent. The small
but significant dependency in velocity (b 6= 0) has been investigated thoroughly by several researchers,
particularly in papers by Stulov (see for example [33]).

Friction in the tangential direction is considered only for the three contacts circled in Figure 2. Friction
between the hammer and the backcheck is crucial for stopping the motion of the hammer after hitting the
string. Friction between the jack and the roller is easily felt by the pianist and must also be considered in
the model, because the piano technicians adjust it carefully. Additionally, we chose to take friction into
account between the jack and the escapement button. Friction is ignored in the other contacts which are
subject to a rather small translational motion. The friction law is taken as in Eq. (2.2):

Fd(v) = fd signv (2.7)

where v is the tangential velocity and fd the dry friction coefficient.
The duration of contact is longer than one sampling period, calling for the simulation of the compression

and possibly, the decompression of the felts. The contact for each of the twelve felts is treated as follows:
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a small additional rigid body (labelled “A” in Figure 3), a prismatic joint (“P”) and a visco-elastic element
“V” (Kelvin-Voigt model) are inserted between the felt support and the contacting body (“B”). A unilateral
constraint prevents this additional body “A” from penetrating the contacting body “B”. Additionally,
an impact law must be introduced for this auxiliary body “A”, that we choose to be inelastic to allow
permanent contact phases. The inelastic impact law dissipates kinetic energy of the contacting mass,
however very little energy is dissipated if the mass of the auxiliary body “A” is much smaller than the
mass of its supporting body. Here, this condition was met by taking arbitrarily 1 mg for the mass of all the
“A” elements.

A

P

δ

V

B

gap g

Figure 3: Generic model of the contact between two pieces, here the roller and the jack. The distance, or
gap, between the two pieces is g≥ 0 (condition of non-penetration). The compression of the felt is δ ≥ 0
(unilateral constraint).

The twelve contacts are described with geometries as simple as possible, similarly to [13]. The
geometries are reported in Table 4. The backcheck–hammer contact geometry is described by two circles.
The jack–roller contact geometry consists of a two perpendicular lines joined with a circular arc. All the
other contacts are described with a circle and a line segment.

Geometries Quantity

backcheck–hammer 1

jack–roller 1

all other contacts 10

Table 4: Simplified geometry of the contact zones

2.5. Dynamics as a Measure Differential Inclusion The dry friction model is intrinsically
non-smooth in the sense that it induces acceleration discontinuities at stick-slip transitions. It cannot be
written as a single-valued function because the friction force (or torque) can take an infinity of values for
a zero velocity, hence an infinity of possible static states in a sticking phase. To the best of the authors’
knowledge, all the models in the piano literature that include dry friction ([12][13],[15], etc.) are simulated
by regularizing the friction law. This goes along with the following problems:
• The sticking phase disappears and the stick-slip transitions are lost: the dry friction force or torque

vanishes when the velocity vanishes.
• At least one non-physical parameter (the so-called regularization parameter) is introduced, weaken-

ing the robustness of the simulation. This might prove critical in a sensitivity analysis.
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• Spurious oscillations can occur if the regularized zone is too narrow, or inaccurate results are
obtained if the regularized zone is too wide.
• Reduction of spurious oscillations calls for a reduction of the time step, resulting in an increase

of computation time. Time step reduction might also be required to ensure stability of the chosen
numerical scheme.
• The condition number of the matrices involved increases as the slope of the regularized function

increases.
Some of the above drawbacks of regularization cannot be observed in the force-driven simulations reported
in the literature because they are masked by the intrinsic smoothness of the resulting motions, as mentioned
in the introduction.

One simple example of the interest of not regularizing is the following. A basic adjustment of the
key mechanism consists in measuring the maximum mass to be put on the key without initiating the
down-motion from the resting position and conversely, the minimum mass that prevents the up-motion
from the down-position. The result directly depends on the dry friction coefficient in the hinges. However,
this simple test cannot be simulated with a regularized friction law.

The counterpart of not regularizing is that the model cannot be formulated as Ordinary Differential
Equations (ODEs) for which a large variety of commercial software applications exists. The reason for this
is that non-smooth laws cannot per se be captured with twice-differentiable functions of time because of
the discontinuities in acceleration or velocity. Several mathematical frameworks may be used to describe
the non-smooth model, mainly Measured Differential Inclusion (MDI), Variational Inequalities (VI) or
Nonlinear Complementary Problem (NLCP): a general presentation is given in [1]. We chose to express
the model of the grand piano action in terms of a Measure Differential Inclusion (MDI), following [1,
18, 31]. The mathematical foundations are given in the cited references. In summary, this formalism can
be seen as an extension of the usual dynamical equations (ODEs) to non-smooth laws. In the inclusions
below, the ∈ symbol underlines a difference of mathematical nature: the left-hand side of ∈ is an array of
scalar numbers, while the right-hand side is an array of set-valued functions.

The proposed model is given by the following inclusions:
• Internal moments (dry friction in hinges) given generically by Eq. (2.2) are now written in a

condensed way as:

rP ∈ cd sign(ẋ) (2.8)

where rP (now standing for the torques Cd) belongs to R12 and sign(ẋ) is an array of components
sign(ẋi).
• The twelve gaps between bodies (condensed with the same writing convention as above) remain

positive (unilateral contact condition or condition of non-penetration) which writes mathematically
as:

g(x) ∈ R+12 (2.9)

• The normal reaction forces at contacts are given in a compact way by:

−rN ∈NR+12(g(x)) (2.10)

which means that reaction forces are either 0 (no contact, g(x)> 0) or negative (compression, if one
contact occurs, i.e. one component g(x) = 0). The expression NR+12(g(x)) denotes the normal cone
to the convex set R+12 in g(x) ∈ R+12 (see e.g. [29] for general knowledge about convex analysis).
• The tangential reaction forces (Coulomb friction) are written without writing the usual logical

disjunction explicitly:

−
(

H>(x)v
)

3i−2,3i−1
∈NB(µ(rN)i)

(
(rT )2i−1,2i

)
(2.11)

where H> is the geometric operator which yields the relative velocities in the (local) contact frame
as a function of the generalized velocities. This slightly cumbersome inclusion simply relates local
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velocities to normal forces and to reaction forces imposed by the Coulomb friction model. For each
contact i, the indices 3i−2 and 3i−1 refer to the tangential components of the velocity, (rN)i is the
normal reaction force and (rT )2i−1,2i is the reaction force in the tangential direction.

These four inclusions can be expressed generically (Eq. (2.14)) as one inclusion in a set K. Altogether, the
dynamics is written as the following Measure Differential Inclusion (MDI):

M(x)dv = F?(x, ẋ, t)dt +H(x)di (2.12)
v+ = (ẋ)+ (2.13)(
g(x), H>(x)v+, di

)
∈ K (2.14)

The (non-smooth) dynamics is expressed by Eq. (2.12) where dv and di are vector-valued measures on
R and can therefore be non-smooth. All the smooth terms, such as non-linear dynamic terms or viscous
friction, are included in F?. The non-restrictive assumption that the local variations of the velocities v are
bounded implies that velocities have right (and left) limits at any time [14]; the dynamics can therefore be
written as a function of right-continuous bounded variations, which explains the “+” sign in Eq. (2.13).
Eq. (2.14) gathers the non-smooth laws (tangential Coulomb friction at contact points, joint friction,
unilateral contacts) and equality constraints.

3. Measurements Measurements are focused on the key because that is where the pianist interacts
with the action. Additional measurements on each piece improve the comparison with the results of
simulation. The measurements were done on an isolated action by Renner (Figure 4) equipped as follows
(Figure 5):
• a piston compressing a piece of silicone, between the end of the key and the finger. This auxiliary

device was needed for technical reasons associated with the simulation algorithm as explained in
Sect. 4,
• patches with black-and-white patterns on each rigid body, aimed at measuring their motion by

optical means,
• position laser sensors (top of the piston and key),
• acceleration and force sensors.

The values of the model’s parameters are given in [35], Chapter 4, Section 5 (p. 60–68).

Figure 4: Overview of the experimental setting.

3.1. Measurements of the parameters of the model The geometrical quantities (positions
and angles) were estimated by analysing two high-definition pictures: a view of the complete mechanism
and a close-view of the hammer and the whippen-jack-lever assembly, at rest. The photographs were taken
at 3 m from the action to reduce the parallax effect, and the lens distortion was corrected using the Optics
Pro software by DxO. Because of the time-worn felts of the used action and as a double-check, additional
measurements were done with a dial caliper.
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force sensor

accelerometer

position

sensors

Figure 5: Location of the different measurement devices (see text).

Parameters relative to bilateral constraints, namely the dry friction coefficient cd and the viscous
friction coefficient cv on the various pivots, were taken from the measurements performed on a different
copy of the same action model (see [21]; the detailed measurement protocol is given in Chapter 3). The
felt parameters (unilateral constraints) were identified in [6], measured again in [21] and reported in [35]
(p. 67). In both cases, the identification of the parameters consisted in minimizing a cost functional
measuring the distance between a dynamical measurement and the model.

The measurements of the inertial parameters (center of gravity, mass and rotational inertia) as well as
the parameters of the springs (rest angles θ0 and stiffness Cs) were also measured in [21] and reported
in [35] (p. 60–68).

3.2. Measurements of the dynamics Since the variations of θK remain small, rotational quantities
are obtained by axial measurements on the key.

The displacements of the key and of the top of the piston were measured by laser sensors (Keyence
LB12 with LB72 amplifier units), positioned as shown in Figure 5. What can be interpreted in the data
sheet as an integration time was set to 0.15 ms, coming along with a resolution of 50 µm. The sensitivity
of each sensor was estimated statically by means of a graduated marking gauge (0.398 Vmm−1 and
0.449 Vmm−1).

The acceleration of the key was measured with a piezoelectric accelerometer (Endevco R 2250A, mass
0.4 g, sensitivity 0.316 Vm−1 s−2), placed midway between the center of rotation of the key and the piston
(finger-end) and associated with a Brüel & Kjær Nexus conditioning amplifier and filter (0.1 Hz–3 kHz).

Since the model includes viscosity, the key velocity had to be estimated. The velocity was obtained
numerically by two independent algorithms: integration of the acceleration signal (after removal of
the average value of the signal at rest) and differentiation of the position signal, using a total-variation
regularisation [8] (here: 30 iterations, 200 sub-iterations, a regularization parameter of 5 10−5 and
ε = 10−9). In practice, choosing one or the other estimation of the velocity had very small influence on
the simulation results. The velocity was estimated using the algorithm of total-variation regularization.

Additional measurements of the positions of each body were carried out to estimate their qualitative
evolutions with respect to time: of special interest are the instants of significant variations in θ̈ which
should correspond with changes in contacts. The positions were measured using a high-speed and high-
resolution camera (Simi HCC-1000, equipped with four CMOS sensors, 923 fps, 1024px× 512px).
The camera acquisition was synchronized with the other measuring devices. The images (successive
positions of the patches) were treated with the KLT tracking algorithm [22, 37] using the CRToolbox
implementation [3]. An illustration of the tracking is given in Figure 6.

The force exerted on the end of the key is measured with a light-weight (1.2 g) piezoelectric sensor
(Kistler 9211), with a charge amplifier (Kistler 5015) operating in the frequency range [1Hz−3kHz] (the
data sheet indicates fcut-off� 1Hz).

According to the data sheet provided by Kistler, the sensitivity of the sensor is 10 mN, the nonlinearity
and hysteresis effects are contained within ±1% of the full scale output (thus depending on the choice
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Figure 6: Illustration of the KLT tracking algorithm used to measure the qualitative evolution of the
bodies positions with time. Left: resting position. Right : After hammer–string contact.

made on the charge amplifier for the operating range). In our experiments, this scale was usually adjusted
to 10 N.

The signal is sampled at 50 kHz (ADC USB-6211 by National Instruments, also used for the motion
signals). Sampling begins about 1 s before the keystroke in order to perform the following post-treatments:
the 50 Hz component is identified in phase and in amplitude on the force-data preceding the keystroke and
is removed from the entire time series. The 0 Hz component is identified and removed in the same way.

4. Simulation method The simulations were done with XDE (eXtended Dynamic Engine), a
software developed at CEA LIST for industrial virtual prototyping and simulations in robotics. This
software is available, on request, to members of the academic community for research purposes. The
part we used is XDE Physics, a C++ development kit consisting in a kernel for interactive mechanical
simulation of rigid multibody systems with kinematic constraints, intermittent contacts and dry friction. It
includes efficient methods for collision detection. In this paragraph, we expose the numerical scheme and
methods that we used. More details are given in [25].

The MDI Eqs. (2.12), (2.13) and (2.14) are discretized using the scheme given in the seminal paper by
Jean [17] and summarized in [24].

For the time-step ∆t, the dummy variable α and tn+α = tn +α ∆t, we introduce the following linear
interpolations:{

xn+α(kx) = xn +α ∆t kx

vn+α(kv) = vn +α ∆t kv

(4.1)
(4.2)

Equation (4.1) yields the position at time tn+α as a function of the position at time tn and the unknown
velocity kx. Similarly, Eq. (4.2) yields the velocity at time tn+α as a function of the velocity at time tn and
the unknown acceleration kv. The dummy variable α ∈ [1

2 ,1] stands either for θ or γ in the time-stepping
scheme presented below.

The chosen time-discretization of Eqs. (2.12), (2.13) and (2.14) is, term by term:
M(xn+θ (kx))kv = F?(xn+θ (kx),vn+θ (kv), tn+θ )+H(xn+γ(kx))r
vn+θ (kv) = kx

(g(xn+γ(kx)), H>(xn+γ(kx))vn+γ(kv), r) ∈ K

(4.3)
(4.4)

(4.5)

where the unknowns are kx,kv and the reaction forces r, all of them to be considered at the n+1-th iterate.
The numerical parameter θ 2 controls the stability of the numerical scheme for the smooth dynamics;
here θ = 1. The numerical parameter γ relates to the non-smooth events; here, γ = 1 which means that
constraints are satisfied at the end of every time step.

Using (4.4), kx can be eliminated in (4.3) and (4.5). The remaining unknowns are kv and r. Then,
the contact kinematics H and the smooth dynamics (Mkv and F?) in Eq. (4.3) are linearised around
the preceding iterate of kv. Using a Newton loop results in a so-called One-Step Non-Smooth Problem
([1]) where kv can be eliminated in Eq. (4.5) yields an algebraic inclusion of unknown r (for the first

2 Even though it is not related to the angle of Eqs (2.2)–(2.5), the notation θ is used here to conform with the standard notation in
numerics.
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time step, r = 0). This inclusion can be reformulated using an augmented Lagrangian and solved with a
Gauss–Seidel-like algorithm (see [32], Chap. 4).

Currently, XDE performs force-driven simulations directly whereas position-driven simulations are
performed by inserting a proportional-derivative corrector. Experimentally, this situation was mirrored by
the insertion of a piston (see Sect. 3) which displays approximately a linear viscoelastic behaviour.

Another current limitation is that the nonlinear law of Eq. (2.6) is implemented by adjusting the
stiffness and viscosity coefficients of the linear element “V” at each time step. These two limitations are
by no way intrinsic to the methods used in XDE and are to be lifted in future versions.

5. Results and discussion Because of its extreme sensitivity to geometrical alterations, every piano
action has to be regulated by a technician. This sensitivity is reflected in our model, hence the latter was
preliminarily adjusted by hand using a common regulation procedure (see Appendix A of [35]).
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Figure 7: Measured and simulated positions of the key-end, for a piano keystroke (force-driven simula-
tions).

The model is validated in both force-driven simulations and position-driven simulations by comparing
simulated to measured positions and forces at the end of the key. In order to exemplify the conclusions
of [36], we introduce a variation of the model by making the felts rigid (from now on, referred to as the
Bad Model or BM). Of course, doing so on a piano action would be calamitous and the hammer would
probably not even reach the string when the key is pressed down.

The calculated position in response to a force-driven piano keystroke is plotted in Figure 7. The
smoothening effect of the piano action is clear: the position outputs are much smoother than the force
signal and the estimation of the measured position is good. The relative error of the model, defined as the
ratio of the integral of the absolute value of the difference and the integral of the reference signal, is 3 %.
The results of the Bad Model are almost as good (error: 9 %) showing, in line with the conclusions of [36],
that force-driven simulations are virtually insensitive to the quality of the model.

The results of position-driven simulations are plotted in Figures 8 and 9. One notes that the time
evolution of the (measured) position is very smooth and does not reveal much information on the dynamic
complexity of the piano action. On the contrary, both the measured and simulated force display many
irregularities, corresponding to non-smooth events (contact activation and stick–slip transitions) which
occur during the keystroke. Despite this complexity in the profile of the results, the prediction of the model
is very close to the measurements in the first phase (descent of the key), by far the most complex one, and
the one that matters most for the pianist.

The holding phase (when the finger maintains the key in the down-position) is not rendered correctly
in the position-driven simulations. This is not too surprising for a quasi-static phase. Presumably, this is
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mostly due to the discrepancy between the real behaviour of the piston (introduced between the finger
and the key, see Sect. 3) and the ideal viscoelastic behaviour which would correspond to the proportional-
derivative corrector (added to the model of the piano action, see Sect. 4). Another source of discrepancy
between the simulated and the observed forces during the holding phase is that it is difficult to maintain a
pure vertical force on the piston once the key has been blocked by the punchrail. Since the piston has its
own 3D-mobility, it is probable that the top and the bottom of the piston encounter different motions so
that the input of the simulation does not correspond to the real motion-input. Since this point is a minor
artefact of the simulation method,3 this discrepancy was not investigated further.

As opposed to the force-driven simulations, the force simulated according to the Bad Model is off the
measured force which is what is expected of a "Bad Model".
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Figure 8: Measured and simulated reaction forces at the end of the key for a piano keystroke (position-
driven simulation).

The escapement velocity of the hammer determines the intensity of the produced sound, and is therefore
of great importance. Tab. 5 gathers the values obtained from the measurements and the simulation, for
piano and forte dynamics. The prediction is very good.

Dynamics Experimental (ms−1) Simulated (ms−1)

piano 1.01 1.00

forte 1.56 1.56

Table 5: Velocity of the hammer at the escapement.

In Figure 10, the simulated positions of the different bodies are compared to their experimental
estimations using the KLT tracking algorithm (see Sect. 3.2). Because of the limited resolution of our
high-speed camera, angular measurement errors are significant: red dots in Fig. 6 are not perfectly tracked.
As explained in Sect. 3, these measurements are rather intended to compare the time instants of non-smooth
events, namely:

(a) beginning of contact between jack and let-off button punching;
(b) beginning of contact between key and front rail punching;
(c) contact between hammer and string;

3 In the scheduled future versions of the simulation software, a direct motion-input is possible, eliminating the need for the piston.
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Figure 9: Measured and simulated reaction forces at the end of the key for a forte keystroke (position-
driven simulation).

(d) catch of the hammer;
(e) return of the jack to its resting position.

It appears in Figure 10 that the simulation catches these non-smoothnesses well. This explains why most
irregularities of the forces in Figs. 8 and 9 are captured by the model.

By means of CAD software, we also built a parametric virtual piano action based on the geometrical
description of the real action. This made visual inspection of the motion possible, and opens doors to
easier understanding of the functioning of the action as well as helping innovating design. Screenshots of
the most significant events are represented in Fig. 11. They compare very well with the pictures obtained
with the high speed camera.

The characteristic time of the piano action is about a few milliseconds. All the simulation results have
been calculated with a time step of 0.5 ms (2 kHz: red curve in Figure 12). Results obtained with different
time steps are represented in Fig. 12. They do not significantly differ between 2 kHz and 10 kHz and this
convergence indicates that there is no need to run the simulations with a higher frequency than 2 kHz. This
is a great advantage of the non-smooth methods chosen: there is no numerical parameter for impact or dry
friction calling for a very small time-step.

6. Conclusion The model of the piano action that is presented in this paper overcomes several limitations
of what was offered by the literature so far. (a) The strong nonlinearities in the action dynamics (shocks, dry
friction) which were accounted for by regularization, are now formally described by a Measure Differential
Inclusion (MDI). (b) The validation of the model is granted by position-driven simulations which prove far
more reliable than the usual force-driven simulations. The holding phase was not captured very accurately,
due most probably to methodological artefacts in the experimental set-up. (c) The non-smooth formalism
proved to allow for simulations of about two orders of magnitude faster than the regularizing approach, as
reported in the literature.

Minor improvements of the model include (a) taking into account the first mode of vibration of the
hammer’s shank by inserting a spring between the hammer’s head and the knuckle and (b) introducing the
felt underneath the key-bed.

In terms of performance, the simulations run about twenty times slower than real time on a 2010-
computer equipped with a 2.1 GHz Intel Core i5. The future versions of the simulation software will allow
direct position-driven simulation (thus eliminating the need for the proportional-derivative corrector and its
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Figure 10: Kinematic results for a position-driven simulation, piano keystroke.

approximate experimental counterpart), include a more efficient implementation of the nonlinear springs
laws and perform direct 2D dynamics rather that 3D. Presumably, the resulting computing efficiency will
be more than sufficient for a real-time computation of the piano action dynamics on a standard laptop.
Practically, this will open doors to a large variety of applications, from numerical lutherie, innovative
design, sensitivity analysis of the piano action, to real-time haptic investigations.
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(a) At rest.

(b) Beginning of escapement.

(c) Hammer–string impact.

(d) Check catch.

(e) Jack repositioning.

Figure 11: Film and simulation screenshots comparison for notable events. All the images correspond to
the same keystroke. Each pair of images correspond to the exact same time instant.
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Figure 12: Simulated forces (in piano) for different time steps.
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A. Models for estimating the rigid body approximation for the key and the
hammer The purpose of this appendix is to give the details of the estimation, for the key and the
hammer, of:
• their first modal frequency (dynamics);
• their flexibility as linear elastic bodies compared the the flexibility of the felts (statics).

Four different models were considered in total: two for each piece, see Fig. 13.
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(a) Elastic key model.
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(b) Elastic hammer model.

O

L2 L1

(c) Rigid key model.
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(d) Rigid hammer model.

Figure 13: Models used for investigating the rigid body approximation of the key and the hammer. (a)
Beam model of the key. (b) Beam model of the hammer shank. (c) Rigid key in contact with the felt of
the blocked whippen. (d) Rigid hammer in contact with the felt of the knuckle and the blocked jack. The
sliding hinge joint element in (a) and (b) blocks translation in the out-of-plane direction only: it represents
the whippen–key contact for the key (left) and the hammer roller–jack contact for the hammer (right).

The first mode of vibration was approximated using the Rayleigh–Ritz method (see for example [19]).
The mass of the key was assumed to be equally distributed while for the hammer, it was assumed to be
concentrated at the center of the hammer head. The static deformations ϕkey, ϕhammer in response to the
corresponding weight were calculated and used as the shape functions for the Rayleigh quotient. With
point O corresponding to the origin of the x-axis, the calculated expressions are:

ϕkey(x) =


1

24EI L2
(−2L2

1(L
2
2− x2)+L2(L3

2−2L2x2 + x3) for x ∈ [0,L2]

1
24EI

(L2− x)(2L3
2 +2L2

1(L2−3x)+4L1(L2− x)2−3L2
2x+3L2x2− x3) for x ∈ (L2,L1+L2]

(A.1)

and

ϕhammer(x) =


L1

6EI L2
x(L2− x)(L2 + x) for x ∈ [0,L2]

−1
6EI

(L1(L2−3x)+(L2− x)2)(L2− x) for x ∈ (L2,L1+L2]
(A.2)

An approximation of the frequency of the first eigenmode is
√

R/(2π) where R is the Rayleigh quotient

R =

∫ L1+L2
0 EIϕ ′′(x)2dx∫ L1+L2
0 ρSϕ(x)2dx

(A.3)
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The calculations yield f1,key = 355Hz and f1,hammer = 39Hz.
The flexibilities ψe

key, hammer of the key as seen from the finger, or of the hammer as seen from the
hammer head, and due to the elasticity of wood, can be estimated with the same models (see Fig. 13 (a),
(b)). The strain energy U of the beams for a force F applied at position L1 +L2 is given by the integration
of the squared moment over the length, divided by 2EI; it comes:

U =
F2

6EI
L1

2(L1 +L2) (A.4)

The flexibility ψe is given by Castigliano theorem (see for example [30]):

ψ
e =

1
3EI

L1
2(L1 +L2) (A.5)

With L1 = 0.18m, L2 = 0.13m for the key and L1 = 0.13m, L2 = 0.016m for the hammer, the
flexibilities for the elastic model with rigid boundary conditions are ψe

key = 1.5×10−5 mN−1 and
ψe

hammer = 1.2×10−3 mN−1 (the value of the other parameters is given in Tab. 3).
The flexibilities ψ f

location due to felts only, estimated at a given location, come as follows: each beam is
considered rigid, with its motion limited by nearby felts (see Fig. 13 (c), (d)). For the nonlinear felt law
given in Eq. (2.6), the average flexibility is

ψ
f
felt =

δ

Ffelt
= k(−1/r)F(1−r)/r

felt (A.6)

The ratio of the flexibilities at the finger end of the key (respectively, at the hammer’s head) and at
the corresponding felt (whippen and knuckle, respectively) is ψ f

key, hammer/ψ f
felt = λ 2 where λ = L1/L2

(respectively (L1 +L2)/L2). Since the force applied at the finger end (respectively at the hammer’s head
position) is Fkey, hammer = Ffelt/λ , it comes

ψ
f
key, hammer = k(−1/r)

λ
(r+1)/rF(1−r)/r

key, hammer (A.7)

Since the felts are nonlinear springs, it is normal that the flexibility depends on the force level.
For the key, 5 N represents a typical force level exerted by the finger. For the hammer, the mass is

concentrated at its head. With a mass of 12 g, typical of the bass hammers, a forte keystroke corresponds
to a displacement of 5cm of the head in about 20ms, hence an average inertia force F = 3N at the
head position. With the parameters values k = 1.6× 1010 uSI and r = 2.7 for the whippen-key felt
and k = 7× 109 uSI and r = 3 for the knuckle’s felt, the flexibilities are ψ f

key = 9.5×10−5 mN−1 and
ψ f

hammer = 4.8×10−3 mN−1. For lower force levels, the flexibilities are larger since the felts are hardening
springs.
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