V I E Anireh

N E Osegi
email: nd.osegi@sure-gp.com

A Real Number Formula for Approximating a Class of Irrational and Transcendental Numbers

Keywords: Exponential Function, Quadratic approximation, Real Number Formula, Transcendental Numbers, Nomenclature

We develop a Real Number Formula (RNF) algorithm for computing a class of irrational or transcendental numbers say s  constrained on an apriori set of real or integer numbers, s n referred to here as the calibration constant. RNF is defined as a universal method for approximately constructing the real number set say  . We show that if RNF is quadratic, then s n is negative definite for computing a class of transcendental or irrational numbers and positive otherwise. We further compare the run-time of an RNFbased exponential function against an existing exponential function algorithm to demonstrate the effectiveness of our algorithm.

Introduction

For centuries, real numbers have found valuable applications in engineering and science, making it possible to perform simplified numerical computations on a wide range of scientific problems. Top on the list of real numbers is the class of finite irrational and transcendental numbers including but not limited to , e ,) (r or  , 2 ,  . Algorithmic techniques have been proposed by numerous authors for approximately computing some of these numbers and is beyond the scope of this paper to document all of them. A useful discussion of the analytic computation of these numbers can be found in [START_REF] Kahaner | Numerical methods and software[END_REF], [START_REF] Lightstone | Concepts of calculus[END_REF]. However, a universal framework for deriving this very important class of numbers is still lacking in the literature.

It is the goal of this report to present a new but simple technique for universal computation of this very important numbers.

We hereby, present a novel formula described as an RNF, for approximating a series of real numbers. Our formula proves the existence of a finite class of popular real numbers which may be transcendental or irrational. In addition, our formula can speed-up the computation of an exponential function.

Related Algorithms and State-of-the-Art Techniques for Computing the Exponent of a Number or the Euler Polynomial

Several algorithms for accurately computing the exponential function the exponential function of x (x e).

Some of these are discussed under the headings below:

Algorithm Using Recurrence Relation

In Knuth and Bukholtz [START_REF] Knuth | Computation of tangent, Euler, and Bernoulli numbers[END_REF] a modified recurrent relational formula was used to approximate the exponential function of x leading to faster computation. This technique avoids the time consuming multiplication operations in standard recurrent formulas.

Algorithm Using the Boole Summation Formula

Borwein et al [START_REF] Borwein | Pi, Euler numbers and asymptotic expansions[END_REF] defined two generating functions, the Boole Summation Formula (BSF) and the remainder for Gregory Series for computing the Euler Polynomials. This is somewhat distinct from computing the exponential function of x but could be modified to suit this purpose.

Algorithm Based on Taylors Series Expansion

Moler in [START_REF] Moler | Experiments with MATLAB[END_REF], described an algorithm for computing the exponential function of x. This algorithm uses the power series to approximate some real valued function of x. This function represent one of the exponential function algorithm used in Matlab, a popular and widely used technical computing software.

RNF Principle

The Real Number Formula (RNF) is a new theory of computation that proposes the use of a calibration based approach for approximating some important real numbers. Specifically, RNF uses an algebraic formulation expressed in terms of a few free parameters that belong to the real number class and attempts to describe the existence of the real numbers through the following theorems.

Theorem 1:

Suppose an RNF is intuitively defined as:

a o m a n a RNF          (1)
.where n, m   , n, m > 0, 0 < m << a, 0 < n << a, a   .

Then, there exists a finite set of real numbers, say, * n which sufficiently assures the approximation to a set of important real numbers say {}

s  , such that, o RNF  s  as a    s  Specifically, ns) ., . . n2, {n1, *  n .and Ts} , . … T2, {T1,  s  Proof:
Proof is by Rolle's Theorem [START_REF] Lightstone | Concepts of calculus[END_REF] and is stated as follows:

Suppose m is continuous on the closed interval If RNFo is quadratic, then RNF approximates some s  iff 'n' is sufficiently large and negative definite.

RNF u l u l D n n n n ) (],
From Theorem 2, it follows that,

2           m a n a RNF o (2)

Experiments and Results

In order to verify our theorems we have performed numerical simulations over a range of tunable inputs, say 'n', using a computer program. We investigate the real numbers, , e ,) (r or



, 2 ,  for different values of n. An Intel iCore3 processor clocked at 2.13GHz with 4GB Random Access Memory has been used as experimental machine platform.

In the first instance, we set a = 10^6 and m = 2, then we vary n over the range 0 to 100 to five places of decimals. The set of 'n' with the closest match to the aforementioned real numbers are given in Table 1.

In the second instance we use the quadratic form of SNF given in Theorem 2, we vary n between -1 and 10^6 while keeping 'a' and 'm' unchanged. The set of 'n' with the closest match are given in Table 2.

In the last instance, we compute the run-times for computing the exponential function of x using both the quadratic form of RNF and the exponential algorithm (expex) in [START_REF] Knuth | Computation of tangent, Euler, and Bernoulli numbers[END_REF]. The values of x are scaled between -1 and 20 and linearly spaced at 50,000 data points performed for 10 consecutive runs for both algorithms. The average values are then computed. The results are given in Table 3.

Discussion and Conclusion

RNF is an automated and universal way of approximating some important irrational or transcendental numbers using a finite set of calibration constants. Using formula 1, n is entirely positive-definite for the selected real numbers. However, this is not the case when formula 2 is used ('n' is positive for r and).

The computation of recurring decimals using formula 1 may also lead to an increased run-time. Thus formula 2 is cheaper and is recommended when dealing with large input values of x. However, RNF should be used with care since it is only an approximation to the real number class of transcendental and irrational numbers. Also, from the results in Table 3, it can be seen that the RNF algorithms competes favorably well with the expex algorithm and can achieve shorter run-times. However, the expex algorithms performs better on the average.

Future Work

The potentials of RNF as an alternative representation of the exponential function used in popular sigmoidal activation functions used in Neural Networks will be investigated. Attempts will also be directed towards improving the developed algorithm in order to speed up computation.

Table 1

 1 Computed Irrational/ Transcendental numbers for real number 'n' calibration constants.

	n	Discovered Real Number	Class
	1 0.85485	 (3.1429)	Finite Irrational/transcendental
	2 1.00000	e (2.7183)	Finite Irrational/transcendental
	3 1.65340	2 (1.4142)	Finite Irrational
	4 2.48125	r (0.6180)	Finite Irrational
	5 2.54900	 (0.577)	???

Table 2

 2 Computed Irrational/ Transcendental numbers for integer number 'n' calibration constants.

	n		Discovered Real Number	Class
	1 -772,450	 (3.141591)	Finite Irrational/transcendental
	2 -648,718	e (2.718281)	Finite Irrational/transcendental
	3 -189,206	2 (1.414216)	Finite Irrational
	4 +213,850	r (0.618034)	Finite Irrational
	5 +240,255	 (0.577214)	???
	Table 3 Computed Run-times for the RNF-based Exponential Function (t_RNF) and Existing Exponential
	Function (t_expex) of x values.
	runs	t_expex	t_RNF
	1		4.4430	4.7550
	2		3.6580	4.4070
	3		3.7990	3.8510
	4		4.4810	3.5560
	5		3.6280	3.6780
	6		3.8270	3.7020
	7		3.6660	4.3410
	8		4.3120	3.7250
	9		4.0290	4.2120
	10		4.2120	3.8490
	Average		4.0055	4.0076
	min		3.628	3.556
	max		4.4810	4.7550