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Institut de Mathématiques de Marseille, UMR 7373, 13453 Marseille, France

Abstract

This paper is devoted to a class of reaction-diffusion equations with nonlinearities
depending on time modeling a cancerous process with chemotherapy. We begin
by considering nonlinearities periodic in time. For these functions, we investigate
equilibrium states, and we deduce the large time behavior of the solutions, spread-
ing properties and the existence of pulsating fronts. Next, we study nonlinearities
asymptotically periodic in time with perturbation. We show that the large time
behavior and the spreading properties can still be determined in this case.

1 Framework and main results
We investigate equations of the form

ut − uxx = fT (t, u), t ∈ R, x ∈ R, (1)

where fT : R× R→ R is of the type

fT (t, u) = g(u)−mT (t)u, (2)

and T is a positive parameter. We suppose that g is a KPP (for Kolmogorov, Petrovsky
and Piskunov) function of class C1(R+) with R+ = [0,+∞). More precisely, we have

g > 0 on (0, 1), g(0) = g(1) = 0, g′(0) > 0, g′(1) < 0, (3)

and
u 7→ g(u)

u
decreasing on (0,+∞). (4)

The previous hypotheses imply in particular that

g(u) ≤ g′(0)u, ∀u ∈ [0,+∞), (5)

and that
g < 0 on (1,+∞). (6)

∗Address correspondence to Benjamin Contri: benjamin.contri@univ-amu.fr
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In Sections 2 and 4, the function mT is T -periodic, nonnegative and of class C1(R). In
this case, the function fT is a T -periodic in time function of class C1(R × R+) such that
fT (·, 0) = 0 on R. Furthermore, according to (6) and the nonnegativity of mT , we have

fT (t, u) < 0, ∀(t, u) ∈ R× (1,+∞). (7)

In Section 3, the function mT is asymptotically periodic in time. We give more details
about this notion later in this introduction.

1.1 Biological interpretation
Equations of the type

ut − uxx = g(u)−mT (t)u, t ∈ R, x ∈ R, (8)

are proposed to model the spatial evolution over time of a cancerous tumor in the presence
of chemotherapy. The quantity u(t, x) represents the density of cancer cells in the tumor
at the position x and at the time t. We begin by considering, for T > 1, a particular
case of periodic function mT : R+ → R of class C1(R+) for which there exists a nontrivial
function ϕ : [0, 1]→ [0,+∞) with ϕ(0) = ϕ(1) = 0 such thatm

T = ϕ on [0, 1),
mT = 0 on [1, T ).

(9)

In the absence of treatment, cancer cells reproduce and spread in space. This reproduction
is modeled by the reaction term of KPP type g(u), which takes into account the fact that
the resources of the environment of the tumor are not infinite and so, that there is a
maximal size beyond which the tumor cannot grow anymore. To treat the patient, cycles
of chemotherapy are given. Every cycle lasts a lapse of time T and is composed of two
subcycles. The duration of the first one is equal to 1. During this time, the drug acts on
the tumor. At every moment of the first subcycle, the death rate of the cancer cells due
to the drug is equal to ϕ(t). In this case, the total reaction term is g(u) − ϕ(t)u. There
is a competition between the reproduction term and the death term. The chemotherapy
has a toxic effect on the body because it destroys white blood cells. It is thus essential
to take a break in the administration of the treatment. This break is the second subcycle
of the cycle of chemotherapy. It lasts during a time equal to T − 1. In this case, the
reaction term is just g(u), and thus, the tumor starts to grow again. To summarize, the
term mT (t) defined in (9) represents the concentration of drug in the body of the patient
at time t, and the integral

∫ T
0 mT (s)ds =

∫ 1
0 ϕ(t)dt represents the total quantity of drug in

the patient during a cycle of chemotherapy. Finally, we impose for this type of functions
mT that

g′(0)−
∫ 1

0
ϕ(t)dt < 0. (10)

This inequality is not really restricting. Indeed, we shall see after that this hypothesis is
in fact a condition so that the patient is cured in the case or there is no rest period in the
cycles of chemotherapy (that is T = 1).

We now refine the previous modelling. In fact, the concentration of drug in the patient’s
body is not a datum. We only know the concentration of drug injected to the patient. We
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denote DT (t) this concentration at time t, and we assume that the function DT : R+ → R+

is T -periodic and satisfies

DT (t) =

1, ∀t ∈ [0, 1],
0, ∀t ∈ (1, T ).

(11)

The concentration of drug m is then the Lipschitz-continuous and piecewise C1 solution
m : R+ → R of a Cauchy problem of the typem

′(t) = DT (t)− m(t)
τ

, ∀t ∈ R+,

m(0) = m0 ≥ 0.
(12)

The real number τ > 0 is called clearance. It characterizes the ability of the patient’s
body to eliminate the drug. It is also possible to take into account that the patient does
not necessarily take the treatment in an optimal way. It may happen to him/her, for
example, to forget his/her medicine, or being forced to move a chemotherapy session if it
is programmed on a holiday. So, we add to the nonlinearity a perturbative term of the
type εp(t, u), where ε ≥ 0 and p : R+ × R → R. It corresponds to study equations of the
type

ut − uxx = g(u)−m(t)u+ εp(t, u), t ∈ R, x ∈ R,

where m solves (12).

1.2 Mathematical framework
The mathematical study of reaction-diffusion equations began in the 1930’s. Fisher [11]
and Kolmogorov, Petrovsky and Piskunov [16] were interested in wave propagation in
population genetics modeled by the homogeneous equation

ut − uxx = f(u), t ∈ R, x ∈ R. (13)

In the 1970’s, their results were generalized by Aronson and Weinberger [1] and Fife
and McLeod [10]. In particular, if f is a KPP nonlinearity (that is, f satisfies (3) and
(5)), there exists a unique (up to translation) planar fronts Uc of speed c, for any speed
c ≥ c∗ := 2

√
f ′(0), that is, for any c ≥ c∗, there exists a function uc satisfying (13) and

which can be written uc(t, x) = Uc(x−ct), with 0 < Uc < 1, Uc(−∞) = 1 and Uc(+∞) =
0. Furthermore, if c < c∗, there is no such front connecting 0 and 1. Another property
for this type of nonlinearities is that if we start from a nonnegative compactly supported
initial datum u0 such that u0 6≡ 0, then the solution u of (13) satisfies u(t, x) → 1
as t → +∞. Aronson and Weinberger name this phenomenon the "hair trigger effect".
Moreover the set where u(t, x) is close to 1 expands at the speed c∗.
Freidlin and Gärtner in [13] were the first to study heterogeneous equations. More pre-
cisely, they generalized spreading properties for KPP type equations with periodic in
space coefficients. Since this work, numerous papers have been devoted to the study of
heterogeneous equations with KPP or other reaction terms. We can cite e.g. [2, 3, 4, 5,
6, 8, 9, 15, 18, 26, 27, 28] in the case of periodic in space environment, [12, 17, 18, 23, 24]
in the case of periodic in time environment and [20, 21, 22] in the case of periodic in
time and in space environment. The works of Nadin [20, 21] and Liang and Zhao [18] are
the closest of our paper. We will compare later the contributions of our work with these
references. We now give the main results of the paper.
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When the nonlinearity is not homogeneous, there are no planar front solutions of (8)
anymore. For equations with coefficients depending periodically on the space variable,
Shigesada, Kawasaki and Teramoto [25] defined in 1986 a notion more general than the
planar fronts, namely the pulsating fronts. This notion can be extended for time depen-
dent periodic equations as follows.

Definition 1.1. For equation (1), assume that fT is T -periodic and that (1) has a T -
periodic solution θ : R→ (0,+∞), t 7→ θ(t). A pulsating front connecting 0 and θ(t) for
equation (1) is a solution u : R × R → R+ such that there exists a real number c and a
function U : R× R→ R+ verifying

u(t, x) = U(t, x− ct), ∀t ∈ R, ∀x ∈ R,

U(·,−∞) = θ, U(·,+∞) = 0, uniformly on R,

U(t+ T, x) = U(t, x), ∀t ∈ R, ∀x ∈ R.

So, a pulsating front connecting 0 and θ for equation (1) is a couple (c, U(t, ξ)) solving
the problem 

Ut − cUξ − Uξξ − fT (t, U) = 0, ∀(t, ξ) ∈ R× R,

U(·,−∞) = θ, U(·,+∞) = 0, uniformly on R,

U(t+ T, ξ) = U(t, ξ), ∀(t, ξ) ∈ R× R.

In this definition, by standard parabolic estimates, the limiting state θ = U(·,−∞) solves
the system y

′ = fT (t, y) on R,

y(0) = y(T ),
(14)

whose solutions are called equilibrium states of the equation (1).

If θ : R→ R is a solution of (14), let us now define λθ,fT and Φθ,fT : R→ R as the unique
real number and the unique function (up to multiplication by a constant) which satisfy


(Φθ,fT )′ =

(
fTu (t, θ) + λθ,fT

)
Φθ,fT on R,

Φθ,fT > 0 on R,

Φθ,fT is T − periodic.
(15)

These quantities are called respectively principal eigenvalue and principal eigenfunction
associated with fT and the equilibrium state θ. Furthermore, if we divide the previous
equation by Φθ,fT , and if we integrate over (0, T ), we obtain an explicit formulation of
the principal eigenvalue, namely

λθ,fT = − 1
T

∫ T

0
fTu (s, θ(s))ds.

We now recall the definition of the Poincaré map P T associated with fT . For any α ≥ 0,
let yα : R+ → R+ be the solution of the Cauchy problemy

′ = fT (t, y) on R,

y(0) = α.
(16)
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Definition 1.2. The Poincaré map associated with fT is the function P T : R+ → R+

defined by
P T (α) = yα(T ).

We conclude, with the fact that each nonnegative solution of (14) is associated with a
fixed point of P T , and conversely. Furthermore, if αT ≥ 0 is a fixed point of PT we have
the following equality

(P T )′(αT ) = e
−Tλ

y
αT

,fT . (17)

We can find these results concerning the notions of principal eigenvalue and Poincaré map
in [7], [14] and [19].

1.3 Nonlinearities periodic in time
Let T > 0. In Section 2, we study (1) and (2) with functions mT which are T -periodic in
time. For these functions we assume there exists T ∗ > 0 such that

λ0,fT


> 0 if T < T ∗,

< 0 if T > T ∗,

= 0 if T = T ∗.

(18)

This is indeed the case if mT is of the type (9) because

λ0,fT = −g′(0) + 1
T

∫ T

0
mT (s)ds = −g′(0) + 1

T

∫ 1

0
ϕ(s)ds.

Furthermore, for this type of functions, hypothesis (10) implies that λ0,fT=1 > 0. Hence, in
this case T ∗ > 1. The existence and uniqueness of positive solutions of (14) is summarized
in the following result.

Proposition 1.1. We consider the real number T ∗ defined in (18).
(I) If T ≤ T ∗, there is no positive solution of (14).
(II) If T > T ∗, there is a unique positive solution wT of (14). Furthermore,

(i) For any t ∈ R we have wT (t) ∈ (0, 1], and

1
T

∫ T

0
fTu (s, wT (s))ds ≤ 0.

(ii) If T 7→ mT is continuous in L∞loc(R), then the function T ∈ (T ∗,+∞) 7→ wT (0) is
continuous and, if mT is of type (9) with assumption (10), it is increasing.

(iii) If T 7→ mT is continuous in L∞loc(R), then the function wT converges uniformly to
0 on R as T → (T ∗)+.

(iv) If mT is of type (9) with assumption (10), then wT converges on average to 1 as
T tends to +∞:

lim
T→+∞

1
T

∫ T

0
wT (t)dt = 1.

The same result of existence and uniqueness (result of the type (II)) was proved for KPP
nonlinearities depending periodically of space by Berestycki, Hamel and Roques in [5] and
for KPP nonlinearities depending periodically of space and time by Nadin in [21]. We
give here a proof using the Poincaré map associated with fT . The last two points of the
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proposition are quite intuitive. Indeed, the limit as T → (T ∗)+ is explained by the fact
that for T ≤ T ∗, the only nonnegative equilibrium state is zero. The limit as T → +∞ is
explained by the fact that in this case, the nonlinearity fT is "almost" the KPP function
g since the function mT has an average close to 0 when T is large.

Let us now summarize a result in [21], which deals with the evolution of u(t, x) as t→ +∞.

Proposition 1.2. [21] Let u0 : R → R be a bounded and continuous function on R such
that u0 ≥ 0 and u0 6≡ 0. Under assumption (18), we consider the function u : R+×R→ R
satisfying ut − uxx = fT (t, u) on (0,+∞)× R,

u(0, ·) = u0 on R.
(19)

If T < T ∗, then there exists M > 0 depending only on u0 and Φ0,fT such that

0 ≤ u(t, x) ≤MΦ0,fT (t)e−λ0,fT t, ∀(t, x) ∈ R+ × R. (20)

If T = T ∗, then
sup
x∈R
|u(t, x)| t→+∞−−−−→ 0.

If T > T ∗, then for every compact set K ⊂ R, we have

sup
x∈K
|u(t, x)− wT (t)| t→+∞−−−−→ 0.

A similar result was proved for KPP nonlinearities depending periodically of space by
Berestycki, Hamel and Roques in [5].

In the biological context with mT satisfying (9), the treatment is effective (in the sense
that u(t, x) → 0 uniformly on R as t → +∞) if and only if the duration of cycles of
chemotherapy is equal or less than T ∗. In particular, since hypothesis (10) implies that
T ∗ > 1, the treatment is effective if there is no rest period between two injections of drug,
that is as T = 1. The result is interesting because it implies that T ∗ − 1 is the longest
rest period for which the patient recovers. Inequality (20) refines the criterion of cure of
the patient because according to the fact that the function T 7→ λ0,fT is decreasing and
positive on (0, T ∗), the convergence rate of the density u(t, x) to 0 as t → +∞ is all the
faster as T is small. In other words, in the case of effective treatment, shorter the period
between two injections, more quickly the patient will be cured. If the treatment is not
effective, the equilibrium state wT invades the whole space as t→ +∞. In particular, the
tumor can not grow indefinitely. Finally, Proposition 1.2 also allows to clarify the result
(ii) of Proposition 1.1. The fact that T 7→ wT (0) is increasing on (T ∗,+∞) implies that
in the case where the treatment is not effective (that is wT > 0 invades the whole space as
t → +∞), the longer the rest period between two injections, the denser the equilibrium
state of the tumor.

We now study in more detail the case where the treatment is not effective, that is, the
case where T > T ∗. We know that then, the equilibrium state wT invades the whole space
as t → +∞. The purpose of this part is to give the invasion rate of the zero state by
wT . To answer this question, we quote two results. The first one is about the existence of
pulsating fronts connecting 0 and wT , in the sense of Definition 1.1, and the second one
concerns spreading properties. They are proved in [17] and in [20].
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Theorem 1.3. [17],[20] Let T > T ∗, where T ∗ is given in (18). (I) There exists a positive
real number c∗T such that pulsating fronts with speed c connecting 0 and wT exist if and
only if c ≥ c∗T .

(II) We denote u : R+ × R→ R the solution of the Cauchy problemut − uxx = fT (t, u) on (0,+∞)× R,

u(0, ·) = u0 on R.

If u0 is a bounded continuous function such that u0 ≥ 0 and u0 6≡ 0, then

∀c ∈ (0, c∗T ), lim
t→+∞

sup
|x|<ct

∣∣∣u(t, x)− wT (t)
∣∣∣ = 0.

If u0 is a continuous compactly supported function such that u0 ≥ 0, then

∀c > c∗T , lim
t→+∞

sup
|x|>ct

u(t, x) = 0.

In his paper [20], Nadin considers in the first assertion of the spreading properties in The-
orem 1.3 initial conditions which are more general. He assumes that u0 is not necessarily
compactly supported but that u0 is of the form O(e−β|x|) as |x| → +∞, where β > 0. The
previous theorem completes Proposition 1.2. Indeed, we know that in the case where the
treatment is not effective, the equilibrium state wT invades the whole space as t→ +∞.
Theorem 1.3 states that this invasion takes place at the speed c∗T .

We can now characterize the critical speed c∗T with the principal eigenvalue λ0,fT . More
precisely:

Proposition 1.4. For every T > T ∗, the critical speed c∗T is given by

c∗T = 2
√
−λ0,fT . (21)

Hence, if T 7→
∫ T

0
mT (s)ds is continuous, then the function T ∈ (T ∗,+∞) 7→ c∗T is

continuous and, if
∫ T

0
mT (s)ds does not depend on T , it is increasing. Furthermore, we

have the two following limit cases:

lim
T→(T ∗)+

c∗T = 0,

and, if 1
T

∫ T

0
mT (s)ds T→+∞−−−−→ 0, then

lim
T→+∞

c∗T = 2
√
g′(0).

In the case where the treatment is not effective, the invasion of space by the equilibrium
state wT is all the faster as the rest time between injections is long. The two limits cases
T → (T ∗)+ and T → +∞ are explained in the same manner as in Proposition 1.1. Let us
note that in the case where mT is of the type (9), then the previous properties concerning∫ T

0 mT (s)ds are satisfied.
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We end this section by stating the existence of pulsating fronts in the case of nonlinearities
which are not of KPP type (that is hypotheses (4) and (5) are not necessarily verified, but
we still assume (3), (6) and (18)). For these nonlinearities, there is still a positive solution
to problem (14), but it may not be unique. According to Cauchy-Lipschitz theorem,
solutions of (14) are ordered on [0, T ]. For T > T ∗, we can thus define yT : R→ R as the
infimum of all positive solutions of (14). After showing that yT > 0, we will prove there
exists a critical speed c∗∗T > 0 such that there is a pulsating front connecting 0 and yT

for speed c ≥ c∗∗T and there is no pulsating front connecting 0 and yT for c < c∗∗T . In this
case, c∗∗T is not necessarily equal to 2

√
−λ0,fT . For this type of nonlinearity, Nadin shows

in [20] that there exist two critical speeds c∗ and c∗ for which there is a pulsating front
for c ≥ c∗ and there is no pulsating front for c ≤ c∗. Nevertheless the case c ∈ (c∗, c∗)
is not treated in [20]. In [17], Liang and Zhao prove the result using a semiflow method.
We give here an alternative proof. We begin by proving the existence of pulsating front
U(t, ξ) for domains of the type R × [−a, a] which are bounded in ξ, then we pass in the
limit as a→ +∞. We state the result.
Proposition 1.5. Let fT satisfy assumptions (2), (3), (6) and (18), and T > T ∗. There
exists a positive real number c∗∗T such that pulsating fronts U(t, ξ) monotone in ξ connecting
0 and yT exist if and only if c ≥ c∗∗T .

1.4 Nonlinearities asymptotically periodic in time with pertur-
bation

We are interested in the case of nonlinearities which are no more periodic in time, but
which are the sum of a function which converges as t→ +∞ to a time periodic nonlinearity
and of a small perturbation. More precisely, for ε ≥ 0, we consider equations of the type

ut − uxx = g(u)−m(t)u+ εp(t, u), t ∈ R, x ∈ R, (22)
where m solves (12) with T > 1 and DT defined in (11). We assume that p : R+× R→ R
is a function of class C1 for which there exists C > 0 such that∣∣∣p(t, u)

u

∣∣∣ ≤ C, ∀(t, u) ∈ R+ × (0,+∞). (23)

The functionm is not periodic, but it is asymptotically T -periodic in time. More precisely,
there exists a T -periodic positive function mT

∞ : R→ (0,+∞) such that
lim
t→+∞

|m(t)−mT
∞(t)| = 0. (24)

Indeed, an elementary calculation implies that for any n ∈ N, we have

m(t) =


τ
[
1 +

((e 1
τ − 1)(enTτ − 1)

e
T
τ − 1

+ m0

τ
− e

nT
τ

)
e−

t
τ

]
, ∀t ∈ [nT, nT + 1),

τ
[(e 1

τ − 1)(e
(n+1)T

τ − 1)
e
T
τ − 1

+ m0

τ

]
e−

t
τ , ∀t ∈ [nT + 1, (n+ 1)T ).

Consequently, if we define the positive T -periodic function mT
∞ : R→ (0,+∞) by

mT
∞(t) =


τ
[
1 +

(
e

1
τ − 1
e
T
τ − 1

− 1
)
e−

t
τ

]
, ∀ t ∈ [0, 1],

τ
e

1
τ − 1
e
T
τ − 1

e
T−t
τ , ∀ t ∈ [1, T ),
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then the convergence result (24) holds. Furthermore, we have
∫ T
0 mT

∞(t)dt = τ. Conse-
quently the function fT : R+ × R+ → R defined by fT (t, u) = g(u) − mT

∞(t)u satisfies
(18) because λ0,fT = −g′(0) + τ/T . We assume that τ > g′(0). We notice that mT

∞
is independent of m0. It was predictable because mT

∞ is the unique positive T -periodic
solution of m′ = DT − m/τ on R. We define the nonlinearities f : R+ × R+ → R and
fε : R+ × R+ → R by

f(t, u) = g(u)−m(t)u, and fε(t, u) = f(t, u) + εp(t, u).

According to (24), we have

sup
u∈(0,+∞)

∣∣∣∣∣f(t, u)− fT (t, u)
u

∣∣∣∣∣ t→+∞−−−−→ 0. (25)

The function fT is T -periodic and satisfies the general assumptions given in Section 1.3.
We still denote T ∗ the critical time (notice that T ∗ > 1 because τ > g′(0)), wT the unique
positive equilibrium state for T > T ∗ and c∗T the critical speed associated with fT for
T > T ∗.

The aim of this section is to show that Proposition 1.2 and the spreading results of
Theorem 1.3 hold true when we replace fT by fε in the statements, for ε small enough.
It is reasonable to hope so. Indeed, on the one hand, if ε is small, then the term εp is
negligible compared to f , and on the other hand, these results deal with the large time
behavior of the solutions, and precisely, hypothesis (25) implies that f "looks like" fT as
t→ +∞. The first result is the generalization of Proposition 1.2.

Theorem 1.6. Let u0 : R → R be a bounded and continuous function such that u0 ≥ 0
and u0 6≡ 0. For all ε ≥ 0, we consider the function uε : R+ × R→ R satisfyingut − uxx = fε(t, u) on (0,+∞)× R,

u(0, ·) = u0 on R.
(26)

If T < T ∗, there exists εT > 0 such that for all ε ∈ (0, εT ) we have

lim
t→+∞

sup
x∈R
|uε(t, x)| = 0.

If T > T ∗ and if λwT ,fT > 0, then there exist ε̃T > 0 and MT > 0 such that for all
ε ∈ (0, ε̃T ) and for all compact K ⊂ R, we have

lim sup
t→+∞

sup
x∈K
|uε(t, x)− wT (t)| ≤MT ε.

We saw in Proposition 1.1 that λwT ,fT ≥ 0. In the previous theorem, in case T > T ∗, we
impose that λwT ,fT > 0. This property is not necessarily satisfied. Indeed, if we consider
the function h : R+ → R defined by h(u) = u(1−u)3, then we have h(0) = h(1) = 0, h > 0
on (0, 1), h < 0 sur (1,+∞), h(u)/u decreasing on (0,+∞) and h′(1) = 0. In the case
where the function fT (t, ·) is concave for all t ∈ R+, the property λwT ,fT > 0 is verified
for any T > T ∗. Indeed, if we define F : [0, 1]→ R by

F (x) = − 1
T

∫ T

0

fT (s, xwT (s))
wT (s) ds,
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then we have F (0) = F (1) = 0 and F is convex on [0, 1]. Consequently, if F ′(1) = 0,
that is, if λwT ,fT = 0, then we have F ′ = 0 on [0, 1]. It is a contradiction because
F ′(0) = λ0,fT < 0.

Let us give a sketch of the proof. For T > 0 and ε > 0, we will frame fε by two T -periodic
functions fTε and fT−ε for which the results of Proposition 1.2 will apply. In the case where
T < T ∗, if fTε is the upper bound function, we will show that for ε > 0 small enough,
we have λ0,fTε > 0. Hence, the solution of (26) with fTε as nonlinearity is a supersolution
of problem (26) and, according to Proposition 1.2, it converges to 0 as t → +∞. In the
case where T > T ∗, we will prove that for ε > 0 small enough, we have λ0,fTε < 0 and
λ0,fT−ε < 0. Consequently, there is a unique positive solution wTε (resp. wT−ε) of system
(14) with fTε (resp. fT−ε) as nonlinearity (owing to Proposition 1.1). The solution of (26)
with fTε as nonlinearity is a supersolution of (26) and, according to Proposition 1.2, it
converges to wTε as t→ +∞. In the same way, the solution of (26) with fT−ε as nonlinearity
is a subsolution of (26), and it converges to wT−ε as t→ +∞. We will conclude using the
fact that wTε and wT−ε are close to wT as ε is small enough.

Note that the case T = T ∗ is not treated in Theorem 1.6. If ε = 0, the solution of
the Cauchy problem (26) converges uniformly to 0 as t → +∞, whereas if ε > 0, the
convergence to 0 may not hold. We summarize these results in the following proposition.

Proposition 1.7. Let T = T ∗ and ε ≥ 0. We consider the function uε : R+ × R → R
satisfying the Cauchy problem (26).
(I) If ε = 0, then uε converges uniformly to 0 as t→ +∞.
(II) If ε > 0, we can conclude in two cases.

(i) If f(t, u) = fT
∗(t, u) and p(t, u) = u, then, for ε small enough, uε converges to a

positive solution of (14) with fε as nonlinearity as t→ +∞.
(ii) If p(t, u) ≤ 0, then, uε converges uniformly to 0 as t→ +∞.

Concerning the spreading results of Theorem 1.3, they remain true if we replace fT by fε
in the statement.

Theorem 1.8. Let T > T ∗. For any ε ≥ 0, we consider uε : R+ × R→ R satisfyingut − uxx = fε(t, u) on (0,+∞)× R,

u(0, ·) = u0 on R.

If u0 is a continuous bounded function such that u0 ≥ 0 and u0 6≡ 0, and if λwT ,fT > 0,
then for all c ∈ (0, c∗T ), there exists ε̂c,T > 0 such that for all ε ∈ (0, ε̂c,T ) we have

lim sup
t→+∞

sup
|x|<ct

∣∣∣uε(t, x)− wT (t)
∣∣∣ ≤MT ε,

where MT is defined in Theorem 1.6.
If u0 is a continuous compactly supported function such that u0 ≥ 0, then, for all c > c∗T ,
there exists εc,T > 0 such that for all ε ∈ (0, εc,T ) we have

lim
t→+∞

sup
|x|>ct

uε(t, x) = 0.

10



The proof of this theorem uses the same ideas as the proof of Theorem 1.6. For T > T ∗

and ε > 0, we will frame fε by two T -periodic functions fTε and fT−ε for which the results
of Theorem 1.3 will apply. An important point of the demonstration will be to notice
that for ε small enough, the critical speeds c∗T,ε and c∗T,−ε associated respectively with fTε
and fT−ε are close to the critical speed c∗T associated with fT .

1.5 Influence of the protocol of the treatment
As in Section 1.1, we consider a C1 and T -periodic function mT (with T ≥ 1) of the typem

T = ϕ on [0, 1),
mT = 0 on [1, T ),

where ϕ : [0, 1] → [0,+∞) satisfies ϕ(0) = ϕ(1) = 0. In this part, we are interested in
equations of the type

ut − uxx = g(u)−mT
τ (t)u, t ∈ R, x ∈ R, (27)

where 0 < τ ≤ T . The function g satisfies hypotheses (3), (4) and (6). The function
mT
τ : R+ → R+ is T -periodic and defined bym

T
τ (t) = 1

τ
ϕ
( t
τ

)
, ∀t ∈ [0, τ),

mT
τ (t) = 0, ∀t ∈ [τ, T ),

where the function ϕ is the same as in mT . In these equations, the duration of the
treatment is equal to τ . Furthermore, we have∫ T

0
mT
τ (t) dt = 1

τ

∫ τ

0
ϕ
( t
τ

)
dt =

∫ 1

0
ϕ(t)dt. (28)

So, it is clear that the quantity of drug administered during a cycle of chemotherapy is
independent of the treatment duration τ . We will study the influence of the parameter τ
with respect to the results of previous sections. We define the functions fTτ : R+×R+ → R
and fTτ : R+ × R+ → R by

fT (t, u) = g(u)−mT (t)u and fTτ (t, u) = g(u)−mT
τ (t)u.

The first proposition deals with the principal eigenvalue associated with fTτ and the equi-
librium state 0.

Proposition 1.9. Let T > 0 and τ ∈ (0, T ]. The real number λ0,fTτ is independent of τ .
Actually, we have

λ0,fTτ = λ0,fT = −g′(0) +
∫ 1

0 ϕ(s)ds
T

.

Consequently, if T ∗ > 0 denotes the critical time for the function fT , then, for any
τ ∈ (0, T ∗), fTτ satisfies (18) for T ∈ [τ,+∞), and the critical time T ∗ associated with fTτ
is the same as the one associated with fT . We are interested here in the solutions of the
system y

′ = fTτ (t, y) on R,

y(0) = y(T ).
(29)
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The same proof as in Proposition 1.1 implies that for any τ ∈ (0, T ∗) and T ∈ [τ, T ∗],
there is no positive solution of (29), while for any T > T ∗ and τ ∈ (0, T ], there is a
unique positive solution wTτ : R → (0, 1] of (29). Furthermore, the same proof as in
Proposition 1.2 implies that if τ ∈ (0, T ∗) and T ∈ [τ, T ∗], then the treatment is efficient,
and if T > T ∗ and τ ∈ (0, T ], then the equilibrium state wTτ invades the whole space as
t→ +∞. More precisely, Proposition 1.2 remains true by replacing fT by fTτ and wT by
wTτ . To summarize, the optimal duration of a chemotherapy cycle for which the treatment
is efficient does not depend on how the drug is injected.

Let us now study the case where the treatment is not efficient, that is, T > T ∗ and
τ ∈ (0, T ]. Theorem 1.3 remains valid if we replace fT by fTτ and wT by wTτ , but with a
critical speed c∗T,τ depending a priori on τ . Nevertheless Propositions 1.4 and 1.9 imply
that c∗T,τ = 2

√
−λ0,fTτ = 2

√
−λ0,fT = c∗T , where c∗T is the critical speed associated with fT .

Consequently, the invasion rate does not depend on how the drug is administered.

Finally, we are interested in the influence of the parameter τ on the equilibrium state wTτ .

Proposition 1.10. Let T > T ∗. The function (0, T ) → (0,+∞)
τ 7→ wTτ (0)

is continuous and decreasing.

Consequently, in the case where the treatment is not efficient, the shorter the duration of
the chemotherapy cycle, the larger the value of the equilibrium state wTτ (0). This means
that it is better to administer the treatment over long periods.

Outline

Section 2 is devoted to the proof of Propositions 1.1, 1.4 and 1.5. Section 3 gathers the
proof of Theorem 1.6, Proposition 1.7 and Theorem 1.8. Finally, we prove in Section 4
Propositions 1.9 and 1.10.

2 Nonlinearities periodic in time

2.1 Proof of Proposition 1.1
We first investigate solutions of (14), showing Proposition 1.1. We begin with the case
where T ≤ T ∗. We argue bwoc, supposing there is a positive solution w∗ of (14). Then

(w∗)′(t)
w∗(t) = g(w∗(t))

w∗(t) −mT (t), ∀t ∈ [0, T ].

We integrate this equation between 0 and T . We obtain∫ T

0

(
g(w∗(s))
w∗(s) −mT (s)

)
ds = 0. (30)

Yet, as w∗ > 0 on [0, T ] and according to (4) and (18), we have

1
T

∫ T

0

(
g(w∗(s))
w∗(s) −mT (s)

)
ds < −λ0,fT ≤ 0,
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which contradicts (30).

We now consider the case where T > T ∗. To prove the existence of a positive solution
of (14), we give two lemmas demonstrating the existence of a positive fixed point of the
Poincaré map P T defined in Definition 1.2.

Lemma 2.1. There exists α0 > 0 such that for all α ∈ (0, α0] we have P T (α) > α.

Proof. Indeed, according to the fact that fT (·, 0) = 0, we have P T (0) = 0, and owing to
(17) and the fact that λ0,fT < 0 we have (P T )′(0) > 1.

Lemma 2.2. For all α > 1, we have P T (α) < α.

Proof. Let α > 1. We consider yα solution of (16). Two cases can occur.
1st case: If yα(t) > 1 for all t ≥ 0, then, according to (7) , we have y′α(t) = fT (t, yα(t)) < 0
for all t ≥ 0 . Consequently yα(T ) < yα(0), that is P T (α) < α.
2nd case: If there exists t0 ≥ 0 such that yα(t0) ≤ 1, then, owing to (7), we have yα(t) ≤ 1
for all t ≥ t0. In particular, for n0 ∈ N such that n0T ≥ t0, we have yα(n0T ) ≤ 1 <
yα(0). Yet, the sequence (yα(nT ))n is constant or strictly monotone. So it is decreasing.
Consequently we have yα(T ) < yα(0), that is P T (α) < α.

Lemma 2.1 and Lemma 2.2 imply that there exists α∗ ∈ (α0, 1] such that P T (α∗) = α∗.
Consequently, the solution of (16) with α = α∗ is a positive solution of (14). We prove
now the uniqueness of such a solution. Let w1 : R → R and w2 : R → R two positive
solutions of (14). There exists ρ > 1 such that w1 ≤ ρw2 on [0, T ]. We can define

ρ∗ = inf
{
ρ ≥ 1 | w1(t) ≤ ρw2(t), ∀t ∈ [0, T ]

}
.

We have
w1(t) ≤ ρ∗w2(t), ∀t ∈ [0, T ]. (31)

Moreover there exists t∗ ∈ [0, T ] such that

w1(t∗) = ρ∗w2(t∗). (32)

We are going to show that ρ∗ = 1. We argue bwoc supposing that ρ∗ > 1. So

w′1(t) = fT (t, w1(t)), ∀t ∈ [0, T ]. (33)

Furthermore
(ρ∗w2)′(t) > fT (t, ρ∗w2(t)), ∀t ∈ [0, T ]. (34)

Indeed, for all t ∈ [0, T ],

(ρ∗w2)′(t) = ρ∗w′2(t)

= ρ∗w2(t)
(g(w2(t))
w2(t) −mT (t)

)
> ρ∗w2(t)

(g(ρ∗w2(t))
ρ∗w2(t) −mT (t)

)
(according to (4) since ρ∗ > 1)

= fT (t, ρ∗w2(t)).

According to (31), (32), (33), (34) and the T -periodicity of w1 and w2, we have

w1(t) = ρ∗w2(t), ∀t ∈ [0, T ].
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It is a contradiction because w1 is a solution of y′ = fT (t, y) whereas ρ∗w2 is a strict
supersolution. So ρ∗ = 1. Consequently, by the symmetry of the roles played by w1 and
w2, we have w1 ≡ w2 on [0, T ], and then on R by periodicity.

We denote wT the positive solution of (14). We now show the properties of wT . The
previous proof implies that (P T )′(wT (0)) ≤ 1. Hence, according to (17), it follows that
λwT ,fT ≥ 0. We also saw that wT (0) ∈ (0, 1]. Consequently, owing to (7) and the fact
that fT (·, 0) = 0 on R, we have wT (t) ∈ (0, 1] for any t ∈ R.

We now study the function T ∈ (T ∗,+∞) 7→ wT (0). We show the monotonicity of
T 7→ wT (0) if mT is of type (9), with assumption (10) (in this case T ∗ > 1). We consider
two real numbers T1 and T2 such that T ∗ < T1 < T2. For i ∈ {1, 2}, the Poincaré map
P Ti associated with fTi is defined on R+ by

P Ti(α) = yTiα (Ti), ∀α ≥ 0,

where yTiα is the solution of the Cauchy problemy
′ = fTi(t, y) on R,

y(0) = α.
(35)

We saw in (II) that the function P Ti has a unique positive fixed point αTi . Furthermore
αTi ∈ (0, 1]. The unique equilibrium state wTi : R → (0, 1] associated with fTi is the
solution of the Cauchy problem (35) with α = αTi . Consequently, if we prove that
P T1 < P T2 on (0, 1], then we will deduce that αT1 < αT2 , that is wT1(0) < wT2(0). Let
α ∈ (0, 1]. The functions yT1

α and yT2
α are solutions on [0, T1] of the equation

y′ = fT1(t, y).

Consequently, since yT1
α (0) = yT2

α (0) = α, we have

yT1
α ≡ yT2

α on [0, T1].

Furthermore, from (3), (7) and the fact that ϕ in (9) is nonnegative and nontrivial, there
holds

0 < yT1
α (T1) = yT2

α (T1) < 1.

On [T1, T2], yT2
α is a solution of y′ = g(y). Consequently, according to (3), we have

yT2
α (T1) < yT2

α (T2). Finally, it follows that

yT1
α (T1) = yT2

α (T1) < yT2
α (T2).

In other terms
P T1(α) < P T2(α).

Finally, we have necessarily αT1 < αT2 , that is wT1(0) < wT2(0).

We show now the continuity property. Let T̃ ∈ (T ∗,+∞) and (Tn)n be a sequence of
(T ∗,+∞) such that Tn n→+∞−−−−→ T̃ . We fixe T− ∈ (T ∗, T̃ ). There exists n− ∈ N and
T+ > T ∗ such that

T ∗ < T− < Tn < T+, ∀n ≥ n−. (36)
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We will demonstrate that wTn(0) n→+∞−−−−→ wT̃ (0). Since 0 < wTn ≤ 1 and T 7→ mT is
continuous in L∞loc(R), the sequence (wTn)n converges up to extraction of a subsequence
to a function w̃ in C0,δ([0, T+]) for any δ ∈ (0, 1). The equilibrium state wTn satisfiesw

Tn(t) = wTn(0) +
∫ t

0
fTn(s, wTn(s))ds, ∀t ∈ [0, T+],

wTn(0) = wTn(Tn).

Passing to the limit as n→ +∞, we obtainw̃(t) = w̃(0) +
∫ t

0
f T̃ (s, w̃(s))ds, ∀t ∈ [0, T̃ ] ⊂ [0, T+],

w̃(0) = w̃(T̃ ).

The function t 7→
∫ t

0
f T̃ (s, w̃(s))ds is of class C1([0, T̃ ]). Consequently w̃ is of class

C1([0, T̃ ]) and it satisfies w̃
′ = f T̃ (t, w̃) on [0, T̃ ],

w̃(0) = w̃(T̃ ),

and 0 ≤ w̃ ≤ 1 in [0, T̃ ]. Owing to (II), it follows that w̃ ≡ 0, or w̃ ≡ wT̃ . If w̃ = 0, then
wTn → 0 as n→ +∞ uniformly on [0, T+]. For any n ∈ N, we have

(wTn)′(t)
wTn(t) = fTn(t, wTn(t))

wTn(t) , ∀t ∈ [0, Tn].

We integrate the previous equation over [0, Tn], then we pass to the limit as n → +∞.
We obtain −T̃ λ0,f T̃ = 0. It is a contradiction because λ0,f T̃ < 0, as T̃ > T ∗. Hence, we
have necessarily w̃ ≡ wT̃ . The uniqueness of the accumulation point of (wTn)n implies
that the convergence holds for the whole sequence. In particular, wTn(0) n→+∞−−−−→ wT̃ (0),
and consequently, the function T 7→ wT (0) is continuous on (T ∗,+∞).

We study now the behavior of the equilibrium state wT for the limit cases where T →
(T ∗)+ and T → +∞. We begin by showing that the function wT converges uniformly to
0 on R as T → (T ∗)+. Let (Tn)n be a sequence such that Tn n→+∞−−−−→ T ∗ and Tn > T ∗ for
any n ∈ N. Since (Tn)n is bounded, there exists T+ > T ∗ such that for any n ∈ N we have
Tn ∈ (T ∗, T+). Up to extraction of a subsequence, (wTn)n converges to a function w∗ in
C0,δ([0, T+]) for any δ ∈ (0, 1). The equilibrium state wTn satisfiesw

Tn(t) = wτn(0) +
∫ t

0
fTn(s, wTn(s))ds, ∀t ∈ [0, T+],

wTn(0) = wTn(Tn).

Passing to the limit as n→ +∞, we obtainw
∗(t) = w∗(0) +

∫ t

0
fT
∗(s, w∗(s))ds, ∀t ∈ [0, T ∗] ⊂ [0, T+],

w∗(0) = w∗(T ∗).

The function t 7→
∫ t

0
fT
∗(s, w∗(s))ds is of class C1([0, T ∗]). Consequently w∗ is of class

C1([0, T ∗]) and it satisfies (w∗)′ = fT
∗(t, w∗) on [0, T ∗],

w∗(0) = w∗(T ∗),
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and 0 ≤ w∗ ≤ 1 on [0, T ∗]. According to (II), w∗ ≡ 0. The uniqueness of accumulation
point of (wTn)n implies that the convergence holds for the whole sequence. Furthermore
since [0, Tn] ⊂ [0, T+] for any n ∈ N, by Tn-periodicity of wTn , it occurs that

sup
R
|wTn| = sup

[0,Tn]
|wTn| ≤ sup

[0,T+]
|wTn|

n→+∞−−−−→ 0,

which completes the proof of this point.

We study now the case where T → +∞ under assumptions (9) and (10). The function
wT converges on average to 1 as T tends to +∞. We give a technical lemma.

Lemma 2.3. Under assumptions (9) and (10), the real number δ defined by

δ := inf
{
wT (1) | T ≥ T ∗ + 1

}
is positive. Furthermore, δ < 1.

Proof. We argue bwoc. Let us suppose there exists a sequence (Tn)n such that Tn n→+∞−−−−→
+∞ and wTn(1) n→+∞−−−−→ 0. We fix T+ > T ∗. There exists n+ ∈ N such that for any
n ≥ n+, we have Tn ∈ [T+,+∞). According to the monotonicity of T 7→ wT (0), it follows
that

0 < wT
+(0) < wTn(0), ∀n ≥ n+.

Up to extraction of a subsequence, (wTn)n converges to a function w∗ in C0,β([0, 1]) for
any β ∈ (0, 1). Passing to the limit as n→ +∞ in the previous inequalities implies that

0 < wT
+(0) ≤ w∗(0). (37)

The same reasoning as previously implies that the function w∗ is of class C1([0, 1]) and
satisfies the Cauchy problem(w∗)′ = g(w∗)− ϕ(t)w∗ on [0, 1],

w∗(1) = 0.

By uniqueness, we have necessarily w∗ ≡ 0, that is, wTn converges uniformly to 0 on [0, 1],
which contradicts (37). Lastly, each function wT ranges in (0, 1] , and due to (7) and the
nontriviality of ϕ in (9), one has wT < 1 on R. Hence, we have δ < 1.

We return to the proof of the last point of Proposition 1.1. We consider yδ the solution
of the Cauchy problem y

′ = g(y) on (1,+∞),
y(1) = δ,

where δ ∈ (0, 1) is defined in Lemma 2.3. Let ε > 0 be such that δ < 1 − ε < 1. Since
yδ(t) t→+∞−−−−→ 1, there exists lε > 1 such that yδ(lε) = 1− ε/2. We define Tε = 4lε/ε (> lε),
and we consider T ≥ Tε. The function wT is a solution ofy

′ = g(y) on (1, T ),
y(1) = wT (1).

16



Since wT (1) ≥ δ, we have wT ≥ yδ on [1, T ). In particular wT (lε) ≥ 1 − ε/2, and since
wT is increasing on (lε, T ), we have

1− ε

2 ≤ wT (t) < 1, ∀t ∈ (lε, T ).

Furthermore

| 1
T

∫ T

0
wT (t)dt− 1| ≤ 1

T

∫ T

0
|wT (t)− 1|dt = 1

T

∫ lε

0
|wT (t)− 1|dt+ 1

T

∫ T

lε
|wT (t)− 1|dt.

Yet,
1
T

∫ lε

0
|wT (t)− 1|dt ≤ 2lε

T
≤ 2lε
Tε

= ε

2 .

and
1
T

∫ T

lε
|wT (t)− 1|dt ≤ T − lε

T

ε

2 ≤
ε

2 .

So | 1
T

∫ T

0
wT (t)dt− 1| ≤ ε, and the proof of Proposition 1.1 is complete.

2.2 Proof of Proposition 1.4
We begin by showing the characterization of c∗T with the principal eigenvalue λ0,fT . Let
µ ∈ R. We denote λµ the principal eigenvalue and Φµ the principal eigenfunction asso-
ciated with the operator Lµ : C1(R) → C0(R) defined by LµΨ = Ψt −

(
µ2 + fTu (t, 0)

)
Ψ.

Consequently, we have

(Φµ)t =
(
µ2 + fTu (t, 0) + λµ

)
Φµ on R.

We divide the previous equation by Φµ, then we integrate between 0 and T . According
to the fact that Φµ is T -periodic, we obtain λµ = −µ2 + λ0,fT . In [20], Nadin gives the
following characterization of the critical speed c∗T :

c∗T = inf
{
c ∈ R | there exists µ > 0 such that λµ + µc = 0

}
.

Consequently, we have

c∗T = inf
{
c ∈ R | there exists µ > 0 such that µ2 − µc− λ0,fT = 0

}
.

We thus look for the smallest real number c for which the equation µ2−µc−λ0,fT = 0 of the
variable µ admits a positive solution. An elementary calculation leads to c∗T = 2

√
−λ0,fT .

Consequently, we have

c∗T = 2
√
g′(0)− 1

T

∫ T

0
mT (t)dt.

Hence the function T ∈ (T ∗,+∞) 7→ c∗T is continuous, increasing if
∫ T

0
mT (t)dt does not

depend on T , and we have the two limits cases

lim
T→+∞

c∗T = 2
√
g′(0) if 1

T

∫ T

0
mT (t)dt T→+∞−−−−→ 0, and lim

T→(T ∗)+
c∗T = 0,

which concludes the proof of Proposition 1.4.
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2.3 Proof of Proposition 1.5
Let α ∈ [0, 1]. We recall that if yα : R→ R is the solution of the Cauchy problemy

′ = fT (t, y) on R,

y(0) = α,

then we denote P T : α ∈ [0, 1] 7→ P T (α) = yα(T ) the Poincaré map associated to the
function fT . According to the proof of Proposition 1.1, there exists a fixed point of P T

in (0, 1]. Nevertheless, since hypothesis (4) is not satisfied here, this fixed point is not
necessarily unique. We define

α0 = inf
{
α ∈ (0, 1] | P T (α) = α

}
.

To simplify the notations, we denote yT : R → R the function yT = yα0 . We begin by
proving that this infimum is not equal to zero.

Lemma 2.4. We have α0 > 0.

Proof. We assume that α0 = 0. So, there exists a sequence (αn)n ⊂ (0, 1]N such that
P T (αn) = αn and αn n→+∞−−−−→ 0. We divide the equation y′αn = fT (t, yαn) by yαn , then we
intregrate between 0 and T . We obtain

∫ T

0

fT (s, yαn(s))− fT (s, 0)
yαn(s) ds = 0.

Passing to the limit as n → +∞, since yαn → 0 uniformly on [0, T ] as n → +∞ by
Cauchy-Lipschitz theorem, we have

∫ T

0
fTu (s, 0)ds = 0,

which contradicts the fact that λ0,fT < 0. Consequently α0 > 0. Notice also that, by
continuity of P T , there holds P T (α0) = α0, and yT = yα0 solves (14). Furthermore
0 < yT ≤ 1 on R.

Since fT is of class C1(R × [0, 1],R) and T -periodic, there exists ε0 ∈ (0, 1) such that for
all ε ∈ (0, ε0] and for all t ∈ R we have

|fT (t, εΦ0,fT (t))− εΦ0,fT (t)fTu (t, 0)| ≤ |λ0,fT |
2 εΦ0,fT (t), (38)

where Φ0,fT is the principal eigenfunction associated with fT and 0. Since λ0,fT < 0
and yT is the smallest positive solution of system (14), we can apply Theorem 2.3 of the
Nadin’s paper [20]. Consequently, there exists a couple (c0, U0), where U0 : R × R →
[0, 1], (t, ξ) 7→ U0(t, ξ) is of class C1,2(R2) and solves


(U0)t − (U0)ξξ − c0(U0)ξ = fT (t, U0) on R× R,

U0(·, ·) = U0(·+ T, ·) on R× R,

U0(·,−∞) = yT , U0(·,+∞) = 0 uniformly on R.

(39)
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Let us note that necessarily c0 > 0 because Nadin shows in [20] that for c < 2
√
−λ0,fT ,

which is a positive real number, there is no pulsating front of sped c connecting 0 and yT .
Furthermore, we have

∂ξU0(t, ξ) < 0, ∀(t, ξ) ∈ R× R.

Let c1 > 0 be a real number such that there exists a pulsating front U1 with speed c1
such that ∂ξU1 < 0 on R × R, and let c2 > c1. We are going to prove the existence of a
pulsating front U2 such that (c2, U2) solves (39) and ∂ξU2 < 0 on R2. Yet, by [20], the set

C = {c ∈ R | there exists a pulsating front U of speed c such that ∂ξU < 0 on R× R}

is closed and included in [2
√
−λ0,fT ,+∞). This will conclude the proof of Proposition

1.5 by denoting c∗∗T = inf C.

Given c1 < c2 as above, let a > 0 and r ∈ R. We define

εa,r = min
{

min
[0,T ]×[−a,a]

U1(·, ·+ r)
2Φ0,fT (·) , ε0,

yT (0)
Φ0,fT (0)

}
.

We consider the problem

Ut − Uξξ − c2Uξ = fT (t, U) on (0, T )× (−a, a),
U(0, ·) = U(T, ·) on [−a, a].
U(·,−a) = U1(·,−a+ r) , U(·, a) = εa,rΦ0,fT on [0, T ].

(40)

We begin by showing that the previous problem has a solution.

Proposition 2.5. There exists a solution to problem (40).

Proof. We consider the problem

Ut − Uξξ − c2Uξ = fT (t, U) on (0,+∞)× (−a, a),
U(·,−a) = U1(·,−a+ r) , U(·, a) = εa,rΦ0,fT on [0,+∞),
U(0, ·) = ψ on [−a, a],

where ψ ∈ C0([−a, a], [0, 1]). This Cauchy problem admits a solution Uψ defined on
R+ × [−a, a]. Furthermore, 0 ≤ Uψ ≤ 1 in R+ × [−a, a] from the maximum principle and
the definition of εa,r. We define the closed convex set

C = {ψ ∈ C0([−a, a], [0, 1]) | εa,rΦ0,fT (0) ≤ ψ ≤ U1(0, ·+ r) on [−a, a]}.

Note that this set is not empty since Φ0,fT > 0, U1 ≤ 1 and εa,rΦ0,fT (0) ≤ U1(0, · + r)
on [−a, a] according to the definition of εa,r. We start by proving that if ψ ∈ C, then
Uψ(T, ·) ∈ C using a comparison lemma.

Lemma 2.6. Let ψ ∈ C. Then we have

εa,rΦ0,fT (t) < Uψ(t, ξ) < U1(t, ξ + r) ∀ (t, ξ) ∈ (0,+∞)× (−a, a). (41)
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Proof. Since ∂ξU1 < 0 on R×R and c1 < c2, the function U1(·, ·+r) satisfies on [0,+∞)×
(−a, a),(
U1(·+ r)

)
t
−
(
U1(·+ r)

)
ξξ
− c2

(
U1(·+ r)

)
ξ
− fT

(
t, U1(·+ r)

)
= (c1− c2)

(
U1(·+ r)

)
ξ
> 0.

Moreover, since ψ ∈ C, we have U1(0, ·+r) ≥ ψ on [−a, a] and, according to the definition
of εa,r and the T -periodicity of U1 and Φ0,fT , we have U1(·, a+ r) ≥ εa,rΦ0,fT on [0,+∞).
Consequently, we can apply a comparison principle, and we obtain

Uψ(t, ξ) ≤ U1(t, ξ + r) ∀(t, ξ) ∈ [0,+∞)× [−a, a].

In the same way, since εa,r ≤ ε0, and according (38) and the negativity of λ0,fT , we have
on [0,+∞)× (−a, a)

(εa,rΦ0,fT )t − (εa,rΦ0,fT )ξξ − c2(εa,rΦ0,fT )ξ − fT (t, εa,rΦ0,fT )
= εa,rΦ0,fT (λ0,fT + fTu (t, 0))− fT (t, εa,rΦ0,fT )
= εa,rλ0,fTΦ0,fT −

(
fT (t, εa,rΦ0,fT )− εa,rΦ0,fT f

T
u (t, 0)

)
≤ εa,rλ0,fTΦ0,fT − εa,r

λ0,fT

2 Φ0,fT < 0.

Furthermore since ψ ∈ C, we have εa,rΦ0,fT (0) ≤ ψ on [−a, a] and, according to the
definition of εa,r and the T -periodicity of U1 and Φ0,fT , we have εa,rΦ0,fT ≤ U1(·,−a+ r)
on [0,+∞). Consequently, we can apply a comparison principle and we conclude that

εa,rΦ0,fT (t) ≤ Uψ(t, ξ) ∀ (t, ξ) ∈ [0, T ]× [−a, a],

The fact that the inequalities in (41) are strict is a consequence of the strong maximum
principle.

We return to the proof of Proposition 2.5. We consider

T : C → C
ψ 7→ Uψ(T, ·)

Owing to (41) and the T -periodicity of Φ0,fT and U1, T is well defined. We are going
to demonstrate using the Schauder’s fixed point theorem that the function T has a fixed
point in the closed convex set C. We show now that T is continuous. In fact we show
that T is a Lipschitz-continuous function. Let ψ and ϕ in C. We have on (0, T ]× [−a, a]

(Uψ − Uϕ)t − (Uψ − Uϕ)ξξ − c2(Uψ − Uϕ)ξ = β(t, ξ)(Uψ − Uϕ),
where β : (0, T ]× [−a, a]→ R is defined by

β(t, ξ) =


fT
(
t, Uψ(t, ξ)

)
− fT

(
t, Uϕ(t, ξ)

)
Uψ(t, ξ)− Uϕ(t, ξ) , if Uψ(t, ξ) 6= Uϕ(t, ξ),

fTu
(
t, Uψ(t, ξ)

)
, if Uψ(t, ξ) = Uϕ(t, ξ).

Since |β| ≤ ‖fTu ‖L∞([0,T ]×[0,1]) on (0, T ]× [−a, a], and since Uψ−Uϕ = 0 on [0, T ]×{−a, a},
the maximum principle yields

|Uψ(t, ξ)− Uϕ(t, ξ)| ≤ ‖ψ − ϕ‖L∞([−a,a])e
‖fTu ‖L∞([0,T ]×[0,1])t, ∀(t, ξ) ∈ [0, T ]× [−a, a].

20



If we take t = T , we obtain

‖Uψ(T, ·)− Uϕ(T, ·)‖L∞([−a,a]) ≤ e‖f
T
u ‖L∞([0,T ]×[0,1])T‖ψ − ϕ‖L∞([−a,a]).

So T is a Lipschitz-continuous function.
We prove now that T (C) is compact. Let (ψn)n be a sequence of C. By standard parabolic
estimates, the sequence (Uψn(T, ·))n is bounded in C2,α([−a, a], [0, 1]) for any α ∈ (0, 1).
Since C2,α([−a, a], [0, 1]) embeds compactly into C0([−a, a], [0, 1]), (Uψn(T, ·))n converges
up to extraction of a subsequence in C.
So, according to Shauder’s fixed point theorem, there exists ψa,r ∈ C([−a, a], [0, 1]) such
that T (ψa,r) = ψa,r, that is Uψa,r(T, ·) = Uψa,r(0, ·). Actually, the function Uψa,r is solution
of (40). By uniqueness and T -periodicity of fT , Uψa,r can be extended as a T -periodic
solution of (40) in R× [−a, a].

To simplify the notations, we denote now Ua,r instead of Uψa,r . Owing to Lemma 2.6 and
the T -periodicity of Ua,r, we have the following inequalities

εa,rΦ0,fT (t) < Ua,r(t, ξ) < U1(t, ξ + r) ∀ (t, ξ) ∈ [0, T ]× (−a, a). (42)

We are now going to use a sliding method and we first give a comparison lemma.

Lemma 2.7. Let U and V be two T -periodic functions solving problem (40). Let h ∈
[0, 2a]. We define Vh(t, ξ) = V (t, ξ+h) for any (t, ξ) ∈ [0, T ]× [−a, a−h]. Then, we have

Vh ≤ U on [0, T ]× [−a, a− h].

Proof. We denote Ih = [−a, a − h]. For h = 2a, we have Ih = {−a}. Since U(·,−a) =
U1(·,−a + r), V2a(·,−a) = V (·, a) = εa,rΦ0,fT and εa,rΦ0,fT ≤ U1(·,−a+r)

2 < U1(·,−a+ r)
on [0, T ], it occurs that V2a < U on [0, T ]× I2a. Furthermore, Vh ≤ U on [0, T ]× Ih for all
h ∈ [0, 2a] sufficiently close to 2a, by continuity of U and V . Consequently, we can define

h∗ = inf
{
h ≥ 0 | ∀h ∈ [h, 2a], Vh ≤ U on [0, T ]× Ih

}
.

We have 0 ≤ h∗ < 2a. We are going to show bwoc that h∗ = 0. Thus let us suppose that
h∗ > 0. By continuity and T -periodicity of U and V ∗h , the definition of h∗ implies that

Vh∗ ≤ U on R× Ih∗ . (43)

Furthermore, if we define the bounded function η : R× Ih∗ → R by

η(t, ξ) =


fT
(
t, U(t, ξ)

)
− fT

(
t, Vh∗(t, ξ)

)
U(t, ξ)− Vh∗(t, ξ)

, if U(t, ξ) 6= Vh∗(t, ξ),

fTu
(
t, U(t, ξ)

)
, if U(t, ξ) = Vh∗(t, ξ),

then, we have on R× Ih∗

(U − Vh∗)t − c2(U − Vh∗)ξ − (U − Vh∗)ξξ = η(t, ξ)(U − Vh∗). (44)

Consequently, according to (43) and (44), if there exists (t∗, ξ∗) ∈ R × (−a, a − h∗) such
that U(t∗, ξ∗) = Vh∗(t∗, ξ∗), then, by the strong maximum principle, the continuity and
the T -periodicity of U and Vh∗ , we have

Vh∗ = U on R× Ih∗ . (45)
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Yet, according to (42) (which is automatically fulfilled from the arguments used in Lemma
2.6), and since ∂ξU1 < 0 on R× R, we have for any t ∈ R,

Vh∗(t,−a) = V (t,−a+ h∗) < U1(t,−a+ h∗ + r) < U1(t,−a+ r) = U(t,−a).

Consequently, Vh∗ < U on R× [−a, a−h∗). Furthermore, according to (42), for any t ∈ R,
we also have

Vh∗(t, a− h∗) = V (t, a) = εa,rΦ0,fT (t) < U(t, a− h∗).
So, it occurs that

Vh∗ < U on R× Ih∗ .

Since [0, T ]× Ih∗ is a compact set, and both U and V are continuous on [0, T ]× [−a, a],
there exists h0 ∈ (0, h∗) such that for any η ∈ (0, h0), we have Vh∗−η < U on [0, T ]×Ih∗−η.
This contradicts the definition of h∗. Consequently we have h∗ = 0 and the proof of
Lemma 2.7 is complete.

Corollary 2.8. There exists a unique function Ua,r solving (40).

Proof. We apply the conclusion of Lemma 2.7 with h = 0 and reverse the roles of U and
V .

Corollary 2.9. The function r ∈ R 7→ Ua,r ∈ C0
(
[0, T ]× [−a, a], [0, 1]

)
is continuous.

Proof. Let r∗ ∈ R and (rn)n be a sequence of real numbers such that rn n→∞−−−→ r∗. Accord-
ing to standard parabolic estimates and the T -periodicity of each function Ua,rn , there
exists U∗ such that, up to extraction of a subsequence, Ua,rn

n→∞−−−→ U∗ in C1,α2 in t and in
C2,α in ξ, for any α ∈ (0, 1). Consequently,

(U∗)t − (U∗)ξξ − c2(U∗)ξ = fT (t, U∗) on R× (−a, a),
U∗(0, ·) = U∗(T, ·) on [−a, a],
U∗(·,−a) = U1(·,−a+ r∗) , U∗(·, a) = εa,r∗Φ0,fT on [0, T ].

The uniqueness of the solution of the previous problem (Corollary 2.8) implies that we
have U∗ = Ua,r∗ , and that the whole sequence (Ua,rn) converges to U∗.

Corollary 2.10. For any t ∈ [0, T ] and ξ ∈ (−a, a), we have

∂ξUa,r(t, ξ) < 0.

Proof. We apply Lemma 2.7 with U = V = Ua,r. The strict inequality is a consequence
of the maximum principle applied to ∂ξUa,r.

Proposition 2.11. There exist εa ∈ (0, ε0] and ra ∈ R such that Ua,ra(0, 0) = εaΦ0,fT (0)
2 .

Proof. There exists (ta,r, ξa,r) ∈ [0, T ]× [−a, a] such that

εa,r = min
{
U1(ta,r, ξa,r + r)

2Φ0,fT (ta,r)
, ε0,

yT (0)
Φ0,fT (0)

}

Let (rn)n be a sequence of real numbers such that rn n→+∞−−−−→ −∞. There exists a function
Ua,−∞ such that up to extraction of a subsequence, Ua,rn

n→+∞−−−−→ Ua,−∞ in C0,α
(
[0, T ] ×
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[−a, a]
)
for any α ∈ (0, 1). Since (ta,rn)n is bounded, there exists ta ∈ [0, T ] such that

up to extraction of a subsequence, we have ta,rn
n→+∞−−−−→ ta. So, according to the fact that

(ξa,rn) is also bounded (because a is fixed here), it follows that

εa,rn
n→+∞−−−−→ εa := min

{
yT (ta)

2Φ0,fT (ta)
, ε0, ,

yT (0)
Φ0,fT (0)

}
We thus have Ua,−∞(·, a) = εaΦ0,fT on [0, T ]. Consequently, since ∂ξUa,−∞ ≤ 0 on [0, T ]×
[−a, a], it occurs that Ua,−∞(0, 0) ≥ εaΦ0,fT (0). So there exists n0 ∈ N such that rn0 < 0
and

Ua,rn0
(0, 0) ≥ 3

4εaΦ0,fT (0).

Let now (r̃n)n be a sequence of real numbers such that r̃n n→+∞−−−−→ +∞.There exists
a function Ua,+∞ such that up to extraction of a subsequence Ua,r̃n

n→+∞−−−−→ Ua,+∞ in
C0,α([0, T ] × [−a, a]) for any α ∈ (0, 1). Furthermore, for any t ∈ [0, T ], we have
Ua,r̃n(t,−a) = U1(t,−a + r̃n) n→+∞−−−−→ 0. Consequently, since ∂ξUa,+∞ ≤ 0 and Ua,+∞ ≥ 0
on [0, T ] × [−a, a], it occurs that Ua,+∞ ≡ 0. So, there exists n1 ∈ N such that r̃n1 > 0
and

Ua,r̃n1
(0, 0) ≤ 1

4εaΦ0,fT (0).

According to Corollary 2.9, there exists ra ∈ (rn0 , r̃n1) such that

Ua,ra(0, 0) = 1
2εaΦ0,fT (0),

which completes the proof.

Proposition 2.12. There exists a sequence an n→+∞−−−−→ +∞ such that Uan,ran converges
on any compact set in C1,α2 in t and in C2,α in ξ, for any α ∈ (0, 1), to a function U2
solving (39) with c = c2, and such that (U2)ξ < 0 on R2.

Proof. Since ta is bounded, there exist t∗ ∈ [0, T ] and a sequence an n→+∞−−−−→ +∞ such
that tan

n→+∞−−−−→ t∗. Consequently,

εan
n→+∞−−−−→ ε∗ := min

{
yT (t∗)

2Φ0,fT (t∗) , ε0, ,
yT (0)

Φ0,fT (0)

}
> 0.

According the standard parabolic estimates, up to extraction of a subsequence, Uan,ran
converges on any compact set to a function U2 in C1,α2 in t and in C2,α in ξ, for any
α ∈ (0, 1). The function U2 satisfies

(U2)t − (U2)ξξ − c2(U2)ξ = fT (t, U2) on [0, T ]× R,

U2(0, ·) = U2(T, ·) on R,

U2(0, 0) = 1
2ε
∗Φ0,fT (0),

(U2)ξ ≤ 0 on [0, T ]× R.

Since (ε∗Φ0,fT )′ ≤ fT (t, ε∗Φ0,fT ) and (yT )′ = fT (t, yT ) on [0, T ], and since ε∗Φ0,fT (0) ≤
yT (0), it occurs that ε∗Φ0,fT ≤ yT on [0, T ]. Consequently

U2(0, 0) ∈
(

0, y
T (0)
2

]
.
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The functions U2(·,−∞) and U2(·,+∞) solve the equation y′ = f(t, y) on [0, T ]. Further-
more, U2(t, ξ) ≤ yT (t) for all t ∈ [0, T ] and all ξ ∈ R, since this inequality holds for U1
and since each function Ua,r satisfies (42). Consequently, since (U2)ξ ≤ 0 on [0, T ]×R, we
have necessarily U2(·,−∞) = yT and U2(·,+∞) = 0. Finally we apply the strong maxi-
mum principle to the equation satisfied by (U2)ξ and obtain (U2)ξ < 0 on R2 (otherwise
(U2)ξ would be identically equal to zero, which is impossible since U2(·,−∞) = yT and
U2(·,+∞) = 0).

3 Nonlinearities asymptotically periodic in time with
perturbation

3.1 Proof of Theorem 1.6
Let T > 0 with T 6= T ∗ (that is λ0,fT 6= 0). We define

εT = 1
C + 1 min

{
|λ0,fT |,−

g(2)
2
}
> 0,

where C is defined in (23). Let ε ∈ (0, εT ). According to (23) and (25), there exists
nε ∈ N∗ such that for all t ≥ nεT and for all u ≥ 0 we have

fT (t, u)− (C + 1)εu ≤ fε(t, u) ≤ fT (t, u) + (C + 1)εu. (46)

We define the T−periodic functions fT−ε : R× R+ → R and fTε : R× R+ → R by

fT−ε(t, u) = fT (t, u)− (C + 1)εu, and fTε (t, u) = fT (t, u) + (C + 1)εu. (47)

According to (7), it occurs thatf
T
−ε(t, u) ≤ 0, ∀(t, u) ∈ R× [2,+∞),
fT (t, u) ≤ 0, ∀(t, u) ∈ R× [2,+∞).

(48)

Furthermore, according to (4) and (6), for any u ∈ [2,+∞), we have g(u)/u ≤ g(2)/2 < 0.
Consequently, since ε ∈ (0,− 1

C+1
g(2)

2 ), the following inequality is true

fTε (t, u) ≤ 0, ∀(t, u) ∈ R× [2,+∞), (49)

Concerning the principal eigenvalues associated with the equilibrium 0 and functions fT ,
fT−ε and fTε , the following relations holdλ0,fTε = λ0,fT − (C + 1)ε,

λ0,fT−ε = λ0,fT + (C + 1)ε.
(50)

We begin by handling the case where T < T ∗. Owing to (50), the fact that λ0,fT > 0 and
since ε ∈ (0, λ0,fT

C+1 ), we have
λ0,fTε > 0. (51)
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We consider vε : R+ × R→ R the solution of the Cauchy problem(vε)t − (vε)xx = fTε (t, vε) on (0,+∞)× R,

vε(0, ·) = uε(nεT, ·) on R.

Owing to (46) and the T−periodicity of fTε , the function uε(·+nεT, ·) satisfies on (0,+∞)×
R(
uε(·+ nεT, ·)

)
t
−
(
uε(·+ nεT, ·)

)
xx

= fε
(
t+ nεT, uε(·+ nεT, ·)

)
≤ fTε

(
t, uε(·+ nεT, ·)

)
.

So, applying a comparison principle, we obtain

0 ≤ uε(t+ nεT, x) ≤ vε(t, x), ∀(t, x) ∈ R+ × R. (52)

According to (51), Proposition 1.2 applied with the T -periodic nonlinearity fTε implies
that

lim
t→+∞

sup
x∈R

vε(t, x) = 0.

Hence, owing to (52),
lim
t→+∞

sup
x∈R

uε(t, x) = 0,

which concludes the proof of the first part of Theorem 1.6.

We now consider the case where T > T ∗. Since λwT ,fT > 0, there exists µT > 0 such that
for all µ ∈ (0, µT ) and for all (t, u, v) ∈ R× [0, 2]2, we have

|u− v| ≤ µ⇒ |fT (t, v)− fT (t, u)− fTu (t, u)(v − u)| ≤ λwT ,fT

2 |v − u|. (53)

We define the two positive real numbers M̃T and ε̃T by

M̃T = 8(C + 1)
λwT ,fT

sup
[0,T ]

wT

inf
[0,T ]

ΦwT ,fT
> 0,

and

ε̃T = min
{
εT ,

λwT ,fT

4(C + 1) ,
inf
[0,T ]

wT

2M̃T sup
[0,T ]

ΦwT ,fT
,

min{µT , 1}
M̃T sup

[0,T ]
ΦwT ,fT

}
> 0, (54)

where ΦwT ,fT is the principal eigenfunction associated with fT and the equilibrium state
wT . Let ε ∈ (0, ε̃T ). According to (50), the fact that λ0,fT < 0 and since ε ∈ (0,−λ0,fT

C+1 ),
we have

λ0,fT−ε < 0, λ0,fT < 0, and λ0,fTε < 0. (55)

Owing to (48), (49) and (55), the same proof as in Proposition 1.1 implies that there
exists a unique T -periodic positive equilibrium state wTε (resp. wT−ε) associated with fTε
(resp. fT−ε). Furthermore, for any t ∈ R, we have wTε (t) ∈ (0, 2] (resp. wT−ε(t) ∈ (0, 2]).

Lemma 3.1. There exists MT > 0 independent of ε such that
sup
t∈[0,T ]

|wTε (t)− wT (t)| ≤MT ε,

sup
t∈[0,T ]

|wT−ε(t)− wT (t)| ≤MT ε.
(56)
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Proof. We begin by proving the first inequality. We define the function vε : R→ R by

vε(t) = wT (t) + M̃T εΦwT ,fT (t).

We are interested in the problemy
′ = fTε (t, y) on R,

y(0) = y(T ).
(57)

We will show that vε is a strict supersolution and wT is a strict subsolution of (57). Let
t ∈ R. We have

(vε)′(t)− fT (t, vε(t))− (C + 1)εvε(t)
= fT (t, wT (t)) + M̃T εΦwT ,fT (t)fTu (t, wT (t))− fT (t, vε(t))

+ M̃T εΦwT ,fT (t)λwT ,fT − (C + 1)εvε(t).

Since ε ∈ (0, µT
M̃T sup

[0,T ]
Φ
wT ,fT

), we have |vε(t)−wT (t)| ≤ µT . Furthermore, wT (t) ∈ [0, 1], and

since ε ∈ (0, 1
M̃T sup

[0,T ]
Φ
wT ,fT

), the definition of vε implies that vε(t) ∈ [0, 2]. Consequently,

it follows from (53) that

fT (t, wT (t)) + M̃T εΦwT ,fT (t)fTu (t, wT (t))− fT (t, vε(t)) ≥ −
λwT ,fT

2 M̃T εΦwT ,fT (t).

Consequently,

(vε)′(t)− fT (t, vε(t))− (C + 1)εvε(t)

≥
λwT ,fT

2 M̃T εΦwT ,fT (t)− (C + 1)εvε(t)

=M̃T εΦwT ,fT (t)
(λwT ,fT

2 − (C + 1)ε
)
− (C + 1)εwT (t).

Yet ε ∈ (0, λwT ,fT4(C+1) ). So
λwT ,fT

2 − (C + 1)ε ≥ λwT ,fT

4 .

Hence

(vε)′(t)− fT (t, vε(t))− (C + 1)εvε(t) ≥ M̃T εΦwT ,fT (t)λwT ,fT4 − (C + 1)εwT (t)

= ε
(λwT ,fT

4 M̃TΦwT ,fT (t)− (C + 1)wT (t)
)
.

Consequently, according to the definition of M̃T , it follows that

λwT ,fT

4 M̃TΦwT ,fT (t)− (C + 1)wT (t) =
(
2 ΦwT ,fT (t)

inf
[0,T ]

ΦwT ,fT
sup
[0,T ]

wT − wT (t)
)
(C + 1) > 0.

Finally, vε is a strict supersolution of (57).
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We now show that wT is a strict subsolution of this problem. Let t ∈ R. We have

(wT )′(t)− fT (t, wT (t))− (C + 1)εwT (t) = −(C + 1)εwT (t) < 0.

According to Lemma 3.1 of [21], there exists a solution w̃ε of (57), and one has

wT (t) < w̃ε(t) < wT (t) + M̃T εΦwT ,fT (t), ∀t ∈ R. (58)

In particular, w̃ε is a positive solution of (57). So, by uniqueness, we have w̃ε = wTε .
Finally, inequalities (58) rewrite

sup
t∈[0,T ]

|wT (t)− wTε (t)| ≤ εMT ,

where MT is defined by MT = M̃T sup[0,T ] ΦwT ,fT .

We now give a sketch of the proof of the second inequality of Lemma 3.1. We define the
function vε : R→ R by

vε(t) = wT (t)− M̃T εΦwT ,fT .

We are interested in the problemy
′ = fT−ε(t, y) on R,

y(0) = y(T ).
(59)

We can show in the same way as previously that vε is a strict subsolution and that wT is
a strict supersolution of (59). According to Lemma 3.1 of [21], there exists a solution ŵε
of (59), and one has

wT (t)− M̃T εΦwT ,fT (t) < ŵε(t) < wT (t), ∀t ∈ R. (60)

Yet ε ∈ (0,
inf

[0,T ]
wT

2M̃T sup
[0,T ]

Φ
wT ,fT

). So for any t ∈ R

wT (t)− M̃T εΦwT ,fT (t) ≥ wT (t)− 1
2

ΦwT ,fT

sup
[0,T ]

ΦwT ,fT
inf
[0,T ]

wT > 0.

Consequently ŵε is a positive solution of (59). So, by uniqueness, we have ŵε = wT−ε.
Finally, inequalities (60) rewrite

sup
t∈[0,T ]

|wT (t)− wT−ε(t)| ≤ εMT ,

which completes the proof of Lemma 3.1.

Let us now complete the proof of Theorem 1.6. We recall that ε ∈ (0, ε̃T ), where ε̃T is
defined in (54). Let K ⊂ R be a compact set and let η > 0. We consider ũε : R+× R→ R
and ũ−ε : R+ × R→ R solving respectively(ũε)t − (ũε)xx = fTε (t, ũε) on (0,+∞)× R,

ũε(0, ·) = uε(nεT, ·) on R,
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and (ũ−ε)t − (ũ−ε)xx = fT−ε(t, ũ−ε) on (0,+∞)× R,

ũ−ε(0, ·) = uε(nεT, ·) on R,

where nε ∈ N is such that (46) holds for all (t, u) ∈ [nεT,+∞) × R+, and uε solves (26).
The function vε : R+ × R→ R, (t, x) 7→ uε(t+ nεT, x) satisfies(vε)t − (vε)xx = fε(t+ nεT, vε) on R+ × R,

vε(0, ·) = uε(nεT, ·) on R.

Owing to (46) and the T -periodicity of fTε , it occurs that on R+ × R

(vε)t − (vε)xx = fε(t+ nεT, vε) ≤ fTε (t+ nεT, vε) = fTε (t, vε)

Consequently, since vε(0, ·) = uε(nεT, ·) = ũε(0, ·) on R, applying a comparison principle,
we obtain

vε(t, x) ≤ ũε(t, x), ∀(t, x) ∈ R+ × R.

In other words
uε(t+ nεT, x) ≤ ũε(t, x), ∀(t, x) ∈ R+ × R.

Actually, we can show in the same way that

ũ−ε(t, x) ≤ uε(t+ nεT, x) ≤ ũε(t, x), ∀(t, x) ∈ R+ × R.

According to the T -periodicity of wT , we have wT = wT (·+ nεT ) on R. Hence

ũ−ε(t, x)−wT (t) ≤ uε(t+nεT, x)−wT (t+nεT ) ≤ ũε(t, x)−wT (t), ∀(t, x) ∈ R+×R. (61)

Therefore, for any (t, x) ∈ R+ ×K,
ũ−ε(t, x)− wT (t) ≥ − sup

x∈K
|ũ−ε(t, x)− wT−ε(t)| − sup

t∈[0,T ]
|wT−ε(t)− wT (t)|,

ũε(t, x)− wT (t) ≤ sup
x∈K
|ũε(t, x)− wTε (t)|+ sup

t∈[0,T ]
|wTε (t)− wT (t)|.

On the other hand, owing to Proposition 1.2, there exists tε,K,η > 0 such that for any
t ≥ tε,K,η

sup
x∈K
|ũ−ε(t, x)− wT−ε(t)|+ sup

x∈K
|ũε(t, x)− wTε (t)| ≤ η. (62)

According to Lemma 3.1, (61) and (62), we thus have, for any (t, x) ∈ [tε,K,η,+∞)×K

|uε(t+ nεT, x)− wT (t+ nεT )| ≤ η +MT ε.

In other words, for any t ≥ tε,K,η + nεT we obtain

sup
x∈K
|uε(t, x)− wT (t)| ≤ η +MT ε,

That is
lim sup
t→+∞

sup
x∈K
|uε(t, x)− wT (t)| ≤MT ε,

which completes the proof of Theorem 1.6.
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3.2 Proof of Proposition 1.7
We begin by proving (I). According to (25), there exists t0 ≥ 0 such that

f(t, u) ≤ fT
∗(t, u)− g(2)

2 u, ∀t ∈ [t0,+∞),∀u ∈ [0,+∞), (63)

where we recall that g(2) < 0. According to (4) and (6), for any u ∈ [2,+∞), we have
g(u)/u ≤ g(2)/2 < 0. Consequently, (63) implies that

f(t, u) ≤ 0, ∀t ∈ [t0,+∞),∀u ∈ [2,+∞), (64)

We define
M = max{2, sup

R
u0}.

The real number M is a supersolution of (26). Furthermore, 0 is solution of (26) and
0 ≤ u(0, ·) ≤M on R. Consequently, according to the maximum principle we have

0 ≤ u(t, x) ≤M, ∀t ∈ R, ∀x ∈ R. (65)

We denote v : R+ → R the function satisfyingv
′ = f(t, v) on R+,

v(0) = M.

Owing to (65), we have 0 ≤ u(t0, ·) ≤ M on R. It follows from the comparison principle
that

0 ≤ u(t+ t0, x) ≤ v(t), ∀t ≥ 0, ∀x ∈ R.

Furthemore, since 2 ≤M , it follows from (64) that

v(t) ≤M, ∀t ≥ 0.

To summarize
0 ≤ u(t,+t0, x) ≤ v(t) ≤M, ∀t ≥ 0, ∀x ∈ R. (66)

We will show that v(t) t→+∞−−−−→ 0. We argue bwoc assuming there exists a real number
δ0 > 0 and a sequence tn n→+∞−−−−→ +∞ such that

v(tn) > δ0, ∀n ∈ N.

For any n ∈ N, we write tn = t̃n + knT
∗, where t̃n ∈ [0, T ∗) and kn ∈ N, and we define the

function vn : [−knT ∗,+∞)→ R by vn(t) = v(t+ knT
∗). The function vn satisfiesv

′
n(t) = f

(
t+ knT

∗, vn(t)
)
∀t ∈ [−knT ∗,+∞),

vn(t̃n) = v(tn) > δ0.

Up to extraction of a subsequence, t̃n n→+∞−−−−→ t∗ ∈ [0, T ∗]. Consequently, according to (25)
and the Arzela-Ascoli theorem, there exists v∗ : R → R such that vn n→+∞−−−−→ v∗ locally
uniformly on R and which satisfies(v∗)′ = fT

∗(t, v∗) on R,

v∗(t∗) ≥ δ0.
(67)
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Furthermore, owing to (66), we have

0 ≤ v∗(t) ≤M, ∀t ∈ R. (68)

We consider σ : R+ → R such thatσ
′ = fT

∗(t, σ) on R+,

σ(0) = M.

Owing to (7) and the fact thatM ≥ 1, we have σ(0) ≥ σ(T ∗). Consequently, the sequence
(σ(nT ∗))n is nonincreasing. Furthermore, it is bounded below by 0. Hence, it converges
up to extraction of a subsequence to a real number l ≥ 0. For any n ∈ N, we define
the function σn : R+ → R by σn(t) = σ(t + nT ∗). The sequence (σn)n converges up to
extraction of a subsequence in C1([0, T ∗]) to a function σ∗ satisfying(σ∗)′ = fT

∗(t, σ∗) on [0, T ∗],
σ∗(0) = σ∗(T ∗) = l.

According to Proposition 1.1, we have necessarily σ∗ = 0, and thus, the convergence holds
for all the sequence. Owing to (68), for any n ∈ N, we have v∗(−nT ∗) ≤M . Consequently,
since fT ∗ is T ∗−periodic, we can apply a comparison principle and we obtain

v∗(−nT ∗ + t) ≤ σ(t), ∀t ∈ R+, ∀n ∈ N.

In particular
v∗(t∗) ≤ σn(t∗), ∀n ∈ N.

Passing to the limit as n→ +∞, we obtain

v∗(t∗) ≤ σ∗(t∗) = 0,

which is a contradiction with (67). Consequently v(t) t→+∞−−−−→ 0 and thus, we conclude the
proof of (I) using (66).

We now prove (II). We begin by considering the case where f(t, u) = fT
∗(t, u) and

p(t, u) = u for any (t, u) ∈ R+ × R+. In this case, we have

fε(t, u) = fT
∗(t, u) + εu, ∀(t, u) ∈ R× R+.

Let ε ∈ (0,−g(2)/2). The function fε is T ∗-periodic, and we have

fε(t, u) ≤ 0, ∀t ∈ R, ∀u ∈ [2,+∞).

Furthermore λ0,fε = λ0,fT∗ − ε = −ε < 0. Consequently, owing to Theorem 1.1, there
exists wTε : R → (0,+∞) solving (14) with fε as nonlinearity. According to Proposition
1.2, for all compact set K ⊂ R, we have

sup
x∈K
|uε(t, x)− wTε (t)| t→+∞−−−−→ 0.

We now consider the case where p(t, u) ≤ 0 for any (t, u) ∈ R× R+. In this case

fε(t, u) ≤ fT
∗(t, u), ∀(t, u) ∈ R+ × R+.
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We denote u the solution of the Cauchy problemut − uxx = fT
∗(t, u) on (0,+∞)× R,

u(0, ·) = u0 on R.

From the comparison principle, it occurs that

0 ≤ uε(t, x) ≤ u(t, x) ∀(t, x) ∈ R+ × R. (69)

According to (I), we have sup
x∈R

u(t, x) = 0. Consequently sup
x∈R

uε(t, x) = 0, which concludes

the proof.

3.3 Proof of Theorem 1.8
Proof. Let T > T ∗ and c ∈ (0, c∗T ), where c∗T is the critical speed associated with fT defined
in Proposition 1.3. We recall that for ε ∈ (0, ε̃T ), where ε̃T is defined in (54), inequalities
(46), (48), (49) and (55) are satisfied. Furthermore, the critical speeds associated with
nonlinearities fTε and fT−ε are respectively defined by

c∗T,ε = 2
√
|λ0,fTε | = 2

√
−λ0,fT + (C + 1)ε, and c∗T,−ε = 2

√
|λ0,fT−ε| = 2

√
−λ0,fT − (C + 1)ε.

In particular, since c∗T = 2
√
|λ0,fT | = 2

√
−λ0,fT , there exists εc,T > 0 such that for all

ε ∈ (0, εc,T ) we have
c ∈ (0, c∗T,−ε) ∩ (0, c∗T,ε). (70)

We define
ε̂c,T = min{ε̃T , εc,T} > 0. (71)

We consider ε ∈ (0, ε̂c,T ). According to the strong maximum principle, we have uε(nεT, ·) >
0 on R, where nε ∈ N is such that (46) holds for all (t, u) ∈ [nεT,+∞)×R+. Consequently,
there exists a nonnegative and nontrivial compactly supported function ũε,0 : R→ R such
that

uε(nεT, x) ≥ ũε,0, ∀x ∈ R. (72)
Let ũε : R+ × R→ R be the solution of the Cauchy problem(ũε)t − (ũε)xx = fT−ε(t, ũε) on (0,+∞)× R,

ũε(0, ·) = ũ0,ε on R.

Owing to (46), (72) and the fact that fT−ε is T -periodic, we can apply a comparison
principle and get that

ũε(t, x) ≤ uε(t+ nεT, x), ∀(t, x) ∈ R+ × R. (73)

According to (49), we have fε ≤ 0 on R+ × [2,+∞). Hence, since u0 is bounded, if we
define

C̃ = max{2, sup
R
u0},

then according to the maximum principle, we have uε ≤ C̃ on R+ × R. In particular

uε(nεT, x) ≤ C̃, ∀x ∈ R. (74)
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Let vε : R+ → R be the solution of(vε)t = fTε (t, vε) on R+,

vε(0) = C̃.
(75)

Owing to (46) and (74), we can still apply a comparison principle to get that

uε(t+ nεT, x) ≤ vε(t), ∀(t, x) ∈ R+ × R. (76)

According to (49) and the fact that C̃ ≥ 2, it occurs that vε(T ) ≤ vε(0). So the sequence
(vε(nT ))n is nonincreasing. Furthermore, this sequence is bounded below by 0. Conse-
quently, it converges to a real number l ≥ 0. For any n ∈ N, we define vε,n : R+ → R by
vε,n(t) = vε(t+ nT ). The sequence (vε,n)n converges up to extraction of a subsequence to
v∗ε ≥ 0 in C1([0, T ]) satisfying(v∗ε)′ = fTε (t, v∗ε) on [0, T ],

v∗ε(0) = v∗ε(T ) = l.

So v∗ε is equal to 0 or wTε . Yet, there exists κε > 0 such that 0 < κεΦ0,fTε (0) ≤ C̃ and
∣∣∣fTε (t, κεΦ0,fTε (t)

)
− (fTε )u(t, 0)κεΦ0,fTε (t)

∣∣∣ ≤ −λ0,fTε
2 κεΦ0,fTε (t), ∀t ∈ [0, T ].

Consequently, we have on R+

(κεΦ0,fTε )′ − fTε (t, κεΦ0,fTε ) ≤ κεΦ0,fTε

(
λ0,fTε + (fTε )u(t, 0)

)
−
(
κεΦ0,fTε (fTε )u(t, 0) +

λ0,fTε
2 κεΦ0,fTε

)
≤
λ0,fTε

2 κεΦ0,fTε ≤ 0.

Hence, the function κεΦ0,fTε is a subsolution of the problem (75) on R+. Therefore

0 < κεΦ0,fTε (t) ≤ vε(t), ∀t ∈ R+.

Using the T -periodicity of Φ0,fTε and passing to the limit as n→ +∞, we obtain

0 < κεΦ0,fTε (t) ≤ v∗ε(t), ∀t ∈ R+.

Consequently, we have necessarily v∗ε ≡ wTε on [0, T ]. In particular, the uniqueness of
accumulation point of the sequence (vε,n)n implies that the convergence to wTε holds for
the whole sequence. Let η > 0. There exists nη,ε ∈ N such that

n ≥ nη,ε ⇒ sup
t∈[0,T ]

|vε(t+ nT )− wTε (t)| ≤ η. (77)

On the other hand, according to (70), the spreading properties in periodic case (Proposi-
tion 1.3) give the existence of tc,η,ε ≥ 0 such that

t ≥ tc,η,ε ⇒ sup
|x|<ct

|wT−ε(t)− ũε(t, x)| ≤ η. (78)

Let (t, x) ∈ R+ × R such that t ≥ max{tc,η,ε, nη,εT} and |x| < ct. According to (73) and
(76), it occurs that

ũε(t, x) ≤ uε(t+ nεT, x) ≤ vε(t)
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The fact that t ≥ nη,εT implies that we can write t = ntT + t̃, where t̃ ∈ [0, T ) and nt ∈ N
such that nt ≥ nη,ε. Consequently, as the function wT is T -periodic, we have

ũε(t, x)− wT (t) ≤ uε(t+ nεT, x)− wT (t+ nεT ) ≤ vε(ntT + t̃)− wT (t̃)

Hence, according to (77) and Lemma 3.1

uε(t+ nεT, x)− wT (t+ nεT ) ≤ |vε(ntT + t̃)− wTε (t̃)|+ |wTε (t̃)− wT (t̃)| ≤ η +MT ε,

and on the other hand, owing to (78) and Lemma 3.1, it occurs that

uε(t+ nεT, x)− wT (t+ nεT ) ≥ − sup
|y|<ct

|wT−ε(t)− ũε(t, y)| − sup
[0,T ]
|wT−ε − wT | ≥ −η −MT ε.

To conclude, for any t ≥ max{tc,η,ε, nη,εT}+ nεT , we have

sup
|x|<ct

|uε(t, x)− wT (t)| ≤ η +MT ε,

which concludes the proof of the first assertion of Theorem 1.8.

We now show the second part of the theorem. We consider c > c∗T and c′ such that
c∗T < c′ < c. There exists ε′c,T > 0 such that for all ε ∈ (0, ε′c,T ) we have

c′ > min{c∗T,−ε, c∗T,ε}. (79)

Furthermore, according to (4), (23) and (25), there existsD > 0 such that for all ε ∈ [0, 1),
we have

fε(t, u) ≤ Du, ∀t ∈ R+, ∀u ∈ R+. (80)
We define εc,T = min{1, ε̂c,T , ε′c,T} > 0, where ε̂c,T is defined in (71). Let ε ∈ (0, εc,T ). We
consider H : R+ × R→ R solving the heat equationHt −Hxx = 0 on (0,+∞)× R,

H(0, ·) = u0 on R.

The function H is given by

H(t, x) = 1
2
√
πt

∫
Supp(u0)

e−
(x−y)2

4t u0(y)dy, ∀t ∈ (0,+∞),∀x ∈ R, (81)

where Supp(u0) is the support of u0, which is here assumed to be compact. We define the
function HD : R+ × R → R by HD(t, x) = H(t, x)eDt. We have (HD)t − (HD)xx = DHD

on (0,+∞)× R. Furthermore, owing to (80), we have (uε)t − (uε)xx = fε(t, uε) ≤ Duε on
(0,+∞)× R. Consequently, since HD(0, ·) = uε(0, ·) = u0 on R, the comparison principle
yields

uε(t, x) ≤ H(t, x)eDt, ∀t ∈ R+,∀x ∈ R.

In particular, owing to (81), it occurs that

uε(nεT, x) ≤ eDnεT

2
√
πnεT

∫
Supp(u0)

e−
(x−y)2
4nεT u0(y)dy, ∀x ∈ R. (82)

We define the real number

γc′,ε =
c′ +

√
(c′)2 + 4λ0,fTε

2 .
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Let us note that (c′)2 + 4λ0,fTε > 0 because c′ > c∗T,ε = 2
√
−λ0,fTε . According to (82),

uε(nεT, ·) has a Gaussian decay as |x| → +∞ and in particular, there exists a real number
Mc′,ε > 0 such that

uε(nεT, x) ≤Mc′,εΦ0,fTε (0)e−γc′,εx, ∀x ∈ R. (83)

We also define the function vc′,ε : R+ × R→ R by

vc′,ε(t, x) = Mc′,εΦ0,fTε (t)e−γc′,ε(x−c′t),

We have on R+ × R

(vc′,ε)t − (vc′,ε)xx = (−γ2
c′,ε + γc′,εc

′ + λ0,fTε )Mc′,εΦ0,fTε e
−γc′,ε(x−c′t) + (fTε )u(t, 0)vc′,ε.

Hence according to (5) and the fact that −γ2
c′,ε + γc′,εc

′ + λ0,fTε = 0, we obtain on R+ × R

(vc′,ε)t − (vc′,ε) ≥ fTε (t, vc′,ε)

Furthermore, owing to (46), (47) and the T -periodicity of fTε , it occurs that on R+ × R

(uε)t − (uε)xx = fε(t+ nεT, uε) ≤ fTε (t+ nεT, uε) = fTε (t, uε)

Consequently, since (83) implies that uε(nεT, ·) ≤ vc′,ε(0, ·) on R, the comparison principle
implies that

0 ≤ uε(t+ nεT, x) ≤ vc′,ε(t, x), ∀(t, x) ∈ R+ × R.

For all t ≥ 0, since vc′,ε(t, ·) is decreasing on R, we have

0 ≤ sup
x>ct

uε(t, x) ≤ sup
x>ct

vc′,ε(t, x) ≤ vc′,ε(t, ct) = Mc′,εΦ0,fTε (t)e−γc′,ε(c−c′)t t→+∞−−−−→ 0.

In the same way, we can show that

0 ≤ sup
x<−ct

uε(t+ nεT, x) t→+∞−−−−→ 0.

To summarize
lim
t→+∞

sup
|x|>ct

uε(t, x) = 0,

which concludes the proof of the second assertion of Theorem 1.8.

4 Influence of the protocol of the treatment
We begin by proving Proposition 1.9.

Proof. Owing to (28), the principal eigenvalue associated with 0 and fTτ is given by

λ0,fTτ = − 1
T

∫ T

0
(fTτ )u(t, 0)dt = −g′(0) +

∫ T

0
mT
τ (t) dt = −g′(0) +

∫ 1

0
ϕ(t)dt = λ0,fT .

We now demonstrate Proposition 1.10.
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Proof. Let T > T ∗. We denote P T
τ the Poincaré map associated with fTτ . We recall that

P T
τ is defined on R+ by

P T
τ (α) = yτ,α(T ),

where yτ,α is the solution of the Cauchy problem(yτ,α)′ = fTτ (t, yτ,α) on R+,

yτ,α(0) = α.
(84)

In the same way as in the proof of Proposition 1.1, we show that the function P T
τ has a

unique positive fixed point αTτ . Furthermore αTτ ∈ (0, 1]. Consequently there is a unique
equilibrium state wTτ : R → (0, 1] associated with fTτ . It is the solution of the Cauchy
problem (84) with α = αTτ .

We begin by showing the continuity property. Let τ ∗ ∈ (0, T ) and (τn)n be a sequence
of (0, T ) such that τn n→+∞−−−−→ τ ∗. We will demonstrate that wTτn(0) n→+∞−−−−→ wTτ∗(0). The
sequence (wTτn)n converges up to extraction of a subsequence to a function w∗ in C0,δ([0, T ])
for any δ ∈ (0, 1). The equilibrium state wTτn satisfiesw

T
τn(t) = wTτn(0) +

∫ t

0
fTτn(s, wTτn(s))ds, ∀t ∈ [0, T ],

wTτn(0) = wTτn(T ).

Passing to the limit as n→ +∞, we obtainw
∗(t) = w∗(0) +

∫ t

0
fTτ∗(s, w∗(s))ds, ∀t ∈ [0, T ],

w∗(0) = w∗(T ).

The function t 7→
∫ t

0
fTτ∗(s, w∗(s))ds is of class C1([0, T ]). Consequently w∗ is of class

C1([0, T ]) and it satisfies (w∗)′ = fTτ (t, w∗) on [0, T ],
w∗(0) = w∗(T ).

Owing to Proposition 1.1, it follows that w∗ ≡ 0, or w∗ ≡ wTτ∗ . If w∗ = 0, then wTτn → 0
as n→ +∞ uniformly on [0, T ]. For any n ∈ N, we have

(wTτn)′(t)
wTτn(t) = fT (t, wTτn(t))

wTτn(t) , ∀t ∈ [0, T ].

We integrate the previous equation over [0, T ], then we pass to the limit as n→ +∞. We
obtain −Tλ0,fT

τ∗
= 0. It is a contradiction because since T > T ∗, we have λ0,fT

τ∗
= λ0,fT <

0. Hence, we have necessarily w∗ ≡ wTτ∗ . So the function τ 7→ wTτ (0) is continuous on
(0, T ).

We now study the monotonicity of this function. We consider two real numbers τ1 and τ2
such that 0 < τ1 < τ2 < T . The Poincaré map P T

τi
associated with fTτi is defined on R+ by

P T
τi

(α) = yτi,α(T ),
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where yτi,α is the solution of (84), with τ = τi. We recall that the equilibrium state wTτi
is the solution on R+ of (84) with α = αTτi . Consequently, if we prove that P T

τ1 > P T
τ2 on

(0,+∞), then we will deduce that αTτ1 > αTτ2 , that is, wTτ1(0) > wTτ2(0). Fix α > 0. We
define the function zτi,α : R+ → R by

zτi,α(t) = yτi,α(t)e
∫ t

0 m
T
τi

(s)ds. (85)

This function solves on R+ the equation

(zτi,α)′ =
g
(
zτi,αe

−
∫ t

0 m
T
τi

(s)ds
)

e−
∫ t

0 m
T
τi

(s)ds

For any t ∈ [0, T ], we have

e−
∫ t

0 m
T
τ1 (s)ds ≤ e−

∫ t
0 m

T
τ2 (s)ds. (86)

According to (4) and the fact that zτ1,α > 0, it follows that for any t ∈ [0, T ]

g
(
zτ1,αe

−
∫ t

0 m
T
τ1 (s)ds

)
zτ1,αe

−
∫ t

0 m
T
τ1 (s)ds

≥
g
(
zτ1,αe

−
∫ t

0 m
T
τ2 (s)ds

)
zτ1,αe

−
∫ t

0 m
T
τ2 (s)ds

. (87)

In other terms, zτ1,α is a subsolution of the equation satisfied by zτ2,α. Since zτ1,α(0) =
zτ2,α(0) = α, we can apply a comparison principle and we obtain

zτ1,α(t) ≥ zτ2,α(t), ∀t ∈ [0, T ].

Actually, the previous inequality is strict with t = T because (86) and (87) are strict on
(0, τ2). Owing to (85), we have

yτ1,α(T )e
∫ T

0 mTτ1 (s)ds > yτ2,α(T )e
∫ T

0 mTτ2 (s)ds

According to (28), it occurs that∫ T

0
mT
τ1(s)ds =

∫ T

0
mT
τ2(s)ds =

∫ 1

0
ϕ(s)ds.

Consequently
yτ1,α(T ) > yτ2,α(T ).

In other words, P T
τ1(α) > P T

τ2(α), which concludes the proof.
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