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INTRODUCTION AND MAIN RESULTS

The Mellin transform of a nonnegative random variable X is defined by

M X (λ) = E[X λ ],
for λ in some domain of definition in the complex plane, and could be also interpreted as the moment generating function of log X. We denote D X the domain of definition of M X restricted on the real line.

Laplace transform of nonnegative random variables and characteristic functions of real-values random variables are always well defined, respectively on the half real line and on the real line, and they entirely characterize the distribution. At the contrary, the Mellin transform could have problems of definition and for this reason formalization of its injectivity is not straightforward. Nevertheless, injectivity on the Mellin transform seems to be commonly admitted in the literature and used without a precise reference. In Chapter VI of Widder's book [START_REF] Widder | The Laplace Transform[END_REF], Theorem 6a p. 243, it is stated that if the Mellin transforms of two nonnegative random variables X and Y are well defined on some strip α < Re(z) < β, and equal there, then X d = Y . We improve this result by showing that the same conclusion holds if the strip is replaced by an interval. Date: June 12, 2016.

Mellin transform works well with size biased distributions, i.e. for distributions of random variables weighted by a power function:

X (t) : d = x t E[X t ] P(X ∈ dx), t ∈ D X .
The distribution of the random variable X (t) is called the size biased law of transform of order t of X. It is well know that X (t) is stochastically bigger than X when t > 0 and we were interested by deriving new properties. In the dissertation of the third author [START_REF] Harthi | Some Contributions to Infinite Divisibility through Mellin Transforms and Cumulant Functions of Random Variables[END_REF], some convexity properties of the Mellin transform of X (t) were required and we were addressed to the monotonicity property of the t → M X (λ + t)/M X (t), t ≥ 0 for fixed λ > 0. This made as aware of the works of Harkness and Shantaram [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF] who proved that the last function is non-decreasing in t ∈ N when λ = 1. We prove that is also true in t ∈ [0, ∞) for any λ > 0.

Harkness and Shantaram [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF] were actually motivated by a limit theorem that we explain as follows. Let X a nonnegative random variable having moments of all orders. The stationary excess operator builds a new distribution from the one of X by this means:

P(E 1 (X) > x) = 1 E[X] ∞ x P(X > u) du, x ≥ 0.
The n th iterate E n , of the operator E 1 , builds a sequence of random variables E n (X), n ∈ N. In [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF] it was shown that if the sequence Z n = E n (X)/c n converges in distribution to some random variable Z ∞ and with some deterministic normalization c n such that

lim sup n→∞ c n+1 c n ∈ [1, ∞), (1) 
then, necessarily lim n→∞ c n+1 /c n = l ∈ [1, ∞) and lim n→∞ E[Z k n ] = E[Z k ∞ ] ∈ (0, ∞) for every k ∈ N. Many authors were motivated by this problem and studied the set of possible distribution for Z ∞ , see the works of Arratia, Goldstein and Kochman [START_REF] Arratia | Size Bias For One And All[END_REF], van Beek and Braat [START_REF] Van Beek | The limits of sequences of iterated overshoot distribution functions[END_REF], Garcia [START_REF] Garcia | Characterization of distributions with the length-bias scaling property[END_REF], Shantaram and Harkness [START_REF] Shantaram | On a Certain Class of Limit Distributions[END_REF], Pakes [START_REF] Pakes | Characterization by invariance under length-biasing and random scaling[END_REF][START_REF] Pakes | Characterizations, length-biasing, and infinite divisibility[END_REF], Vardi, Shepp and Logan [START_REF] Vardi | Distribution functions invariant under residual-lifetime and length-biased sampling[END_REF] for instance. Their approach was mainly based on the fact that the distribution of Z ∞ necessarily satisfies

P(Z ∞ ≤ x) = 1 E[Z ∞ ] lx 0 P(Z ∞ > x) du, for every x ≥ 0.
The latter is equivalent to the identity in law observed in Theorem 3 below

Z ∞ d = U l (Z ∞ ) (1) , (2) 
for s = 1 and c = log l, and U l is uniformly distributed over [0, l -1 ] and independent from (Z ∞ ) [START_REF] Aguech | Complete monotonicity and Bernstein properties of functions are characterized by their restriction on N 0[END_REF] . We will see that the only significant information one can extract from identity [START_REF] Arratia | Size Bias For One And All[END_REF] is that Z ∞ has the same integer moment as an exponential distribution multiplicatively mixed by the Log-normal distribution with parameters depending on l and on the value attributed to

E[Z ∞ ].
There is then a problem of determinacy in law for Z ∞ since the Log-normal distribution is well known to be moment indeterminate.

Also motivated by this problem of indeterminacy, we were concerned with the natural question: what additional information on the distribution of Z ∞ can we obtain if we study the continuous scheme Z t = E t (X)/c t , t ∈ [0, ∞) where E t is the continuous time stationary-excess operator given by

P(E t (X) > x) = t E[X t ] ∞ x (u -x) t-1 P(X > u) du, x ≥ 0 ? (3) 
Notice that the limit Z ∞ obtained by the discrete scheme has necessarily the same distribution as the one of the continuous scheme.

In section 4, we make a digression and entirely formalize convergence of the Mellin transforms of general families of random variables (in both discrete and continuous time i.e. t ∈ N and t ∈ [0, ∞)) through convergence in distribution and uniform integrability. The form (3), justifies our investigation on t-monotone functions in section 5. The results obtained in both sections 4 and 5 will allow us to contribute in section 6 to the problem raised by Harkness and Shantaram [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF]. We simplify their problem and solve it as follows:

(1) condition ( 1) is not only sufficient, but also necessary for the convergence in distribution of Z t if we require some integrability on Z ∞ ; (2) under (1), convergence of Z t in both schemes t ∈ N or t ∈ [0, ∞), is equivalent to

X (t) ρ t d -→ X ∞ as t → ∞ and t ∈ N or t ∈ [0, ∞),
the normalization ρ t being necessarily equivalent to t c t at infinity;

(3) it holds that Z ∞ d = e X ∞
where e is independent from X ∞ and is exponentially distributed; (4) the only possible distributions for the limit

X ∞ is Log-normal.
In what follows, we only deal with nonnegative random variables. The notation T stands for N, the set of nonnegative integers, or for the interval [0, ∞).

DEFINITENESS, MONOTONICITY AND INJECTIVITY OF THE MELLIN TRANSFORM

The Mellin transform of a nonnegative random variable X is defined by

λ → E[X λ ], λ ∈ D X = {x ∈ R ; E[X x ] < ∞}.
We recall Hölder inequality true for every real random variables

E[|U V |] ≤ E[|U | p ] 1 p E[|V | q ] 1 p , p, q > 0, 1 p + 1 q = 1, (4) 
whenever the expectations are finite. The equality holds in (4) if and only if there exist constants a, b ≥ 0, not both zero, such that a|U | p = b|V | q . It is then clear that for a positive random variable X, the standard Lyapunov inequality holds:

E[X λ ] 1 λ ≤ E[X λ 0 ] 1 λ 0 for 0 < λ ≤ λ 0 and E[X µ ] 1 µ ≤ E[X µ 0 ] 1 µ 0 for µ 0 ≤ µ < 0, (5) 
whenever the expectations are finite. The latter justifies that if D X contains some λ 0 > 0 (respectively some µ 0 < 0), then D X contains the interval [0, λ 0 ] (respectively [µ 0 , 0]). It is then seen that D X is an interval with extremities

µ X = inf{λ ∈ R, E[X λ ] < ∞} and λ X = sup{λ ∈ R, E[X λ ] < ∞}, (6) 
not necessarily included. Assume λ X > 0. By the dominated convergence theorem, we see that the Mellin transform of X is often differentiable on (0, λ X ) and by ( 5) that

λ → E[X λ ] 1/λ is nondecreasing on [0, λ X ).
The last fact could be also seen as a consequence of this Proposition:

Proposition 1. For any nonnegative random variable X such that λ X > 0, the Mellin transform M X is log-convex on [0, λ X ]. If furthermore X is non-deterministic, then strict log-convexity holds.

Proof. Let g(λ

) := log E[X λ ]. Trivial computations lead to g (λ) = E[X λ (log X) 2 ] E[X λ ] -E[X λ log X] 2 E[X λ ] 2 , 0 < λ < λ X .
Taking p = q = 2, U = X λ 2 log X and V = X λ 2 in (4), we deduce that g is convex. It is strictly convex unless U and V are proportional which is equivalent to X deterministic.

Proposition 1 gives an additional information:

Corollary 1. Let a nonnegative random variable X such that λ X > 0. For every λ ∈ (0, λ X ), the function t → M X (λ + t)/M X (t) is nondecreasing on [0, λ X -λ). It is further increasing whenever X is non-deterministic.
Proof. Theorem 5.1.1 [START_REF] Webster | Convexity[END_REF] p. 194 says that convexity of x → g(x) = log M X (x) yields that its slopes are nondecreasing:

g(y) -g(x) y -x ≤ g(z) -g(x) z -x ≤ g(z) -g(y) z -y , 0 ≤ x < y < z < λ X .
Then, g(λ + s) -g(s) ≤ g(λ + t) -g(t), for 0 ≤ s < t and λ + t < λ X , (7) and the first assertion is proved. For the strict monotonicity, notice that equality holds in [START_REF] Harthi | Some Contributions to Infinite Divisibility through Mellin Transforms and Cumulant Functions of Random Variables[END_REF] only in case where the function r → g(λ + r) -g(r) is not injective. Because of the differentiability of g, the latter reads g (λ + r) = g (r) for some value of r. The latter is possible only if g is not injective, that is g (x) = 0 for some value of x and the second statement in Proposition 1 allows to conclude.

Our result in Corollary 1 is the same than the one stated in Lemma 3.1 in [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF] when λ and t are positive integers. Corollary 1 is also proved in [START_REF] Pakes | Characterization by invariance under length-biasing and random scaling[END_REF], where the author also adapts the arguments of Lemma 3.1 in [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF]. However, we found that the argument of continuity used in [START_REF] Pakes | Characterization by invariance under length-biasing and random scaling[END_REF], appealing to a result of Kingman [START_REF] Kingman | Ergodic properties of continuous-time Markov processes and their discrete time skeletons[END_REF], does not fit his context. We clarify the approach of [START_REF] Pakes | Characterization by invariance under length-biasing and random scaling[END_REF] with this second proof:

Second proof of Corollary 1. We first show that the sequence

u n = M X (nu) satisfies u n+m u n ≤ u n+m+1 u n+1 , for every n, m ∈ N, u > 0. (8) 
Schwarz inequality (4), with

p = q = 2, gives E[X d(n+1) ] 2 ≤ E[(X u(n+2) ] E[X un ]. Then u n+1 u n ≤ u n+2 u n+1 , for every n ∈ N,
which is also equivalent to (8) from which we deduce that for each u > 0 and m ∈ N, the sequence

n → E[X u(n+m) ] E[X un ] is nondecreasing. (9) 
Now, take λ > 0 and t > s > 0 with s, t rationals of the form s = p/q and t = k/l so that pl < qk.

Applying [START_REF] Lefèvre | On multiply monotone distributions, continuous or discrete, with applications[END_REF] with u = λ ql , we obtain the inequality

E[X λ(s+1) ] E[X λs ] = E[X λ ql (pl+ql)) ] E[X λ ql pl ] ≤ E[X λ ql (qk+ql) ] E[X λ ql qk ] = E[X λ(t+1) ] E[X λt ] .
By continuity of the Mellin transform, we deduce that

E[X λ(s+1) ] E[X λs ] ≤ E[X λ(t+1) ] E[X λt ]
, for all λ > 0 and all real numbers s, t s.t. 0 < s < t.

The proof is finished by replacing the couple (s, t) by ( s λ , t λ ). Strict monotonicity is obtained as in the end of the first proof.

We found that in the literature, many papers invoke the injectivity of the Mellin transform without a precise reference. For instance, an informal discussion in exercise 1.13 in [START_REF] Chaumont | Exercises in Probability, A Guided Tour from Measure Theory to Random Processes[END_REF] appeals to Chapter VI in Widder's book [START_REF] Widder | The Laplace Transform[END_REF] where we found Theorem 6a p. 243 stating the following:

If the Mellin transforms of two nonnegative random variables X and Y are well defined on some strip α < Re(z) < β, and equal there, then

X d = Y .
Widder's theorem could be improved by the following Lemma: Lemma 1. Let X and Y two nonnegative random variables such that their Mellin transforms are well defined on some interval (α, β) ⊂ R and equal there, then

X d = Y .
The proof of this Lemma is a technique borrowed from [START_REF] Aguech | Complete monotonicity and Bernstein properties of functions are characterized by their restriction on N 0[END_REF] and based on a Blaschke's theorem that allows to identify holomorphic functions given their restriction along suitable sequences: Theorem 1 (Blaschke, Corollary p. 312 in Rudin [START_REF] Rudin | Real And Complex Analysis[END_REF]). If f is holomorphic and bounded on the open unit disc

D, if z 1 , z 2 , z 3 , • • • are the zeros of f in D and if ∞ k=1 (1 -|z k |) = ∞, then f (z) = 0 for all z ∈ D.
Using the one-to-one mapping of the strip

S = {z ∈ C, 0 < Re(z) < 1} onto the open unit disc z → θ(z) = e i π 2 z -i e i π 2 z + i
, one can easily rephrase Blaschke's theorem for function defined on the strip S:

Corollary 2. Two holomorphic functions on the strip S are identical if their difference is bounded and if they coincide along a sequence

α 1 , α 2 , α 3 , • • • in S, such that the series k 1 -e i π 2 α k -i e i π 2 α k +i diverge.
For instance, the series diverge for the sequence

α k = 1 k , k ≥ 1.
Proof of Lemma 1. It is enough to take (α, β) = (0, 1), to notice that both M X and M Y extend holomorphically on the strip S and to conclude with Corollary 2 since M X and M Y coincide along the sequence α k = k -1 , k ≥ 2 which is contained in (0, 1).

MELLIN TRANSFORM AND SIZE BIASED LAWS

Let X denote a non-deterministic nonnegative random variable. For t ∈ D X , the size biased law of order t is denoted X (t) and is a version of the weighted law

P(X (t) ∈ dx) = x t E[X t ] P(X ∈ dx), x ≥ 0. (10) 
Chebychev's association inequality says that

E[f (X)g(X)] ≥ E[f (X)] E[g(X)],
whenever the expectations are well defined and f, g are both nondecreasing or nonincreasing realvalued functions. Taking

f (u) = u t , g(u) = 1l u>x , we see that X (t) ≥ st X for t ≥ 0, i.e. P(X (t) > x) = E[X t 1l X>x ] E[X t ] ≥ P(X > x), ∀t, x ≥ 0 . (11) 
Notice that the last stochastic inequality also justifies Corollary 1, since the Mellin transform could be computed as

E[X λ ] = λ ∞ 0 x λ-1 P(X > x) dx , λ ∈ (0, λ X ), (12) 
whenever the extremity λ X given by ( 6) is positive.

We list some elementary properties for the size biased law of a r.v. X:

(P0) For every c > 0 and t ∈ D X , we have

X (0) = X and (cX) (t) = cX (t)
(P1) For every λ, t such that t, t + λ ∈ D X and measurable bounded function g, we have

E[X λ (t) ] = E[X t+λ ] E[X t ] , E[g(X (t) )] = E[X t g(X)] E[X t ] .
(P2) For every s, t ∈ D X such that t + s ∈ D X , we have

X (s) (t) d = X (s+t) d = X (t) (s) .
(P3) For every s, t such that st ∈ D X , we have

(X s ) (t) d = (X (st) ) s .
(P4) For every independent random variables X, Y and t ∈ D X ∩ D Y , we have

(XY ) (t) d = X (t) Y (t)
(assuming that X (t) and Y (t) are independent).

CONVERGENCE OF SEQUENCES AND FAMILIES OF MELLIN TRANSFORMS

This section contains results dealing with sequences or families of Mellin transforms. As we did for the injectivity in Lemma 1, we felt it was important to also clarify the notion of convergence via Mellin transform. Next Theorem 2 and Proposition 3, will be crucial for handling section 6 below.

We recall that T = N or [0, ∞). In what follows, (1) a property (P t ) is said to be true for t big enough, if there exists t 0 ∈ T such that (P t ) is true for t ≥ t 0 ; (2) (X t ) t∈T denotes a family of nonnegative random variables indexed by the time t ∈ T;

(3) by a subsequence of (X t ) t∈T , we mean a collection of random variables (X t(n) ) n∈N obtained through a nondecreasing function t : N → T such that t(n) → ∞ as n → ∞; (4) we always assume that for t big enough,

λ Xt = sup{λ ∈ R, E[X λ t ] < ∞} > 0; (5) for λ ≥ 0, we define informally m(λ) := lim inf t∈T E[X λ t ] and M (λ) := lim sup t∈T E[X λ t ]. (13) 
We also recall some basic ingredients related to convergence in distribution.

Definition 1 (Billingsley [4]). Let a sequence (X n ) n∈N of real-valued random variables.

(i) (X n ) n∈N is called tight if sup n∈N P(|X n | > x) → 0 as x → ∞. (ii) (X n ) n∈N is called uniformly integrable if sup n∈N E[|X n |1l Xn>x ] → 0 as x → ∞. (iii) X n converges in distribution to X ∞ if E[f (X n )] → E[f (X ∞ )],
as n → ∞, for every continuous bounded (or continuous compactly supported) real function f .

We are going to study convergence in distribution for families of nonnegative random variables. For this purpose, we slightly generalize Definition 1 in order to get more flexibility. Definition 2. Let family (X t ) t∈T a family of nonnegative random variables.

(i) We say that the family (X t ) t∈T ultimately tight if

lim sup t∈T P(X t > x) → 0, as x → ∞.
(ii) We say that the family (X t ) t∈T is λ-uniformly integrable, and we denote

(X t ) t∈T is λ -U I, if λ ∈ (0, λ Xt ) for t big enough and lim sup t∈T E[X λ t 1l Xt>x ] → 0, as x → ∞.
(iii) We say that the family (X t ) t∈[0,∞) converge in distribution, if every subsequence (X t(n) ) n∈N converges in distribution in the usual sense (iii) of the preceding Definition.

Remark 1. We can notice that: a) λ-uniform integrability of (X t ) t≥0 is equivalent to 1-uniform integrability of (X λ t ) t≥0 . b) If T = N, then Definitions 1 and 2 are equivalent 0λ Xt ∈ (0, ∞) for every t ∈ N. In general, this is untrue if T = [0, ∞). c) If T = [0, ∞), then (X t ) t≥0 is ultimately tight (respectively λ -U I) if and only if there exists some positive t 0 , big enough, such that (X t ) t≥t 0 is tight (respectively (X λ t ) t≥t 0 is uniformly integrable) in the same sense that Billingsley gave in Definition 1.

We start this section with the following result that clarifies the link between ultimate tightness and uniform integrability: Proposition 2. Let λ 0 > 0 and (X t ) t∈T a family of nonnegative random variables. Recall the function m(.) and M (.) are given by [START_REF] Rao | Weighted distributions arising out of methods of ascertainment: What population does a sample represent?[END_REF].

1) If (X t ) t∈T is λ 0 -uniformly integrable, then M (λ 0 ) < ∞.
2) If M (λ 0 ) < ∞, then (X t ) t∈T is ultimately tight and also λ-uniformly integrable for every λ ∈ (0, λ 0 ).

3) Assume m(λ 0 ) > 0 and M (λ 0 + ) < ∞, for some > 0. Then λ 0 -uniform integrability of (X t ) t∈T is equivalent to its ultimate tightness.

Proof. 1) Write M (λ 0 ) ≤ x λ + lim sup t∈T E[X λ t 1l Xt>x ],
for x big enough and deduce that M (λ 0 ) < ∞.

2) Hölder and Markov inequalities give

lim sup t∈T E[X λ t 1l Xt>x ] ≤ M (λ 0 ) λ λ 0 lim sup t∈T P(X t > x) λ 0 -λ λ 0 ≤ M (λ 0 ) x λ 0 -λ , 0 < λ < λ 0 , (14) 
Ultimate tightness and λ-uniform integrability are then immediate.

3) Inequality [START_REF] Pakes | Characterization by invariance under length-biasing and random scaling[END_REF] gives

E[X λ 0 t ] P(X t > x) ≤ E[X λ 0 t 1l Xt>x ],
for all x > 0 and t ∈ T.

Using again inequality [START_REF] Rudin | Real And Complex Analysis[END_REF], with the couple (λ, λ 0 ) replaced by (λ 0 , λ 0 + ), obtain

m(λ 0 ) lim sup t∈T P(X t > x) ≤ lim sup t∈T E[X λ 0 t 1l Xt>x ] ≤ M (λ 0 + ) λ 0 λ 0 + lim sup t∈T P(X t > x) λ 0 + .
Next Theorem rephrases and improves some results borrowed from the monograph of Billingsley [START_REF] Billingsley | Probability and Measure[END_REF]:

Theorem 2. Let (X t ) t∈T a family of nonnegative random variables such that λ 0 ∈ (0, λ Xt ), for some λ 0 > 0 and t big enough.

1) Let X ∞ a nonnegative random variable. The following assertions are equivalent, as t → ∞:

(i) X t d -→ X ∞ and (X t ) t∈T is λ 0 -uniformly integrable; (ii) X t d -→ X ∞ , λ 0 ∈ D X∞ and E[X λ 0 t ] → E[X λ 0 ∞ ] ; (iii) λ 0 ∈ D X∞ and for every λ ∈ [0, λ 0 ], E[X λ t ] → E[X λ ∞ ]. 2) Let λ 1 ∈ (0, λ 0 ) and assume that E[X λ t ] converges as t → ∞ to a well defined function f (λ), λ ∈ [λ 1 , λ 0 ]. Then (iii) holds and f is well defined on [0, λ 0 ] by f (λ) = E[X λ ∞ ].
Proof. The proof is conducted by reasoning on subsequences.

1) (i) =⇒ (iii): it is a direct application of Theorem 25.12 p. 338 in [START_REF] Billingsley | Probability and Measure[END_REF], using Remark 1 and Proposition 2.

(iii) =⇒ (ii) is treated as follows: Since M (λ 0 ) < ∞, then by Proposition 2, the family (X t ) t∈T is ultimately tight. Lemma 1 insures that any subsequence (X t(n) ) n∈N , if converging in distribution as n → ∞, necessarily converge to the law of X ∞ . Corollary in [START_REF] Billingsley | Probability and Measure[END_REF] p.337 allows to conclude that

X t d -→ X ∞ as t → ∞.
(ii) =⇒ (i): we use the following representation valid for any nonnegative random variables Z such that E[Z λ ] < ∞:

E[Z λ 1l Z≤x ] = x λ P(Z ≤ x) -λ x 0 u λ-1 P(Z ≤ u) du, x ≥ 0.
Choose x 0 a continuity point of u → P(X ∞ ≤ u). By the dominated convergence theorem, we have

lim t→∞ E[X λ t 1l Xt≤x 0 ] = lim t→∞ x λ P(X t ≤ x) -λ x 0 0 u λ-1 P(X t ≤ u) du = x λ P(X ∞ ≤ x 0 ) -λ x 0 0 u λ-1 P(X ∞ ≤ u) du = E[X λ ∞ 1l X∞≤x 0 ] Since lim t→∞ E[X t ] = E[X ∞ ], we also have lim t→∞ E[X λ t 1l Xt>x 0 ] = E[X λ ∞ 1l X∞>x 0 ], that is, for every > 0, there exists t 0 ∈ T such E[X λ t 1l Xt>x 0 ] -E[X λ ∞ 1l X∞>x 0 ] < . Now choose > 0, then x 0 big enough so that E[X λ ∞ 1l X∞>x 0 ] < . We deduce that E[X λ t 1l Xt>x ] ≤ E[X λ t 1l Xt>x 0 ] < E[X λ ∞ 1l X∞>x 0 ] + < 2 , t ≥ t 0 , x ≥ x 0 .
2) We adapt a part of the proof of Corollary 1.6 p. 5 given in Schilling and al. [START_REF] Schilling | Bernstein Functions. Theory and applications[END_REF] in the context of convergence of sequences on completely monotone functions. Helly's selection theorem allows a shortcut since there exists a subsequence

(X t(n) ) n∈N satisfying X t(n) d -→ X ∞ , as n → ∞. Fix λ ∈ [λ 1 , λ 0 ]. For every function h : [0, ∞) → [0, 1]
, compactly supported, we find, by Fatou Lemma, that

E[h(X ∞ ) X λ ∞ ] = lim s→∞ E[h(X t(n) ) X λ t(n) ] ≤ lim s→∞ E[X λ t(n) ] = f (λ).
Monotone convergence theorem gives a first inequality [START_REF] Pakes | Characterizations, length-biasing, and infinite divisibility[END_REF] and the dominated convergence theorem, in order to get that for n big enough,

E[X λ ∞ ] = sup h E[h(X ∞ ) X λ ∞ ] ≤ f (λ). Now, fix > 0, choose a continuity point x of the distribution function of X ∞ , then apply the fact that X t(n) d -→ X ∞ , identity
E[X λ t(n) 1l X t(n) ≤x ] -E[X λ ∞ 1l X∞≤x ] = λ x 0 u λ-1 P(u < X t(n) ≤ x) -P(u < X ∞ ≤ x) du ≤ x λ . Since (X t(n) ) n∈N is λ -U I, then E[X λ t(n) 1l X t(n) >x ] < for all x, n big enough. Finally get for all > 0, E[X λ t(n) ] -E[X λ ∞ ] ≤ E[X λ t(n) 1l X t(n) >x ] + E[X λ t(n) 1l X t(n) ≤x ] -E[X λ ∞ 1l X∞≤x ] < (1 + x λ ).
The latter proves the second inequality

f (λ) = lim s→∞ E[X λ t(n) ] ≤ E[X λ ∞ ].
All in one, we have that

f (λ) = E[X λ ∞ ], for every λ ∈ [λ 1 , λ 0 ].
As in point 1) above, notice that the family (X t ) t∈T is ultimately tight, and by Lemma 1, each subsequence of it, if converging in distribution, necessarily converge to the distribution of X ∞ . Use again the Corollary in [START_REF] Billingsley | Probability and Measure[END_REF] p. 337 in order to have X t d -→ X ∞ , as t → ∞. To conclude, use λ-uniform integrability of (X t ) t∈T and then implication (i) =⇒ (ii) in point 1) above. Now, consider two families of nonnegative random variables (U t ) t∈T and

(V t ) t∈T such that U t d -→ U ∞ , V t d -→ V ∞ and U t and V t independent for every t ∈ T. It then is trivial that U t V t d -→ U ∞ V ∞ .
As a consequence of Theorem 2, we deduce a kind of converse: Corollary 3. Let (U t ) t∈T , (V t ) t∈T and (W t ) t∈T three families of nonnegative random variables such that U t and V t are independent for each t ∈ T and such that

(i) the factorizations in law W t d = U t V t holds; (ii) the convergences in distribution W t d -→ U ∞ and V t d -→ V ∞ = 0 hold as t → ∞; (iii) there exists λ 0 > 0 such that (W t ) t∈T is λ 0 -U I or such that lim t∈T E[W λ 0 t ] < ∞. Then, U t d -→ U ∞ ,
where the distribution of the random variable U ∞ is well defined by its Mellin transform given by E

[U λ ∞ ] = E[W λ ∞ ]/ E[V λ ∞ ], for every λ ∈ [0, λ 0 ].
Proof. Notice that λ 0 ∈ D Wt = D Ut ∩ D Vt for t big enough and that both conditions in (iii) are equivalent by Theorem 2. Choose v 0 > 0 a continuity point of x → P(V ∞ > x) such that P(V ∞ > v 0 ) > 1/2 and notice also that for every t ∈ T and x ≥ 0,

E[W λ 0 t 1l Wt>x ] ≥ E[(U t V t ) λ 0 1l Ut> x v 0 , Vt>v 0 ] = E[U λ 0 t 1l Ut> x v 0 ] E[V λ 0 t 1l Vt>v 0 ] ≥ E[U λ 0 t 1l Ut> x v 0 ] v λ 0 0 P(V t > v 0 ).
Then use the fact that there exists t 0 ∈ T such that

P(V t > v 0 ) > P(V ∞ > v 0 ) -1/4 > 1/4 for t ≥ t 0 and then E[W λ 0 t 1l Wt>x ] ≥ v 0 4 E[U λ 0 t 1l Ut> x v 0 ], t ≥ t 0 , x ≥ 0.
The latter yields that the family (U t ) t∈T is λ 0 -U I, then apply Theorem 2.

Next proposition studies the convergence of biased laws and improves Theorem 2.3 in [2]: Proposition 3. Let (X t ) t∈T a family of nonnegative random variables such that X t converges in distribution to a non-null random X ∞ . Suppose 0 < λ 0 < min(λ Xt , λ X∞ ) for t big enough and

lim t→∞ E[X λ 0 t ] → E[X λ 0 ∞ ]
. Then, we have the convergence of the size biased distributions of (X t ) t∈T :

(X t ) (λ) d -→ (X ∞ ) (λ) , as t → ∞, for every λ ∈ [0, λ 0 ]. (15) 
Proof. a) We start by proving [START_REF] Schilling | Bernstein Functions. Theory and applications[END_REF] for λ = λ 0 . By assumption, we have 0

< E[X λ 0 ∞ ] < ∞. Con- vergence in distribution of X t to X ∞ is equivalent to E[g(X t )] → E[g(X ∞
)] for every continuous, compactly supported function g, as t → ∞. The function h(x) = |x| λ 0 g(x) is also a continuous, compactly supported function. By property (P1), we also have

E[h(X t )] = E[X λ 0 t ] E[g (X t ) (λ 0 ) ] → E[h(X ∞ )] = E[X λ 0 ∞ ] E[g (X ∞ ) (λ 0 ) ].
The limit [START_REF] Schilling | Bernstein Functions. Theory and applications[END_REF] for λ = λ 0 follows by simplification in both sides of the last limit. b) By Proposition 2, notice that (X t ) t∈T is λ -U I for every λ ∈ (0, λ 0 ). Deduce by Theorem 2 that

lim t→∞ E[X λ t ] → E[X λ ∞ ]
for and reproduce step a) for λ ∈ [0, λ 0 ). Remark 2. By Theorem 2, finiteness of the quantity M (λ 0 ) given by ( 13), or λ 0 -uniform integrability of (X t ) t∈T is sufficient to insure that λ 0 ∈ D X∞ .

t-MONOTONE DENSITY FUNCTIONS

Let x + denotes max{0, x}, x ∈ R. The following definition extends the one of Schilling et al. [START_REF] Schilling | Bernstein Functions. Theory and applications[END_REF] given for t nonnegative integer.

Definition 3. Let t ∈ (0, ∞). A function f : (0, ∞) → [0, ∞) is t-monotone if it is represented by f (x) = c + (0,∞) (u -x) t-1 + ν(du), x > 0 (16) 
for some c ≥ 0 and some measure ν on (0, ∞).

Remark 3. When t = 1, representation ( 16) holds if and only if f is nonincreasing and rightcontinuous. When t = n is an integer greater than or equal to 2, representation ( 16) holds if and only if f is n -2 times differentiable, (-1) j f (j) (x) ≥ 0 for all j = 0, 1, • • • , n -2 and x > 0, and (-1) n-2 f (n-2) is nonincreasing and convex. Furthermore, by Theorem 1.11 p.8, [START_REF] Schilling | Bernstein Functions. Theory and applications[END_REF]), the couple (c, ν) in ( 16) uniquely determines f .

A random variable b a,b is said to have the beta distribution with parameter (a, b), a, b > 0, if it has the density function

1 β(a, b) x a-1 (1 -x) b-1 , x ∈ (0, 1) with β(a, b) = Γ(a)Γ(b) Γ(a + b) .
A random variable g a is said to have the Gamma distribution with parameter a > 0, if it has the density function Γ(a) -1 x a-1 e -x , x ∈ (0, ∞). It is well known that 

In the sequel, we denote b t the random variable defined by b 0 = 1 and b 1,t if t > 0, that is b t has the density function t(1 -x) t-1 , x ∈ (0, 1), t > 0.

Also, e = g 1 denotes a random variable with standard exponential distribution. It is clear that

b t d = 1 -e -e t
and that tb t d -→ e, as t → ∞.

We propose the following characterization for t-monotone densities.

Proposition 4. Let t ∈ (0, ∞).

1) The density function f : (0, ∞) → [0, ∞) of a positive random variable Z, is t-monotone, if and only if there exists a positive random variable Y t such that f is represented

f (x) = t (0,∞) 1 - x u t-1 + P(Y t ∈ du) u , x > 0. ( 20 
)
This equivalent to the factorization in law

Z d = b t Y t
, where b t has the beta distribution as in ( 19) and is independent from Y t .

2) If f is t-monotone, then it is also s-monotone for every s ∈ (0, t).

3) Furthermore, the ν-measure associated to f through ( 16) is finite if and only if there exists a positive random variable X such that Y t has the same distribution as the size biased random variable X (t) given by [START_REF] Kingman | Ergodic properties of continuous-time Markov processes and their discrete time skeletons[END_REF] i.e.

Z d = b t X (t) . (21) 
Remark 4. Bernstein characterization for completely monotone functions says that a function f : (0, ∞) → R is n-monotone for every n ∈ N, if and only if it is represented as the Laplace transform of a (unique) Radon measure ν on [0, ∞):

f (x) = [0,∞)
e -xu ν(du), λ > 0 (respectively x ≥ 0);

When f is a density function associated to a positive random variable Z, the latter is equivalent to

Z d = eY
where Y is positive and independent from the exponentially distributed random variable e and also to f (x) = E[e -x/Y /Y ], x > 0. In this case, Bernstein characterization for f could be reinterpreted as follows:

-use the Beta-Gamma algebra [START_REF] Steutel | Infinite divisibility of probability distributions on the real line[END_REF] in order to write

Z d = e d = b t g t Y, P(Z > x) = E 1 - x g t Y t +
, for every t x > 0;

(23) -use the fact that (1 -x t ) t + → e -x uniformly in x > 0, as t → ∞, and that gt t d -→ 1, then rephrase (23) as:

P(Z > x) = lim n→∞ E 1 - t g t x tY n + = E[e -x/Y ] = P(e Y > x), for every x > 0.
This clarifies the discussion made right after Proposition 2.2 in [START_REF] Lefèvre | On multiply monotone distributions, continuous or discrete, with applications[END_REF].

Proof of Proposition 21. 1) The density function f is of the form ( 16) if and only if c = 0 and

f (x) = (0,∞) (1 - x u ) t-1 + u t-1 ν(du), x > 0, some measure ν on (0, ∞) such that 1 = ∞ 0 f (x)dx = (0,∞) t -1 u t ν(du) so that t -1 u t ν(dx)
is a probability measure associated to some random variable, say Y t . The second assertion is due to the fact that the density of the independent product of a non negative random variables U and V such that U has a density function f U is given by the Mellin convolution

f U V (x) = (0,∞) f U ( x y ) P(V ∈ dy) y , x > 0.
2) It is enough to use the Beta-algebra ( 17)

: b t d = b s b 1+s,t-s . 3) E[Y -t t ] = t -1 ν(0, ∞) < ∞ is equivalent to the identity Y t d = X (t)
where X has the distribution ν(0, ∞) -1 ν(x).

APPLICATION: REFINEMENT OF THE RESULTS OF HARKNESS AND SHANTARAM [8]

Recall that T = N or [0, ∞). In what follows X is a nonnegative random variable, non identically null, such that [0, ∞) ⊂ D X i.e. X has moments of all positive orders.

We are willing to obtain a limit theorem for the family obtained by size biasing the distribution of X. Identity (21) suggests to introduce a family of random variables (E t (X)) t∈T , such that each E t (X) has its distribution defined through an operator E t stemming from the identity

E t (X) : d = B t X (t) , with with B t independent from X (t) . (24) 
By property (P2) and identity [START_REF] Steutel | Infinite divisibility of probability distributions on the real line[END_REF] for Beta distributions, notice that the family (E t ) t∈T forms a semigroup of commuting operators:

E t (E s (X)) d = E t (E s (X)) d = E t+s (X), s, t ∈ T.
By simple computations, we obtain that identity (24) is equivalent to one of the following expressions for the Mellin transform or for the distribution function of E t (X):

E[E t (X) λ ] Γ(λ + 1) = Γ(t + 1) E[X t ] E[X λ+t ] Γ(λ + t + 1) = Γ(t + 1) Γ(λ + t + 1) E X λ (t) , λ ≥ 0, P(E t (X) > x) = E (1 - x X (t) ) t + = E[(X -x) t + ] E[X t ] = t [X t ] ∞ x (u -x) t-1 P(X > u) du, x ≥ 0, so that P(E 1 (X) ≤ x) = 1 E[X] x 0 P(X > u) du, x ≥ 0.
It is then clear that the operator E 1 corresponds to the stationary excess operator studied by Harkness and Shantaram [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF] and also in [START_REF] Shantaram | On a Certain Class of Limit Distributions[END_REF][START_REF] Pakes | Characterization by invariance under length-biasing and random scaling[END_REF][START_REF] Pakes | Characterizations, length-biasing, and infinite divisibility[END_REF][START_REF] Vardi | Distribution functions invariant under residual-lifetime and length-biased sampling[END_REF]. It is also seen that the operator E n corresponds the n-th iterate by the composition of E 1 :

E n+1 = E 1 • E n , n ∈ N {0}.
Harkness and Shantaram [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF] solved the discrete time problem (T = N) of:

-finding a deterministic normalization speed c t , t ∈ N, and sufficient conditions such that

Z t := E t (X) c t d -→ Z ∞ as t ∈ N and t → ∞. (25) 
-describing the set of possible distributions for Z ∞ .

It is natural to study what kind of additional information we can recover from the continuous time problem, i.e. convergence (25) in case T = [0, ∞) instead of T = N, and to find the necessary and sufficient conditions such that

Z t d = 1 c t b t X (t) d -→ Z ∞ when t ∈ T and t → ∞. (26) 
A direction for solving this problem is given by ( 19): we have that tb t d -→ e as t → ∞. Take in Corollary 3

(U t , V t , W t ) = (t b t , X (t) ρ t , Z t ), with ρ t = t c t and assume E[Z λ 0
∞ ] is finite for some λ 0 ∈ T {0}. Under the last assumption, it could be noticed that problem (26) is equivalent to finding necessary and sufficient conditions on the deterministic and positive normalization speed ρ t , such that

X t := X (t) ρ t d -→ X ∞ when t ∈ T and t → ∞, (27) 
and such that E[X

λ 0 ∞ ] is finite for some λ 0 ∈ T {0}. The random variable Z ∞ in (26) is then linked to X ∞ by Z ∞ d = e X ∞
, where e is exponentially distributed, independent from X ∞ .

(

Theorems 3 and 4 below, improve the discrete time problem in (26, case T = N) studied by Harkness and Shantaram [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF], by giving a sharper answer through the continuous time problem in (26, 27, case T = [0, ∞)).

Theorem 3 (A normal limit theorem). Let (X t ) t∈T the family given by (27).

1) Assertions (i)-(ii)-(iii) are equivalent as t → ∞:

(i) X t converges in distribution to a non-null and nonnegative random variable X ∞ and

lim t→∞ E[X λ 0 t ] = E[X λ 0 ∞ ] < ∞, for some λ 0 ∈ T {0};
(ii) X t converges in distribution to a non-null and nonnegative random variable X ∞ and lim sup t→∞ ρ t+s ρ t < ∞, for some s ∈ T {0};

(iii) there exists a non-null and nonnegative random variable

X ∞ such that [0, ∞) ∈ D X∞ and E[X λ t ] → E[X λ ∞ ], for all λ ∈ [0, ∞). 2) In this case, necessarily, ρ t ∼ +∞ E[X ∞ ] E[X t+1 ]/ E[X t ]
and there exists c ≥ 0 such that l(s) := lim t→∞ ρ t+s ρ t = e cs , for every s ∈ T.

3) Assume one of the equivalent assertions in 1) and let c given by (29). Choose a := log E[X ∞ ] and let N a random variable normally distribution with mean a -c 2 and variance c (it is understood that N = a when c = 0). Then the following holds:

(i) if T = N, then the law of the random variable X ∞ is not determined by its integer moments, we only have 30) holds for all λ ∈ [0, ∞).

E[X λ ∞ ] = E[e λN ] = e (a-c 2 )λ+ c 2 λ 2 , for all λ ∈ N; (30) (ii) if T = [0, ∞), then log X ∞ d = N , i.e. (
(iii) We have the identity in law

(X ∞ ) (s) d = e cs X ∞ , for every s ∈ T. (31) 
Proof. Using properties (P1) and (P2), we start by noticing the following identity valid for every t, s, µ ∈ T and x ≥ 0:

E[X s+µ t 1l Xt>x ] = E X (t) ρ t λ 1l X (t) >xρt = E[X t+s+µ 1l X>xρt ] ρ λ t E[X t ] = E[X t+s ] ρ λ t E[X t ] E[X µ (t+s) 1l X (t+s) >xρt ].
In particular, for every t, s, µ ∈ T and x, y ≥ 0, we have

E[X s+µ t 1l Xt>x ] = E[X s t ] ρ t+s ρ t µ E[X µ t+s 1l X t+s >x ρ t ρ t+s ] (32) E[X s t 1l Xt>x ] = E[X s t ] P(X t+s > x ρ t ρ t+s ) (33) E[X s t 1l Xt≤y ] = E[X s t ] P(X t+s ≤ y ρ t ρ t+s ) (34) 
If X t converges in distribution to X ∞ and if z is a continuity point of u → P(X ∞ ≤ Ku), then for every ∈ (0, 1), there exists t z ∈ T such that

| P(X ∞ ≤ Kz) -P(X t+s ≤ z)| = | P(X t+s > z) -P(X ∞ > Kz)| < , for all t ≥ t z . (35) 
1)(iii) =⇒ (ii) is easy, since by (32) with x = 0, we have

E[X s+µ ∞ ] = lim t→∞ E[X s+µ t ] = E[X s ∞ ] E[X µ ∞ ] lim t→∞ ρ t+s ρ t µ for every s, µ ∈ T {0}. (36) 
(ii) =⇒ (iii) Here s ∈ T {0} is fixed and we proceed through two steps:

Step 1: we know that there exits K > 0, t s ∈ T such that

ρ t /ρ t+s ≥ K, for t ≥ t s . (37) 
The last inequality combined with identities (33) and (34) give that for every t ≥ t s , x, y > 0,

E[X s t 1l Xt>x ] ≤ E[X s t ] P(X t+s > Kx) and y s ≥ E[X s t ] P(X t+s ≤ Ky). (38) 
Now we choose = 1/4 in (35) with a continuity point z = y 0 such that P(X ∞ ≤ Ky 0 ) > 1/2. We get by the second inequality in (38) that

y s 0 ≥ E[X s t 1l Xt≤y 0 ] = E[X s t ] P(X ∞ ≤ Ky 0 ) - 1 4 > 1 4 E[X s t ], t ≥ t y 0 .
We deduce that C(y 0 ) := sup t≥ty 0 E[X s t ] < ∞. The first inequality in (38) gives E[X s t 1l Xt>x ] ≤ C(y 0 ) P(X t+s > xK), t ≥ t y 0 , x > 0.

The next step is to choose arbitrary small in (35) with a continuity point z = x 0 , big enough, so that P(X ∞ > Kx 0 ) < in order to have for t ≥ max(t s , t x 0 , t y 0 ) and x ≥ x 0 , that

E[X s t 1l Xt>x ] ≤ E[X s t 1l Xt>x 0 ] ≤ C(y 0 ) P(X t+s > xK) ≤ C(y 0 ) P(X ∞ > x 0 K)+ ≤ (1+C(y 0 )
) . The latter justifies that (X t ) t∈T is s-uniformly integrable.

Step 2: By (32) and (37), we have for every t ≥ t s ,

E[X 2s t 1l Xt>x ] = E[X s t ] ρ t+s ρ t s E[X s t+s 1l X t+s >x ρ t ρ t+s ] ≤ E[X s t ] ρ t+s ρ t s E[X s t+s 1l X t+s >Kx ].
In step 1, we gained that the family M (s) = lim sup t∈T E[X s t ] < ∞ that (X t ) t∈T is s -U I. The last inequality shows that (X t ) t∈T is also 2s -U I. Repeating the procedure, we obtain that (X t ) t∈T is also ms -U I for every positive integer m and then, by Proposition 2, (X t ) t∈T is also λ -U I for every positive number λ > 0. Then we apply Theorem 2.

(iii) =⇒ (i) is an immediate application of point 1) in Theorem 2.

(i) =⇒ (iii): Identity (32) shows that

E[(X t ) µ (λ 0 ) ] = ρ t+λ 0 ρ t µ E[X µ t+λ 0
], for every t, µ ∈ T.

By Lemma 1, we deduce that

X t+λ 0 d = ρ t ρ t+λ 0 (X t ) (λ 0 ) .
By Proposition 3, we have that (X t ) (λ 0 ) converges in distribution and that the triplet (U t , V t , W t ) = (X t+λ 0 , (X t ) (λ 0 ) , ρ t+λ 0 /ρ t ) satisfies Corollary 3. We obtain that ρ t+λ 0 /ρ t converges as t → ∞ and then we use (ii) =⇒ (iii).

2) The first claim stems from E[X ∞ ] = lim t→∞ E[X (t) ]/ρ t . For the second claim, notice by Corollary 1, that the function t → ρ t is asymptotically increasing, so that l(s) ≥ 1 for every s ∈ T. By (36), we recover that

l(s) µ = lim t→∞ ρ t+s ρ t µ = E[X s+µ ∞ ] E[X s ∞ ] E[X µ ∞ ]
, for every s, µ ∈ T {0}.

From the symmetry in (39), it is seen that l(s) µ = l(µ) s for every s, µ ∈ T. Taking c = log l(1) ≥ 0, we get representation (29). The latter could be also deduced from Lemma 1 in [START_REF] Aguech | Complete monotonicity and Bernstein properties of functions are characterized by their restriction on N 0[END_REF].

3) By Proposition 3,

(X t ) (s) d -→ (X ∞ ) (s)
for all s ∈ T, as t → ∞, and by properties (P0) and (P3), we obtain

(X t ) (s) d = ρ t+s ρ t X (t+s) d -→ e cµ X ∞ d = (X ∞ ) (s) .
The latter gives that the Mellin transform λ → M X∞ (λ) = E[X λ ∞ ] is a solution of the functional equation:

h(1) = E[X ∞ ] = e a , h(s + µ) = e csµ h(s) h(µ), for every s, µ ∈ T, (40) 
and this could be also from identity (39). The function h 0 (λ) = e cλ(λ-1) solves the equation without the initial condition. Any solution of the form h = h 0 k, has necessary k(s + µ) = k(s) k(µ) for every s, µ ∈ T, so that k(λ) = k(1) λ . Due the initial condition, necessarily k(1) = e a .

If T = N, then identity (31) true for every s ∈ N is equivalent to the same identity with s = 1:

(X ∞ ) (1) d = e c X ∞ . (41) 
We stress that identity (41) does not allow to recover the log-normal distribution of X ∞ which is not moment determinate. This situation was studied by many authors, [START_REF] Arratia | Size Bias For One And All[END_REF][START_REF] Van Beek | The limits of sequences of iterated overshoot distribution functions[END_REF][START_REF] Garcia | Characterization of distributions with the length-bias scaling property[END_REF][START_REF] Shantaram | On a Certain Class of Limit Distributions[END_REF][START_REF] Pakes | Characterization by invariance under length-biasing and random scaling[END_REF][START_REF] Pakes | Characterizations, length-biasing, and infinite divisibility[END_REF][START_REF] Vardi | Distribution functions invariant under residual-lifetime and length-biased sampling[END_REF] for instance and all these works were motivated by finding the set or possible limit for the discrete problem (25). We also stress that Harkness and Shantaram [START_REF] Harkness | Convergence of a sequence of transformations of distribution functions[END_REF] only showed, and in case T = N, that condition (iii) in our Theorem 3, implies (i) and (ii) without specifying the distribution of Z ∞ which we know equal in distribution to e X ∞ . Theorem 3 distinguishes between the situation T = N and T = [0, ∞). It is trivial that convergence of the family (X t ) t∈[0,∞) implies that the subsequence (X t ) t∈N converges to the same limit. Theorem 4 below shows that the converse is true and that actually in both discrete and continuous time problems, the only possible limits of normalized biased families are the log-normal distributions. Equivalently, the only possible limits of normalized families obtained by the stationary excess operator are the mixture of the exponential and the log-normal distribution. Theorem 4 (The normal limit theorem improved). The following statements are equivalent: In all cases, D Z∞ and D X∞ necessarily contains [0, ∞) and convergence (29) holds with some c ≥ 0. We also have Z ∞ d = eX ∞ where e and X ∞ are independent and have respectively the standard exponential distribution and the log-normal distribution, i.e., if for every choice of α = E[X ∞ ], the random variable log X ∞ has the normal distribution with mean equal to log α -c 2 and variance equal to c 2 . It is understood that X ∞ = α if c = 0. Furthermore we have the identity in law

Z ∞ d = e -cs b s (Z ∞ ) (s) , for every s ≥ 0
where b s is assumed to be independent from (Z ∞ ) (s) .

Proof. By the discussion before Theorem 3, we know that (i) ⇐⇒ (iii) and that (ii) ⇐⇒ (iv).

(iv) =⇒ (iii) being trivial, it remains to show (iii) =⇒ (iv). By Theorem 

ρ n+1 ρ n ,
which shows (42). Last identity in the theorem stems from property (P4), identities (28), ( 18) and then Beta-Gamma algebra identities ( 17):

(Z ∞ ) (s) d = (e X ∞ ) (s) d = g s+1 (X ∞ ) (s)
which yields

e -cs b s (Z ∞ ) (s) d = eX ∞ d = Z ∞ .
In order to provide an example, we recall the following concept: Let g : (0, ∞) → R and ∆ a the difference operator given by ∆ a g(x) := g(x + a) -g(x). The function g is said monotone of order k ∈ N, if it satisfies

(-1) k ∆ a 1 ∆ a 2 • • • ∆ a k g ≤ 0,
for all a 1 , a 2 , • • • a k > 0, k ∈ N {0}.

Assume g is k times differentiable. The discussion in [START_REF] Schilling | Bernstein Functions. Theory and applications[END_REF] at the end of page 43 indicates, by a mean value theorem argument, that for every x ∈ (0, ∞),

∆ a 1 ∆ a 2 • • • ∆ a k g(x) = g (k) (x + θ 1 a 1 + θ 2 a 2 + • • • θ k ),
for suitable θ 1 , θ 2 , • • • , θ k ∈ (0, 1). It is then immediate that (-1) k g (k) ≥ 0 implies that g is monotone of order k. By Theorem 4.11 p.42 [START_REF] Schilling | Bernstein Functions. Theory and applications[END_REF], g is n-monotone is equivalent to its nonnegativity and monotonicity of all order k = 1, • • • n and is also equivalent to (-1) k g (k) ≥ 0 for all k = 0, • • • n.

We remind that X is a nonnegative random variable such that [0, ∞) ⊂ D X . Now choose a positive quantity α, to be allocated to the value of E[X ∞ ], and define for t ≥ 0

g X (t) = log E[X t ] and ρ t = α E[X (t) ] = α E[X t+1 ] E[X t ] = α exp ∆ 1 g X (t).
We already know that by Proposition 1 that g X is monotone of order 2 (that is g X is convex) and by Corollary 1, we know that t → ρ t in nondecreasing and then the quantity

ρ t+s ρ t = E[X (t+s) ] E[X (t) ] = exp ∆ 1 ∆ s g X (t) (43) 
is bounded below by 1. It is clear that if g X is monotone of order 3 (this holds if the derivative g X is concave), then the function t → ρ t+s /ρ t is nonincreasing. The latter implies that lim t→∞ ρ t+s /ρ t exits and is necessarily as in (29). We are now able to provide examples of random variables satisfying (29). For infinite divisibility property of real random variables, the reader is referred to the book of Steutel-van Harn [START_REF] Steutel | Infinite divisibility of probability distributions on the real line[END_REF] and also to [START_REF] Schilling | Bernstein Functions. Theory and applications[END_REF]:

Example 1. If X is a random variable such that g X is a concave function, then (29) is satisfied. For instance, assume log X is an infinite divisible random variable such that its Lévy exponent g X = log M X has the form

g X (λ) = dλ + σ 2 2 λ 2 + (0,∞) (e -λx -1 + λx1l x≤1 ) π(dx), λ ≥ 0, (44) 
with d ∈ R, σ ≥ 0 and the Lévy measure π satisfy the (0,∞) (x 2 ∧ 1)π(dx) < ∞. It is easy to check that g X is concave. Furthermore, we have

∆ 1 ∆ s g(t) = σ 2 s + (0,∞)
e -tx (1 -e -x )(1 -e -sx ) π(dx), t, s > 0,

and by (43), X satisfies (29) with c = σ 2 .

=

  b a,b g a+b and b a,b+c d = b a,b b a+b,c , for all a, b, c > 0, ,

  where in the first (respectively second) identity b a,b and g a+b (respectively b a,b and b a+b,c ) are assumed to be independent. Biasing on Beta and Gamma variables is nicely expressed by (b a,b ) (t) d = b a+t,b , and (g a ) (t) d = g a+t , for all t > 0.

  (i) convergence (26, case T = N) holds and D Z∞ contains some value λ 0 ∈ (0, ∞);(ii) convergence (26, case T = [0, ∞)) holds and D Z∞ contains some value λ 0 ∈ (0, ∞);(iii) convergence (27, case T = N) holds and D X∞ contains some value λ 0 ∈ (0, ∞);(iv) convergence (27, case T = [0, ∞)) holds and D X∞ contains some value λ 0 ∈ (0, ∞).

  3, it is enough to show that + [s] + 2)/r([t]). It is then immediate that

	lim sup t∈[0,∞), t→∞	ρ t+s ρ t	=	lim sup t∈[0,∞), t→∞	r(t + s) r(t)	≤ lim sup t∈[0,∞), t→∞	r([t] + [s] + 2) r([t]	= lim sup n∈N, n→∞	r(n + [s] + 2) r(n)
			≤ lim sup n∈N, n→∞	r(n + 1) r(n)		[s]+2)	= lim sup n∈N, n→∞	ρ n+1 ρ n	[s]+2)	< ∞.
	On the other hand,		lim sup t∈[0,∞), t→∞	ρ t+1 ρ t	≥ lim sup n∈N, n→∞
	lim sup n∈N, n→∞	ρ n+1 ρ n	< ∞ is equivalent to		lim sup t∈[0,∞), t→∞	ρ t+s ρ t	< ∞, for all s > 0.	(42)
	By Theorem 3, we also know that				
						ρ t ∼			

+∞ r(t) = E[X ∞ ] E[X (t) ]

and Corollary 1 says that the function t → r(t) is nondecreasing. Let [x] the integer of the real number x. We have [t] ≤ t ≤ t + s ≤ [t] + [s] + 2 for every t, s > 0 and then r(t + s)/r(t) ≤ r

([t]