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Fisher-KPP equations and applications to a model in
medical sciences

Benjamin CONTRI *

Aix Marseille Université, CNRS, Centrale Marseille
Institut de Mathématiques de Marseille, UMR 7373, 13453 Marseille, France

Abstract

This paper is devoted to a class of reaction-diffusion equations with nonlinearities
depending on time modeling a cancerous process with chemotherapy. We begin
by considering nonlinearities periodic in time. For these functions, we investigate
equilibrium states, and we deduce the large time behavior of the solutions, spread-
ing properties and the existence of pulsating fronts. Next, we study nonlinearities
asymptotically periodic in time with perturbation. We show that the large time
behavior and the spreading properties can still be determined in this case.

1 Framework and main results
We investigate equations of the form

Uy — Upe = fL(t,u), tER, vE€R, (1)
where fT:R x R — R is of the type

Fr(tu) = gu) —m" (t)u, (2)

and T is a positive parameter. We suppose that ¢ is a KPP (for Kolmogorov, Petrovsky
and Piskunov) function of class C'(R") with RT = [0, +00). More precisely, we have

g>0on(0,1), g(0)=g(1) =0, ¢'(0)>0, ¢'(1) <0, (3)
and
u g(uu) decreasing on (0, 400). (4)

The previous hypotheses imply in particular that
9(u) < ¢'(0)u, Vu € [0, +00), (5)

and that
g <0on (1,+00). (6)

*Address correspondence to Benjamin Contri: benjamin.contri@univ-amu.fr



In Sections 2 and 4, the function m” is T-periodic, nonnegative and of class C'(R). In
this case, the function f7 is a T-periodic in time function of class C*(R x RT) such that
fY(-,0) = 0 on R. Furthermore, according to (6) and the nonnegativity of m”, we have

fr(t,u) <0, V(t,u) €R x (1,400). (7)
In Section 3, the function m” is asymptotically periodic in time. We give more details
about this notion later in this introduction.

1.1 Biological interpretation

Equations of the type
Up — Ugy = g(u) —mP (Hu, tER, v €R, (8)

are proposed to model the spatial evolution over time of a cancerous tumor in the presence
of chemotherapy. The quantity u(t, x) represents the density of cancer cells in the tumor
at the position x and at the time ¢t. We begin by considering, for 7" > 1, a particular
case of periodic function m” : R — R of class C'(R") for which there exists a nontrivial
function ¢ : [0, 1] — [0, 4+00) with ¢(0) = ¢(1) = 0 such that

m” = on [0,1), 9

m” =0on [1,7). ©)

In the absence of treatment, cancer cells reproduce and spread in space. This reproduction
is modeled by the reaction term of KPP type g(u), which takes into account the fact that
the resources of the environment of the tumor are not infinite and so, that there is a
maximal size beyond which the tumor cannot grow anymore. To treat the patient, cycles
of chemotherapy are given. Every cycle lasts a lapse of time T and is composed of two
subcycles. The duration of the first one is equal to 1. During this time, the drug acts on
the tumor. At every moment of the first subcycle, the death rate of the cancer cells due
to the drug is equal to ¢(t). In this case, the total reaction term is g(u) — ¢(¢)u. There
is a competition between the reproduction term and the death term. The chemotherapy
has a toxic effect on the body because it destroys white blood cells. It is thus essential
to take a break in the administration of the treatment. This break is the second subcycle
of the cycle of chemotherapy. It lasts during a time equal to T"— 1. In this case, the
reaction term is just g(u), and thus, the tumor starts to grow again. To summarize, the
term m” (¢) defined in (9) represents the concentration of drug in the body of the patient
at time ¢, and the integral [ mz(s)ds = [} (t)dt represents the total quantity of drug in
the patient during a cycle of chemotherapy. Finally, we impose for this type of functions
m? that

0 - [ " o(t)dt < 0. (10)

This inequality is not really restricting. Indeed, we shall see after that this hypothesis is
in fact a condition so that the patient is cured in the case or there is no rest period in the
cycles of chemotherapy (that is 7= 1).

We now refine the previous modelling. In fact, the concentration of drug in the patient’s
body is not a datum. We only know the concentration of drug injected to the patient. We



denote D” (t) this concentration at time ¢, and we assume that the function D' : R* — RT
is T-periodic and satisfies

1, Vtelo,1],

0, Vte (1,7T). (11)

DT (t) = {

The concentration of drug m is then the Lipschitz-continuous and piecewise C' solution
m : RT — R of a Cauchy problem of the type

m'(t) = DT (t) — mf) Vt € R,
m(0) = mg > 0.

(12)

The real number 7 > 0 is called clearance. It characterizes the ability of the patient’s
body to eliminate the drug. It is also possible to take into account that the patient does
not necessarily take the treatment in an optimal way. It may happen to him/her, for
example, to forget his/her medicine, or being forced to move a chemotherapy session if it
is programmed on a holiday. So, we add to the nonlinearity a perturbative term of the
type ep(t,u), where € > 0 and p : Rt x R — R. It corresponds to study equations of the
type
Ut — Uy = g(u) — m(t)u+ep(t,u), tER, z€R,

where m solves (12).

1.2 Mathematical framework

The mathematical study of reaction-diffusion equations began in the 1930’s. Fisher [11]
and Kolmogorov, Petrovsky and Piskunov [16] were interested in wave propagation in
population genetics modeled by the homogeneous equation

U — Upp = f(u), tER, xER. (13)

In the 1970’s, their results were generalized by Aronson and Weinberger [1] and Fife
and McLeod [10]. In particular, if f is a KPP nonlinearity (that is, f satisfies (3) and
(5)), there exists a unique (up to translation) planar fronts U, of speed ¢, for any speed
c>c*:=2,/f(0), that is, for any ¢ > ¢, there exists a function u,. satisfying (13) and
which can be written u.(t,z) = U.(x—ct), with0 < U, <1, U.(—00) =1 and U.(4+00) =
0. Furthermore, if ¢ < ¢*, there is no such front connecting 0 and 1. Another property
for this type of nonlinearities is that if we start from a nonnegative compactly supported
initial datum wg such that uwy # 0, then the solution w of (13) satisfies u(t,z) — 1
as t — +00. Aronson and Weinberger name this phenomenon the "hair trigger effect.
Moreover the set where u(t, z) is close to 1 expands at the speed ¢*.

Freidlin and Gértner in [13] were the first to study heterogeneous equations. More pre-
cisely, they generalized spreading properties for KPP type equations with periodic in
space coefficients. Since this work, numerous papers have been devoted to the study of
heterogeneous equations with KPP or other reaction terms. We can cite e.g. [2, 3, 4, 5,
6, 8,9, 15, 18, 26, 27, 28] in the case of periodic in space environment, [12, 17, 18, 23, 24]
in the case of periodic in time environment and [20, 21, 22] in the case of periodic in
time and in space environment. The works of Nadin [20, 21] and Liang and Zhao [18] are
the closest of our paper. We will compare later the contributions of our work with these
references. We now give the main results of the paper.



When the nonlinearity is not homogeneous, there are no planar front solutions of (8)
anymore. For equations with coefficients depending periodically on the space variable,
Shigesada, Kawasaki and Teramoto [25] defined in 1986 a notion more general than the
planar fronts, namely the pulsating fronts. This notion can be extended for time depen-
dent periodic equations as follows.

Definition 1.1. For equation (1), assume that f* is T-periodic and that (1) has a T-
periodic solution 6 : R — (0,400), t — 6(t). A pulsating front connecting 0 and 0(t) for
equation (1) is a solution u : R X R — R" such that there exists a real number ¢ and a
function U : R x R — RT verifying

u(t,z) =U(t,x —ct), VteR, VxR,
U(,—o0) =0, U(-,+00) =0, uniformly on R,
Ult+T,z)=U(t,x), VteR, VreR.

So, a pulsating front connecting 0 and € for equation (1) is a couple (¢, U(t,§)) solving
the problem

U —cUs — Uge — f1(t,U) =0, V() €R XR,
U(-,—o0) =6, U(-,+00) =0, uniformly on R,
Ut+T,6) =U(t,€), V(&) €eRXR.

In this definition, by standard parabolic estimates, the limiting state § = U(-, —00) solves

the system
'= Tt R
{y [ (ty) onR, (14)

y(0) = y(T),

whose solutions are called equilibrium states of the equation (1).

If 0 : R — R is a solution of (14), let us now define Ay yr and @4 ¢r : R — R as the unique
real number and the unique function (up to multiplication by a constant) which satisfy

(@9J‘T>/ = (fg(t, 9) + )\&fT)@ng on R,
q)gdcT >0 on R, (15)
@y pr is T' — periodic.

These quantities are called respectively principal eigenvalue and principal eigenfunction
associated with f7 and the equilibrium state §. Furthermore, if we divide the previous
equation by ®, ¢r, and if we integrate over (0,7), we obtain an explicit formulation of
the principal eigenvalue, namely

Nogr == [ £ (s, 00s))ds.

We now recall the definition of the Poincaré map P associated with f7. For any o > 0,
let y, : RT — R" be the solution of the Cauchy problem

{y/ = fT<t7y) on R, (16)

y(0) = a.



Definition 1.2. The Poincaré map associated with f is the function PT : RT — R
defined by
P! (@) = ya(T).

We conclude, with the fact that each nonnegative solution of (14) is associated with a
fixed point of PT, and conversely. Furthermore, if o > 0 is a fixed point of Pr we have

the following equality

(PTY(a") = e " ard” (17)

We can find these results concerning the notions of principal eigenvalue and Poincaré map
in [7], [14] and [19].

1.3 Nonlinearities periodic in time

Let T > 0. In Section 2, we study (1) and (2) with functions m” which are T-periodic in
time. For these functions we assume there exists 7% > 0 such that

S 0if T < T
Xojr 4 < 0if T > T (18)
=0if T =T".

This is indeed the case if m” is of the type (9) because

/ 1 r T _ / 1 1
Aopr = —4'(0) + T/o m’ (s)ds = —¢'(0) + T/o o(s)ds.

Furthermore, for this type of functions, hypothesis (10) implies that Ay gr=1 > 0. Hence, in
this case T > 1. The existence and uniqueness of positive solutions of (14) is summarized
in the following result.

Proposition 1.1. We consider the real number T™ defined in (18).
(I) If T <T*, there is no positive solution of (14).
(I) If T > T*, there is a unique positive solution w’ of (14). Furthermore,

(i) For any t € R we have w” (t) € (0,1], and

1 /T fE(s,w”(s))ds <0.
T Jo
(ii) If T+ m” is continuous in L°(R), then the function T € (T*,+o0) — w” (0) is
continuous and, if m” is of type (9) with assumption (10), it is increasing.
(iii) If T — m” is continuous in L32.(R), then the function w' converges uniformly to
0OonRasT — (T)".

loc
(i) If m* is of type (9) with assumption (10), then w’ converges on average to 1 as
T tends to +o00:

lim /T T(t)dt =1

A g )y wtOd =1
The same result of existence and uniqueness (result of the type (1)) was proved for KPP
nonlinearities depending periodically of space by Berestycki, Hamel and Roques in [5] and
for KPP nonlinearities depending periodically of space and time by Nadin in [21]. We
give here a proof using the Poincaré map associated with f7. The last two points of the
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proposition are quite intuitive. Indeed, the limit as T — (T*)" is explained by the fact
that for T < T™, the only nonnegative equilibrium state is zero. The limit as T" — +o0 is
explained by the fact that in this case, the nonlinearity f7 is "almost" the KPP function
g since the function m” has an average close to 0 when 7 is large.

Let us now summarize a result in [21], which deals with the evolution of u(t, z) as t — +oo0.

Proposition 1.2. [21] Let ug : R — R be a bounded and continuous function on R such
that ug > 0 and ug £ 0. Under assumption (18), we consider the function u : R* xR — R
satisfying

Ut — Ugy = fT(ta U) on (07 +OO) X Ra (19)
u(0,-) =up onR.
If T < T, then there exists M > 0 depending only on ug and ®¢ r such that
0 <u(t,x) < My r (e tos™t V(t,z) € RY x R. (20)
If T =T%, then
sup |u(t, z)| =22 0.

zeR

If T > T*, then for every compact set K C R, we have

sup |u(t, z) — w? (t)] S 0.

zeK
A similar result was proved for KPP nonlinearities depending periodically of space by
Berestycki, Hamel and Roques in [5].

In the biological context with m” satisfying (9), the treatment is effective (in the sense
that u(t,z) — 0 uniformly on R as t — 4o0) if and only if the duration of cycles of
chemotherapy is equal or less than 7. In particular, since hypothesis (10) implies that
T > 1, the treatment is effective if there is no rest period between two injections of drug,
that is as T = 1. The result is interesting because it implies that 7" — 1 is the longest
rest period for which the patient recovers. Inequality (20) refines the criterion of cure of
the patient because according to the fact that the function T' = Ay yr is decreasing and
positive on (0,7™), the convergence rate of the density u(t,x) to 0 as ¢ — +oo is all the
faster as T is small. In other words, in the case of effective treatment, shorter the period
between two injections, more quickly the patient will be cured. If the treatment is not
effective, the equilibrium state w” invades the whole space as t — +o00. In particular, the
tumor can not grow indefinitely. Finally, Proposition 1.2 also allows to clarify the result
(41) of Proposition 1.1. The fact that 7"+ w” (0) is increasing on (T, +-0c) implies that
in the case where the treatment is not effective (that is w” > 0 invades the whole space as
t — +00), the longer the rest period between two injections, the denser the equilibrium
state of the tumor.

We now study in more detail the case where the treatment is not effective, that is, the
case where T > T*. We know that then, the equilibrium state w’ invades the whole space
as t — +o0o. The purpose of this part is to give the invasion rate of the zero state by
w’. To answer this question, we quote two results. The first one is about the existence of
pulsating fronts connecting 0 and w”, in the sense of Definition 1.1, and the second one
concerns spreading properties. They are proved in [17] and in [20].
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Theorem 1.3. [17],/20] LetT > T*, where T™ is given in (18). (1) There exists a positive
real number ¢ such that pulsating fronts with speed ¢ connecting 0 and w? ezist if and
only if ¢ > c.

(I) We denote u : Rt x R — R the solution of the Cauchy problem

Up — Upy = fT(t, u) on (0,+00) X R,
u(0,:) =ug onR.

If ug is a bounded continuous function such that ug > 0 and ug Z 0, then

Ve e (0,cr), lim sup ‘u(t, T) — wT(t)‘ =0.

t—+o0 |z|<ct
If ug is a continuous compactly supported function such that ug > 0, then

Ve > ¢y, lim sup u(t,z) = 0.

t—=+oo || >ct

In his paper [20], Nadin considers in the first assertion of the spreading properties in The-
orem 1.3 initial conditions which are more general. He assumes that v, is not necessarily
compactly supported but that u is of the form O(e™#*l) as |x| — 400, where § > 0. The
previous theorem completes Proposition 1.2. Indeed, we know that in the case where the
treatment is not effective, the equilibrium state w’ invades the whole space as t — +o0.
Theorem 1.3 states that this invasion takes place at the speed c7.

We can now characterize the critical speed ¢ with the principal eigenvalue X, jr. More
precisely:

Proposition 1.4. For every T > T, the critical speed c is given by

& =2,/ Xo . (21)

T
Hence, if T / m? (s)ds is continuous, then the function T € (T*,+00) + C; is
0

continuous and, z'f/ mT(s)ds does not depend on T, it is increasing. Furthermore, we
have the two following limit cases:

li =0
lm =0,

1 (T
and, if f/ m” (s)ds T2+ 0, then
0

. . /
TEI-POOCT_Q g(O)

In the case where the treatment is not effective, the invasion of space by the equilibrium
state w” is all the faster as the rest time between injections is long. The two limits cases
T — (T*)" and T — +oo are explained in the same manner as in Proposition 1.1. Let us
note that in the case where m” is of the type (9), then the previous properties concerning
7 mT(s)ds are satisfied.



We end this section by stating the existence of pulsating fronts in the case of nonlinearities
which are not of KPP type (that is hypotheses (4) and (5) are not necessarily verified, but
we still assume (3), (6) and (18)). For these nonlinearities, there is still a positive solution
to problem (14), but it may not be unique. According to Cauchy-Lipschitz theorem,
solutions of (14) are ordered on [0, T]. For T' > T*, we can thus define y” : R — R as the
infimum of all positive solutions of (14). After showing that 4y > 0, we will prove there
exists a critical speed ¢ > 0 such that there is a pulsating front connecting 0 and yt
for speed ¢ > ¢&* and there is no pulsating front connecting 0 and y” for ¢ < ¢;*. In this
case, ¢y is not necessarily equal to 21/—\g gr. For this type of nonlinearity, Nadin shows
in [20] that there exist two critical speeds ¢, and ¢* for which there is a pulsating front
for ¢ > ¢* and there is no pulsating front for ¢ < ¢,. Nevertheless the case ¢ € (¢, ")
is not treated in [20]. In [17], Liang and Zhao prove the result using a semiflow method.
We give here an alternative proof. We begin by proving the existence of pulsating front
U(t,§) for domains of the type R x [—a, a] which are bounded in &, then we pass in the
limit as a — 4+00. We state the result.

Proposition 1.5. Let f7 satisfy assumptions (2), (3), (6) and (18), and T > T*. There
exists a positive real number ¢ such that pulsating fronts U (t, &) monotone in & connecting
0 and y* exist if and only if ¢ > ;.

1.4 Nonlinearities asymptotically periodic in time with pertur-
bation

We are interested in the case of nonlinearities which are no more periodic in time, but

which are the sum of a function which converges as t — +00 to a time periodic nonlinearity

and of a small perturbation. More precisely, for € > 0, we consider equations of the type
U — Uge = g(u) — m(t)u+ep(t,u), teER, v €R, (22)

where m solves (12) with 7> 1 and D” defined in (11). We assume that p: RT x R — R

is a function of class C' for which there exists C' > 0 such that

‘p(t,u)

| <C, V(tu) €RY x (0,+00). (23)
The function m is not periodic, but it is asymptotically T-periodic in time. More precisely,

there exists a T-periodic positive function m’ : R — (0, 4-00) such that

lim |m(t) — mZ(t)] = 0. (24)

t—+00

Indeed, an elementary calculation implies that for any n € N, we have

1 nT
T —1)(er —1 n ¢
T{H(@ (e >+mo_6f>ef], vt € [nT,nT +1),

er —1 T
m(t) = ( 1 1)( (n+1)T 1)
T{ < Te Tl —f—TnO}G_i, Vi e [nT+1,(n+1)T).
er — T

Consequently, if we define the positive T-periodic function mZ : R — (0, +00) by

1
T —1 t
T[l-f— (21—1)67}, Ve o,1],

er —
M (t) -
76; e Vitell,T),
er —1



then the convergence result (24) holds. Furthermore, we have fJ' mZ (t)dt = 7. Conse-

quently the function f7 : Rt x RY — R defined by f7(t,u) = g(u) — m” (t)u satisfies
(18) because A jr = —¢'(0) + 7/T. We assume that 7 > ¢’(0). We notice that m”,
T

is independent of mg. It was predictable because m__ is the unique positive T-periodic
solution of m’ = DT — m/7 on R. We define the nonlinearities f : Rt x R" — R and
f-:R" x R" — R by

Ft,u) = glu) —m(tyu, and fo(tu) = F(tu) + ep(t, ).
According to (24), we have

sup ftw) - 1w 25, 0. (25)

u€(0,400) Uu

The function f7 is T-periodic and satisfies the general assumptions given in Section 1.3.
We still denote 7™ the critical time (notice that 7% > 1 because 7 > ¢(0)), w” the unique
positive equilibrium state for 7' > T* and ¢ the critical speed associated with f7 for
T>T"

The aim of this section is to show that Proposition 1.2 and the spreading results of
Theorem 1.3 hold true when we replace f7 by f. in the statements, for e small enough.
It is reasonable to hope so. Indeed, on the one hand, if € is small, then the term ep is
negligible compared to f, and on the other hand, these results deal with the large time
behavior of the solutions, and precisely, hypothesis (25) implies that f "looks like" f7 as
t — +00. The first result is the generalization of Proposition 1.2.

Theorem 1.6. Let ug : R — R be a bounded and continuous function such that ug > 0

and ug £ 0. For all € > 0, we consider the function u. : RT x R — R satisfying

Uy — Uz = fe(t,u) on (0,4+00) X R, (26)
u(0,:) =ug onR.

If T < T*, there exists ex > 0 such that for all ¢ € (0,er) we have

Jim sup |u(t, )| = 0.

If T'> T and if \yr gr > 0, then there exist Eép > 0 and My > 0 such that for all
e € (0,ér) and for all compact K C R, we have

limsup sup |u.(t, z) — w” (t)| < Mype.

t—+o0 xeK
We saw in Proposition 1.1 that A,z s~ > 0. In the previous theorem, in case 7' > T™, we
impose that A,z pr > 0. This property is not necessarily satisfied. Indeed, if we consider
the function h : RT — R defined by h(u) = u(1—u)?, then we have h(0) = h(1) =0, h > 0
on (0,1), h < 0 sur (1,400), h(u)/u decreasing on (0,+00) and A'(1) = 0. In the case
where the function f7(¢,-) is concave for all t € RT, the property Ayt gr > 0 is verified
for any 7' > T™. Indeed, if we define F : [0, 1] — R by

L7 [ (s, 2w’ (s))

Fla) = T w?(s)

ds,



then we have F(0) = F(1) = 0 and F is convex on [0,1]. Consequently, if F'(1) = 0,
that is, if A,z jr = 0, then we have F' = 0 on [0,1]. It is a contradiction because
F'(0) = Mg yr < 0.

Let us give a sketch of the proof. For T' > 0 and ¢ > 0, we will frame f. by two T-periodic
functions fI and f7_ for which the results of Proposition 1.2 will apply. In the case where
T < T*, if fI' is the upper bound function, we will show that for ¢ > 0 small enough,
we have Ao jr > 0. Hence, the solution of (26) with fX as nonlinearity is a supersolution
of problem (26) and, according to Proposition 1.2, it converges to 0 as t — +oo. In the
case where T' > T™, we will prove that for ¢ > 0 small enough, we have A\ yr < 0 and
Aosr. < 0. Consequently, there is a unique positive solution w? (resp. w’.) of system

(14) with fZ (resp. f’.) as nonlinearity (owing to Proposition 1.1). The solution of (26)
with fZ as nonlinearity is a supersolution of (26) and, according to Proposition 1.2, it
converges to waT ast — +oo. In the same way, the solution of (26) with ff_p8 as nonlinearity
is a subsolution of (26), and it converges to w”, as t — +o0o. We will conclude using the

fact that w! and w’_ are close to w” as ¢ is small enough.

Note that the case T' = T™ is not treated in Theorem 1.6. If ¢ = 0, the solution of
the Cauchy problem (26) converges uniformly to 0 as t — +oo, whereas if ¢ > 0, the
convergence to 0 may not hold. We summarize these results in the following proposition.

Proposition 1.7. Let T = T* and ¢ > 0. We consider the function u. : Rt x R — R
satisfying the Cauchy problem (26).
(I) If e =0, then u. converges uniformly to 0 as t — +o0.
(I) If € > 0, we can conclude in two cases.

(i) If f(t,u) = f7(t,u) and p(t,u) = u, then, for € small enough, u. converges to a
positive solution of (14) with f. as nonlinearity as t — +oc.

(i1) If p(t,u) <0, then, u. converges uniformly to 0 ast — +oo.

Concerning the spreading results of Theorem 1.3, they remain true if we replace fT by f.
in the statement.

Theorem 1.8. Let T > T*. For any ¢ > 0, we consider u. : RT x R — R satisfying

Up — Uge = fe(t,u) on (0,4+00) X R,
u(0,-) =ug onR.

If ug is a continuous bounded function such that uy > 0 and uy # 0, and if Ay v > 0,
then for all c € (0,cy), there exists é.pr > 0 such that for all € € (0,é.7) we have

lim sup sup
t—=+00 |z|<ct

uc(t, ) —w'(£)] < Mre,

where My is defined in Theorem 1.6.

If ug is a continuous compactly supported function such that uy > 0, then, for all ¢ > ¢,
there exists €. > 0 such that for all e € (0,2.7) we have

lim sup u.(t,x) = 0.
t—=+oo || >ct E( )
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The proof of this theorem uses the same ideas as the proof of Theorem 1.6. For T' > T™
and € > 0, we will frame f. by two T-periodic functions f? and f7_ for which the results
of Theorem 1.3 will apply. An important point of the demonstration will be to notice
that for € small enough, the critical speeds ¢ and c7, . associated respectively with fr

and f”_ are close to the critical speed ¢ associated with f7.

1.5 Influence of the protocol of the treatment
As in Section 1.1, we consider a C* and T-periodic function m” (with 7 > 1) of the type

m” = on [0,1),
m” =0on [1,T),

where ¢ : [0,1] — [0, 400) satisfies p(0) = ¢(1) = 0. In this part, we are interested in
equations of the type

Uy — Upe = g(u) —mE(tu, tER, zER, (27)

T

where 0 < 7 < T. The function g satisfies hypotheses (3), (4) and (6). The function
m?l : RT — RT is T-periodic and defined by

1/t

Tyt (L
m. (t) 7_90(7_)7 vt € [0,7),
mI(t) =0, Vit e [r,T),

where the function ¢ is the same as in m’. In these equations, the duration of the

treatment is equal to 7. Furthermore, we have

/T T(¢) dt 1/T (t)dt /1 (t)dt (28)
m =— —)dt = .
o Tl \7 o ¥

So, it is clear that the quantity of drug administered during a cycle of chemotherapy is
independent of the treatment duration 7. We will study the influence of the parameter 7
with respect to the results of previous sections. We define the functions f? : R* x R* — R

and fI:RT" x RT — R by

FH(tu) = glu) —m" (thu and f7(t,u) = g(u) —m7 (t)u.

The first proposition deals with the principal eigenvalue associated with f7 and the equi-
librium state 0.

Proposition 1.9. Let T > 0 and 7 € (0,T]. The real number X sr is independent of T.
Actually, we have

1
d
Ao = doyr = —9'(0) + Wg

Consequently, if 7* > 0 denotes the critical time for the function f7, then, for any
7€ (0,T%), fI satisfies (18) for T' € [r,+00), and the critical time T* associated with f7
is the same as the one associated with f7. We are interested here in the solutions of the
system

{y/ = ff(tvy) on R, (29)

y(0) = y(T).
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The same proof as in Proposition 1.1 implies that for any 7 € (0,7%) and T € [r,T7],
there is no positive solution of (29), while for any 7" > 7™ and 7 € (0,7], there is a
unique positive solution w! : R — (0,1] of (29). Furthermore, the same proof as in
Proposition 1.2 implies that if 7 € (0,7*) and T € [r, T*], then the treatment is efficient,
and if 7> T* and 7 € (0,7], then the equilibrium state w! invades the whole space as
t — +o00. More precisely, Proposition 1.2 remains true by replacing f7 by f7 and w” by
w?. To summarize, the optimal duration of a chemotherapy cycle for which the treatment

is efficient does not depend on how the drug is injected.

Let us now study the case where the treatment is not efficient, that is, 7' > T™ and
7 € (0,7). Theorem 1.3 remains valid if we replace f* by fI and w’ by w!, but with a
critical speed c7., depending a priori on 7. Nevertheless Propositions 1.4 and 1.9 imply

that cf. . = 2\/—A07fg‘ = 2\/—)\0’]@ = &, where ¢ is the critical speed associated with f7.
Consequently, the invasion rate does not depend on how the drug is administered.
Finally, we are interested in the influence of the parameter 7 on the equilibrium state wTT.
Proposition 1.10. Let T > T*. The function

0, 7) — (0,400)
T = wl(0)

T

s continuous and decreasing.

Consequently, in the case where the treatment is not efficient, the shorter the duration of
the chemotherapy cycle, the larger the value of the equilibrium state wTT(O). This means
that it is better to administer the treatment over long periods.

Outline

Section 2 is devoted to the proof of Propositions 1.1, 1.4 and 1.5. Section 3 gathers the
proof of Theorem 1.6, Proposition 1.7 and Theorem 1.8. Finally, we prove in Section 4
Propositions 1.9 and 1.10.

2 Nonlinearities periodic in time

2.1 Proof of Proposition 1.1

We first investigate solutions of (14), showing Proposition 1.1. We begin with the case
where T' < T™. We argue bwoc, supposing there is a positive solution w* of (14). Then

(W)t _ g ®) _ -
wt)  w(t) (t), vtel[0,T].

We integrate this equation between 0 and 7. We obtain

/DT (g(w*(s)) - mT(s)>d3 = 0. (30)

w*(s)

Yet, as w* > 0 on [0,7] and according to (4) and (18), we have
1T rg(w(s))
T/O <Uj*(3) — mT(S))dS < —A07fT S O,

12



which contradicts (30).

We now consider the case where T' > T*. To prove the existence of a positive solution
of (14), we give two lemmas demonstrating the existence of a positive fixed point of the
Poincaré map PT defined in Definition 1.2.

Lemma 2.1. There exists ag > 0 such that for all a € (0, ] we have PT(a) > a.

Proof. Indeed, according to the fact that f7(-,0) = 0, we have P7(0) = 0, and owing to
(17) and the fact that A v < 0 we have (PT)'(0) > 1. O

Lemma 2.2. For all a > 1, we have P'(a) < a.

Proof. Let o > 1. We consider y, solution of (16). Two cases can occur.

1°" case: If y,(t) > 1 for all £ > 0, then, according to (7) , we have ., (t) = f7(t,ya(t)) <0
for all t > 0 . Consequently y,(T) < yo(0), that is PT(a) < a.

2" case: If there exists to > 0 such that y,(to) < 1, then, owing to (7), we have yo(t) < 1
for all ¢ > tq. In particular, for ny € N such that ngT > to, we have y,(noT) < 1 <
Ya(0). Yet, the sequence (y,(nT')), is constant or strictly monotone. So it is decreasing.
Consequently we have y,(T) < y,(0), that is PT(a) < a. O

Lemma 2.1 and Lemma 2.2 imply that there exists a* € (ayg, 1] such that PT(a*) = o*.
Consequently, the solution of (16) with a = a* is a positive solution of (14). We prove
now the uniqueness of such a solution. Let w; : R — R and wy : R — R two positive
solutions of (14). There exists p > 1 such that w; < pws on [0,7]. We can define

pr=inf{p>1 | w(t) < pun(t), Vte[0,7T]}.

We have
wi(t) < prwy(t), Vte[0,T]. (31)

Moreover there exists t* € [0, 7] such that
wn(£) = prws(t). (32)
We are going to show that p* = 1. We argue bwoc supposing that p* > 1. So
wi(t) = [7(twi(1)), Vi e [0,T). (33)

Furthermore
(P wa)'(t) > fT(t, prwa(t)), Vte[0,T]. (34)

Indeed, for all ¢ € [0,T],

(p"wa)'(t) = p*wy(t)

wy(t)
> p*wQ(t)(g(pp*;If(g)) - mT(t)) (according to (4) since p* > 1)

)
According to (31), (32), (33), (34) and the T-periodicity of w; and wsy, we have

wi(t) = p*we(t), VYt € [0,T).

13



It is a contradiction because w; is a solution of y' = fT(t,y) whereas p*ws is a strict
supersolution. So p* = 1. Consequently, by the symmetry of the roles played by w; and
wy, we have wy = wq on [0, 7], and then on R by periodicity.

We denote w” the positive solution of (14). We now show the properties of w?. The
previous proof implies that (PT)’ (w”(0)) < 1. Hence, according to (17), it follows that
Ayt gr > 0. We also saw that w ( ) € (0,1]. Consequently, owing to (7) and the fact
that f7(-,0) = 0 on R, we have w”(t) € (0,1] for any t € R.

We now study the function T € (T*, +00) + w”’(0). We show the monotonicity of
T — w”(0) if m” is of type (9), with assumption (10) (in this case 7* > 1). We consider
two real numbers 77 and Ty such that 7" < T} < Ty. For i € {1,2}, the Poincaré map
PTi associated with f7¢ is defined on RT by

PTi(a) = yg(TZ), Ya > 0,

where 't is the solution of the Cauchy problem

{y/ = fTi(tay) on R, (35)

y(0) = a.

We saw in (II) that the function P™* has a unique positive fixed point a’*. Furthermore
Ti € (0,1]. The unique equilibrium state w’* : R — (0,1] associated Wlth f7 is the

solution of the Cauchy problem (35) with a = a’'. Consequently, if we prove that

P™ < P™> on (0,1], then We will deduce that o™ < a2, that is w”(0) < w’(0). Let
€ (0,1]. The functions y ! and y’? are solutions on [0, Tl] of the equation

y ="t y).
Consequently, since y!(0) = 322(0) = «, we have
Yo =ya on [0,T1].

Furthermore, from (3), (7) and the fact that ¢ in (9) is nonnegative and nontrivial, there

holds
0 <y (Th) =y, (Th) < L.

On [Ty, T], ya is a solution of ¥’ = g(y). Consequently, according to (3), we have
y22(Ty) < yl*(Ty). Finally, it follows that

el (T1) = yl2 (1) < y22(Ty).

In other terms
PTl(a) < PTQ(a).

Finally, we have necessarily a’* < o2, that is w*(0) < w”2(0).

We show now the continuity property. Let T € (T, 400) and (T}), be a sequence of

(T*,+00) such that T, 2= T. We fixe T~ € (T*,T). There exists n~ € N and
Tt > T such that
T*<T <T,<T", Vn>n". (36)
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n—-+0o

We will demonstrate that w’™(0) =% wT(O). Since 0 < w™ < 1 and T — m” is
continuous in Lj° (R), the sequence (w’™), converges up to extraction of a subsequence
to a function @ in C®([0, T*]) for any ¢ € (0,1). The equilibrium state w™™ satisfies
t
W () = w(0) + [ (s, 0 (s))ds, Vi€ (0,77,
0
w' (0) = w(Ty,).

Passing to the limit as n — +o00, we obtain

o(t) :w(o>+/0t (s, (s))ds, ¥t € [0,T] € [0,T],

t - ~
The function ¢t +— / fT(s,10(s))ds is of class C'([0,T]). Consequently @ is of class
~ 0
C'([0,T]) and it satisfies

and 0 < < 11n [0,T]. Owing to (II), it follows that @ = 0, or ¥ = w”. If @ = 0, then
w'™ — 0 as n — +oo uniformly on [0, 7]. For any n € N, we have
Tn\! t Tn t Th t
(wr)'(t) _ fr(tw ())7 Vte[0.T,].
w (t) w ()
We integrate the previous equation over [0,7},], then we pass to the limit as n — +o0.
We obtain —T)\O’fT~ = 0. It is a contradiction because )\O’ff < 0,as T > T*. Hence, we

have necessarily w = w”. The uniqueness of the accumulation point of (w’™), implies

that the convergence holds for the whole sequence. In particular, w’™(0) Do, w’(0),

and consequently, the function 7'+ w’ (0) is continuous on (7%, 4+00).

We study now the behavior of the equilibrium state w” for the limit cases where T —
(T*)* and T — 4o00. We begin by showing that the function w” converges uniformly to
OonRasT — (T)*. Let (T},), be a sequence such that T}, 2==% T* and T}, > T* for

any n € N. Since (T},),, is bounded, there exists 7" > T* such that for any n € N we have
T, € (T*,T"). Up to extraction of a subsequence, (w’™), converges to a function w* in
C%([0,T]) for any 0 € (0,1). The equilibrium state w™™ satisfies
t
w’™ (t) = w™(0) +/ (s, w™(s))ds, Vte€[0,T7],
0
w™(0) = w (T},).
Passing to the limit as n — 400, we obtain
t
w*(t) = w*(0) +/ (s, w*(s))ds, Vte[0,T*] C[0,T"],
0
w*(0) = w*(T7)
t
The function t — / T (s,w*(s))ds is of class C*([0,7"]). Consequently w* is of class
0
C*([0,T%]) and it satisfies
(w*) = fT"(t,w*) on [0,T7],
w*(0) = w*(T7),
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and 0 < w* <1 on [0,7%]. According to (II), w* = 0. The uniqueness of accumulation
point of (w’™), implies that the convergence holds for the whole sequence. Furthermore
since [0,T,] € [0, 7] for any n € N, by Ty-periodicity of w’™, it occurs that

sup [wr, | = sup |wg,| < sup |wr, | 20,
R [0,T%] [0,T+]

which completes the proof of this point.

We study now the case where ' — +oo under assumptions (9) and (10). The function
w’ converges on average to 1 as T tends to +00. We give a technical lemma.

Lemma 2.3. Under assumptions (9) and (10), the real number ¢ defined by
§:=inf{w"(1) | T>T"+1}

is positive. Furthermore, § < 1.

Proof. We argue bwoc. Let us suppose there exists a sequence (7},), such that T, UimaiaN

+o0 and w!"(1) 2252 0. We fix T+ > T*. There exists n* € N such that for any
n >n", we have T, € [T'", 4+00). According to the monotonicity of T+ w’ (0), it follows
that

0 <w’ (0) < w™(0), VYn>n".

Up to extraction of a subsequence, (w'™), converges to a function w* in C®?([0,1]) for
any ( € (0,1). Passing to the limit as n — 400 in the previous inequalities implies that

0 < w” (0) < w(0). (37)

The same reasoning as previously implies that the function w* is of class C'([0, 1]) and
satisfies the Cauchy problem

{(w*)' = g(w*) — p(t)w* on [0, 1],
w*(1) = 0.

By uniqueness, we have necessarily w* = 0, that is, w’™ converges uniformly to 0 on [0, 1],

which contradicts (37). Lastly, each function w” ranges in (0,1] , and due to (7) and the
nontriviality of ¢ in (9), one has w’ < 1 on R. Hence, we have § < 1. O

We return to the proof of the last point of Proposition 1.1. We consider ys the solution
of the Cauchy problem

y' =g(y) on (1,+00),
y(1) =4,
where § € (0,1) is defined in Lemma 2.3. Let £ > 0 be such that § < 1 —¢ < 1. Since

ys(t) L2%%% 1 there exists I. > 1 such that ys(l) =1 —¢/2. We define T, = 4l. /e (> l.),
and we consider T > T.. The function w” is a solution of

{ "=g(y) on (1,T),
y(1) = w!(1).
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Since w” (1) > 4, we have w” > ys on [1,7). In particular w”(l.) > 1 — £/2, and since

w” is increasing on (I, T), we have

3

1—§§wT(t)<1, vt e (I.,T).
Furthermore
T
/ ()t —1] < = /]w()—1|dt T/ (¢ —1|dt+T/ W (t) — 1|dt.
Yet,
21, 21, €
y—1dt < 2= < Ze = 2
T/ [ | T =T 2
and T
g 13
) —1|dt < et
T/ [ | T 2°9

1 (T
So |?/ w” (t)dt — 1| < ¢, and the proof of Proposition 1.1 is complete.
0

2.2 Proof of Proposition 1.4

We begin by showing the characterization of ¢ with the principal eigenvalue Ay sr. Let
i € R. We denote A\, the principal eigenvalue and @, the principal eigenfunction asso-

ciated with the operator L, : C'(R) — C°(R) defined by L,¥ = ¥, — (u2 + fuT(t,O))\Il.
Consequently, we have

(@) = (42 + 1 (£,0) + A, )@, on R,

We divide the previous equation by ®,, then we integrate between 0 and 7". According
to the fact that ®, is T-periodic, we obtain A, = —p® 4+ Ao sr. In [20], Nadin gives the
following characterization of the critical speed ¢

¢y = inf {c € R | there exists p > 0 such that A\, + puc = O}.
Consequently, we have
cp = inf {c € R | there exists > 0 such that p® — pc — Ao fr = O}.

We thus look for the smallest real number ¢ for which the equation p*—pc—Xg jr = 0 of the

variable ;1 admits a positive solution. An elementary calculation leads to ¢ = 24/ —Xg fr.
Consequently, we have

1 /T
cr = 2\/9’(0) ~ 7, mT(t)dt.

T
Hence the function 7' € (T, +00) + ¢ is continuous, increasing if / m?” (t)dt does not
0

depend on 7', and we have the two limits cases

lim ¢ =2y/¢ if —/ t)dt 2% 0, and  lim cp =0,

Tor+oo T—(T*)+

which concludes the proof of Proposition 1.4.
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2.3 Proof of Proposition 1.5

Let a € [0, 1]. We recall that if y, : R — R is the solution of the Cauchy problem

y' = fT(t,y) on R,
y(0) = a,

then we denote P* : a € [0,1] = P?(a) = yo(T) the Poincaré map associated to the
function fT. According to the proof of Proposition 1.1, there exists a fixed point of P
in (0,1]. Nevertheless, since hypothesis (4) is not satisfied here, this fixed point is not
necessarily unique. We define

oo = inf {a € (0,1] | P"(a) =a}.

To simplify the notations, we denote y* : R — R the function y* = y,,. We begin by
proving that this infimum is not equal to zero.

Lemma 2.4. We have oy > 0.

Proof. We assume that oy = 0. So, there exists a sequence («,), C (0, 1]N such that
PT(ay,) = a, and o, 2252 0. We divide the equation Yo = T (t, Yan) DY Ya,, then we
intregrate between 0 and T'. We obtain

/T fT(S7yom(S)) — fT(S7 O)ds =0
0 yom(‘S) .

Passing to the limit as n — 400, since y,, — 0 uniformly on [0,7] as n — oo by
Cauchy-Lipschitz theorem, we have

T
| s 0ds =,

which contradicts the fact that Ay jr < 0. Consequently oy > 0. Notice also that, by
continuity of P, there holds P”(ag) = ap, and y’ = y,, solves (14). Furthermore
0<y’ <lonR. [

Since f7 is of class C'(R x [0, 1], R) and T-periodic, there exists gy € (0,1) such that for
all € € (0,¢0] and for all ¢ € R we have

Ao fT
7 (100, (8)) — £y (057 (1, 0)) < P2 e (), (39)

where @ ;r is the principal eigenfunction associated with fT and 0. Since Ao gr < 0
and y” is the smallest positive solution of system (14), we can apply Theorem 2.3 of the
Nadin’s paper [20]. Consequently, there exists a couple (co,Up), where Uy : R X R —
0,1], (¢,€) = Up(t,€) is of class C'*(R?) and solves

(Uo)e — (Uo)ee — co(Up)e = f1(t,Up) on R x R,
UO('7 ) = UO( + 7, ) on R X R, (39)
Us(-, —o0) =y, Uy(+,+00) =0 uniformly on R.
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Let us note that necessarily ¢y > 0 because Nadin shows in [20] that for ¢ < 2,/—X¢ fr,

which is a positive real number, there is no pulsating front of sped ¢ connecting 0 and 7.
Furthermore, we have

0eUp(t,€) <0, V(t,§) €eRXR.

Let ¢; > 0 be a real number such that there exists a pulsating front U; with speed ¢;
such that 0:U; < 0 on R x R, and let c; > ¢;. We are going to prove the existence of a
pulsating front Uy such that (cz, Us) solves (39) and 9:U, < 0 on R*. Yet, by [20], the set

C = {c € R | there exists a pulsating front U of speed ¢ such that 9:U < 0 on R x R}

is closed and included in [2y/—Ag yr,+00). This will conclude the proof of Proposition
1.5 by denoting ¢} = inf C.

Given ¢; < ¢ as above, let @ > 0 and » € R. We define

o { Ui+ ) y'(0) }
Eqr = Min min , €0, .
’ [0.7]x[~a.a] 2Pq s (-) Py 7 (0)

We consider the problem

Ui — Uge — cUe = f1(t,U) on (0,T) x (—a,a),
U(,-)=U(T,-) on[—a,a]. (40)
U(,—a) =Ui(-,—a+71), U(-,a) = €4,P pr on [0,T7].

We begin by showing that the previous problem has a solution.
Proposition 2.5. There exists a solution to problem (40).

Proof. We consider the problem

U; — Uge — U = f1(t,U) on (0, +00) X (—a,a),
U('a _a) = U1<'7 —a+ ’l”) ; U(7 a) = Ea,rq)O,fT on [07 +OO)7
U(0,:) =1 on [—a,al,

where 1 € C%[—a,a],[0,1]). This Cauchy problem admits a solution U, defined on

R* X [—a, a]. Furthermore, 0 < Uy, < 1 in R™ x [—a, a] from the maximum principle and
the definition of ¢,,. We define the closed convex set

C ={¢ €C([—a,a],[0,1]) | €4, P 7 (0) < ¢ < U3 (0,-+7) on [—a,al}.
Note that this set is not empty since ®q v > 0, Uy < 1 and &,,Pq 7(0) < U1(0,- + 1)

on [—a,a] according to the definition of €,,. We start by proving that if ¢ € C, then
Uy(T,-) € C using a comparison lemma.

Lemma 2.6. Let i) € C. Then we have

EarPo pr(t) < Uy(t,&) < Ui(t,{+1) V (t,€) € (0,+00) X (—a,a). (41)
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Proof. Since 0:U; < 0 on R X R and ¢; < ¢y, the function U, (-, - +1) satisfies on [0, +00) x

(_a7&)7
(Ui+1), = (Ui +1) = e2(Ui(+0) = ST (LU +1) = (e =) (Ui +1)), > 0.

Moreover, since 1) € C, we have Uy (0, -+7r) > 1 on [—a, a] and, according to the definition
of g4, and the T-periodicity of U; and ®q sr, we have Uy (-,a+1) > £,,Pg s on [0, +00).
Consequently, we can apply a comparison principle, and we obtain

Us(t,€) < UL (LE+7) V(E,€) € [0,400) X [~a,a].
In the same way, since €,, < €9, and according (38) and the negativity of Ay ;r, we have
n [0,400) X (—a,a)
(Ea,rq)o,fT)t - (ga,rq)o,fT)Ef - CZ(Sa,r(I)O,fT)f - fT(ta Ea,rq)o,fT)
= Ea,fq)o,fT(AO,fT —|— fg(t, O)) - fT(t, 8a,7‘¢07fT)
= cardor@ogr — (7 (t car®or) = car®orfi (t,0))

A
S ga,'r)\O,fT(I)O,fT — €a,ro?ﬂq)07fT < 0.

Furthermore since ¢ € C, we have €,,®, r(0) < 1 on [—a,a] and, according to the
definition of ¢,, and the T-periodicity of U; and ®q sr, we have g,,®q jr < Uy(-, —a +7)
n [0,400). Consequently, we can apply a comparison principle and we conclude that

€arPosr(t) < Uy(t,€) ¥ (¢,€) € 0, T] x [—a,a],

The fact that the inequalities in (41) are strict is a consequence of the strong maximum
principle. O

We return to the proof of Proposition 2.5. We consider

T : C — C
w = Uw(Ta>

Owing to (41) and the T-periodicity of ®q ¢r and Uy, T is well defined. We are going
to demonstrate using the Schauder’s fixed point theorem that the function 7 has a fixed
point in the closed convex set C'. We show now that 7 is continuous. In fact we show
that 7 is a Lipschitz-continuous function. Let ¢ and ¢ in C. We have on (0,7] x [—a, a]

(Up = Uy)e = (Uy = Up)ge — c2(Uy — Uy )¢ = B(t, ) (Uy — Uy,),
where 3 : (0,7] x [—a,a] — R is defined by

(8 00) = (B U68)
6(t7€> = U¢(t §) <p( ,f) , if UTZ)(tvé) #* Uw(t>§)7

u (t7 U¢(t, ))7 if Uw(?f> f) = Uw(t>€)'

Since 8] < || £ L (o.11x[0.17) o0 (0, 7] x [—a, a], and since Uy, —U, = 0 on [0, T] x {—a, a},
the maximum principle yields

|U¢(t7§) - U@(ta £)| S Hw - <)0||L°°([—a7a])€”fgHLOO([QT]X[OJ])t7 v<t7£) S [07 T] X [—CL7 a}'
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If we take t = T, we obtain

T
|U(T,-) — U(T, .)||Lw([_a’a]) < ellfu HLOO([O,T]X[U,l])THw _ SOHLOO([—a,a])-

So 7T is a Lipschitz-continuous function.

We prove now that 7 (C') is compact. Let (,,), be a sequence of C'. By standard parabolic
estimates, the sequence (U, (T,-)), is bounded in C**([—a,al,[0,1]) for any a € (0,1).
Since C**([—a, a], [0, 1]) embeds compactly into C°([—a, a],[0,1]), (Uy, (T, ")), converges
up to extraction of a subsequence in C.

So, according to Shauder’s fixed point theorem, there exists ¥, € C([—a,al, [0, 1]) such
that T (Ya,r) = Yo, that is Uy, (T, -) = Uy, (0, -). Actually, the function Uy, , is solution
of (40). By uniqueness and T-periodicity of fr. Uy, can be extended as a T-periodic
solution of (40) in R X [—a, a]. O

To simplify the notations, we denote now U, instead of Uy, . Owing to Lemma 2.6 and
the T-periodicity of U, ,, we have the following inequalities

EarPosr(t) < Usp(t,§) <Ur(t,E+1) V (,€) €[0,T] x (—a,a). (42)
We are now going to use a sliding method and we first give a comparison lemma.

Lemma 2.7. Let U and V' be two T-periodic functions solving problem (40). Let h €
[0,2a]. We define Vi, (t,€) =V (t, £+ h) for any (t,€) € [0,T] X [—a,a—h]. Then, we have

Vi, <U onl0,T] X [—a,a — h).

Proof. We denote I, = [—a,a — h]. For h = 2a, we have I;, = {—a}. Since U(-, —a) =
Ur(,—a + 1), Vaa(-,—a) = V(,a) = €4,P pr and g4, P jr < M <Ui(,—a+r)
on [0, TY, it occurs that Vo, < U on [0, T] X I5,. Furthermore, V;, < U on [0, T] x I, for all
h € [0, 2a] sufficiently close to 2a, by continuity of U and V. Consequently, we can define

W =inf {h >0 | Vh € [h,2a], Vi <U on [0,T] x I }.

We have 0 < h* < 2a. We are going to show bwoc that A* = 0. Thus let us suppose that
h* > 0. By continuity and T-periodicity of U and V}', the definition of A* implies that

Vie < U on R X Ij-. (43)

Furthermore, if we define the bounded function 7 : R x [+ — R by

Fr(L U ) = 7 (4 Vi (1,6))
n(t’ é) — (t g) Vh* (t, 5) ’ if U(tv 5) 7£ Vh* (ta 5)7
fi(8,U(6), if U(t,) = Vi (£, €),

then, we have on R X [+
(U — Vh*)t — CQ(U — Vh*)g - (U — Vh*){{ = n(t,g)(U - Vh*) (44)

Consequently, according to (43) and (44), if there exists (t*,£") € R X (—a,a — h*) such
that U(t*,£") = Vj=(t%,£"), then, by the strong maximum principle, the continuity and
the T-periodicity of U and Vj«, we have

Vie = U on R X I (45)
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Yet, according to (42) (which is automatically fulfilled from the arguments used in Lemma
2.6), and since 0¢U; < 0 on R x R, we have for any ¢ € R,

Vie(t,—a) =V(t,—a+h") <Ui(t,—a+h"+7r) <Ui(t,—a+r) =U(t,—a).

Consequently, Vj,» < U on R X [—a,a—h*). Furthermore, according to (42), for any t € R,
we also have

Vie(t,a —Rh*) =V (t,a) = €0, o yr(t) < U(t,a — h").
So, it occurs that

Vh* <UOHRXI}L*

Since [0, 7] x I+ is a compact set, and both U and V' are continuous on [0, 7] X [—a, al,
there exists hy € (0, h*) such that for any n € (0, hg), we have Vi, < U on [0,T] X Ip«_,,.
This contradicts the definition of h*. Consequently we have h* = 0 and the proof of
Lemma 2.7 is complete. O

Corollary 2.8. There exists a unique function U,, solving (40).

Proof. We apply the conclusion of Lemma 2.7 with h = 0 and reverse the roles of U and
V. ]

Corollary 2.9. The function r € R+ U,, € C0<[O,T] X [—a,al, |0, 1]) is continuous.

Proof. Let r* € R and (r,), be a sequence of real numbers such that r, 2220 p*. Accord-

ing to standard parabolic estimates and the T-periodicity of each function U, , there
exists U” such that, up to extraction of a subsequence, U, 2% U*in Ch2 in ¢ and in

C** in &, for any a € (0,1). Consequently,

(U")e = (U )ee — e2(U")e = f1(t,U") on R x (—a,a),
U*0,-) =U*T,-) on [—a,al,
U'(-,—a) =Ui(-,—a+71"), U'(-;a) = €4 Pg g on [0,T].

The uniqueness of the solution of the previous problem (Corollary 2.8) implies that we
have U* = U, ,~, and that the whole sequence (U, ) converges to U™. O]

Corollary 2.10. For any t € [0,T] and £ € (—a,a), we have
8§Uw(t,§) < 0.

Proof. We apply Lemma 2.7 with U = V' = U, ,. The strict inequality is a consequence

of the maximum principle applied to 9:U,,. m
ol 0

Proposition 2.11. There exist ¢, € (0,&0] and r, € R such that U,,,(0,0) = EO’ZfT().

Proof. There exists (tq,, &) € [0,T] X [—a, a] such that

Ul (ta,m ga,r + T) yT(O) }

€a,r = MIN s €05
{ 2cI)O,fT (ta,r) CI)O,fT (0)

Let (), be a sequence of real numbers such that r, 2240 0. There exists a function

U, - such that up to extraction of a subsequence, U, notoo, Us—oo in Co’a([O, T] x
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[—a,a]) for any o € (0,1). Since (t,,,)n is bounded, there exists ¢, € [0,7] such that

up to extraction of a subsequence, we have ¢, DZH0 ¢ So, according to the fact that

(€4, ) s also bounded (because a is fixed here), it follows that

n—s+oo { y' (ta) y"(0) }

€ayrn — Eg = MiN €05
2% s7(ta) D7 (0)

We thus have U, _oo (-, a) = £,P 7 on [0,T]. Consequently, since 0:U,,—o < 0 on [0, 7] x
[—a,a], it occurs that U, —oo(0,0) > £,Pg 47 (0). So there exists nyg € N such that r,, <0
and

3
Uaﬂ”no (0,0) Z ZEQ(DOJT(O)‘

Let now (7,), be a sequence of real numbers such that 7, 12E0, 4oo.There exists

a function U, 4+ such that up to extraction of a subsequence U, , noteo Ug+oo 1N
C*([0,T] x [~a,a]) for any a € (0,1). Furthermore, for any ¢t € [0,7], we have
Usi, (t,—a) = U(t, —a + 7) 27 ). Consequently, since O0cUq 100 < 0 and Uy 400 > 0
on [0,7] x [—a,a], it occurs that U, 1o = 0. So, there exists n; € N such that 7,, > 0

and )
Uainl (0, O) S Z&fbng (0)

According to Corollary 2.9, there exists r, € (r,,,, T, ) such that
1
Uaro(0,0) = §€aq)0,fT (0),

which completes the proof. O]

Proposition 2.12. There exists a sequence a, 22E% + oo such that Ua,,ra, converges
on any compact set in C¥2 in t and in C** in &, for any o € (0,1), to a function U,
solving (39) with ¢ = ¢y, and such that (Uy)e < 0 on R?,

n—-+o0o

Proof. Since t, is bounded, there exist t* € [0,7] and a sequence a,, —— +00 such

n—-+00

that t,, —— t*. Consequently,

n——+o0o

€a, —> € 1= min{

T t* T 0
) O
2@0J‘T (t ) (I)O,fT (O)

According the standard parabolic estimates, up to extraction of a subsequence, U,

converges on any compact set to a function U in CY% in ¢ and in C*® in &, for any
a € (0,1). The function U, satisfies

nyTan

(U2)e — (Un)eg — c2(Un)e = [ (t,U2) on [0,T] x
UZ(Oa ) = U2(T7 ) on R,
1

Ux(0,0) = 55*‘1’0,]@(0),

(Uz)e <0on [0,T] X R.
Since (£*®g ;)" < f1(t, "o r) and (y") = f7(t,y") on [0, 7], and since £*®g ;r(0) <
y"(0), it occurs that e*®y ;r < y” on [0,T]. Consequently

yT(O)}

5|

Us(0,0) € <0,
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The functions Us(-, —00) and Us(+, +00) solve the equation 4 = f(¢,y) on [0, T]. Further-
more, Uy(t, &) < y'(t) for all t € [0,7] and all £ € R, since this inequality holds for U,
and since each function U, satisfies (42). Consequently, since (Uz)e < 0on [0,7] xR, we
have necessarily U (-, —00) = y* and Us (-, +00) = 0. Finally we apply the strong maxi-
mum principle to the equation satisfied by (Us)e and obtain (Uz)e < 0 on R* (otherwise
(Us)e would be identically equal to zero, which is impossible since Uy(-, —00) = y” and

3 Nonlinearities asymptotically periodic in time with
perturbation

3.1 Proof of Theorem 1.6
Let T'> 0 with T" # T™ (that is Ao sr # 0). We define

I 9(2)
ET = 617_‘_1nlln{|)\07fT|7 —T} > O,

where C is defined in (23). Let ¢ € (0,er). According to (23) and (25), there exists
n. € N* such that for all ¢ > n.T and for all © > 0 we have

frtu) — (C+Deu < fo(t,u) < fI(t,u) + (C + 1eu. (46)
We define the T—periodic functions f*_: R x R" — R and f7 : R x Rt — R by
fr(t,u) = ff(t,u) — (C+1)eu, and fI(t,u) = f(t,u) + (C + 1)eu. (47)

According to (7), it occurs that

{ FT(tu) <0, Y(t,u) € R x [2,400), (48)

fr(t,u) <0, Y(t,u) €R x [2,+00).

Furthermore, according to (4) and (6), for any u € [2,+00), we have g(u)/u < ¢(2)/2 < 0.

Consequently, since ¢ € (0, —C%rl@), the following inequality is true

fEt,u) <0, V(t,u) €R x [2,+00), (49)

Concerning the principal eigenvalues associated with the equilibrium 0 and functions f7,
f*_ and fT, the following relations hold

Ao = Mg — (C+ 1)e,
{O,fe 0,f ( + )6 (50)

)\O’fze = )\OJT + (C + 1)8.

We begin by handling the case where T < T*. Owing to (50), the fact that Ay yr > 0 and
since € € (0, Ag—ﬁ), we have
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We consider v, : Rt x R — R the solution of the Cauchy problem

{( ) — (0:)ze = £ (t,0.) on (0,400) x R

v:(0,+) = u, (naT ) on R.

Owing to (46) and the T'—periodicity of 7, the function u.(-4+n.T, -) satisfies on (0, +-00) x
R

(ue(' +n.T, ))t - (us( +n.T, ))mj = f: (t +n.T, ue( +n.T )) < f (ta us(' +n.T, ))
So, applying a comparison principle, we obtain
0 <u(t+nT,x) <wv.(t,x), V(t,z) € RT X R. (52)

According to (51), Proposition 1.2 applied with the T-periodic nonlinearity fZ implies
that

tigrnoo Slellg ve(t,z) = 0.
Hence, owing to (52),

lim supu.(t,z) =0,

t——+o0 GR

which concludes the proof of the first part of Theorem 1.6.

We now consider the case where T' > T™. Since A, r jr > 0, there exists up > 0 such that
for all p € (0, ur) and for all (t,u,v) € R x [0,2]?, we have

A
u—o] < p= |7 0) = fT(u) = fL(G ) =) < 25 o —ul. (53)
We define the two positive real numbers My and ép by
T
sup w
~ 8(C' +1
MTI g\—i_)[?g >O,
wTJT [lt)I,lT] wTJ‘T
and o
N inf w . 1
&r = min {ep, Sonl BT minfpr 1} (54)
4(C +1)" 2Mypsup @,r o Mypsup 7 pr
[0,T] [0,T7]

where ®,,r ;r is the principal eigenfunction associated with fT and the equilibrium state

w”. Let € € (0,&7). According to (50), the fact that Ao ;» < 0 and since ¢ € (0, — C?jf)
we have

)\O’fZ“E < O, A07fT < O, and /\vasT < 0. (55)

Owing to (48), (49) and (55), the same proof as in Proposition 1.1 implies that there
exists a unique T-periodic positive equilibrium state w! (resp. w’.) associated with f7
(resp. f*.). Furthermore, for any ¢ € R, we have w? () € (0,2] (resp. w”_(t) € (0,2]).

Lemma 3.1. There exists My > 0 independent of € such that

sup |w; (t) — w" (t)] < Mre,

te[0,7

56
sup |w?_(t) —w’(t)| < Mye. (56)
t€[0,T]
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Proof. We begin by proving the first inequality. We define the function 7, : R — R by
T (t) = w” (t) + Mpe®, o pr(t).

We are interested in the problem

"= Tt R

y = f. (t,y) onR, (57)
y(0) = y(1).

We will show that 7. is a strict supersolution and w” is a strict subsolution of (57). Let
t € R. We have

(T)'(t) = 1t 0:(t) — (C + Dev(t)
= [Tt w0 (8)) + Mpe®yr pr(t) fi (80" (1) = f7(1,0:(8))
+ MT&:(I)U}TJT (t))\wTJT — (C + 1)8@8(0.

Since € € (0, m), we have [7.(t) —w” (t)| < pr. Furthermore, w” (t) € [0, 1], and
wT f
[0,T7]
1
’ My sup @, 1 §T
[0,7] '

it follows from (53) that

since € € (0 ), the definition of T, implies that v.(t) € [0,2]. Consequently,

A -
W MT{f@wTJ‘T (t) .

FLwT (8) + Mpe®@yr pr () £ wT (1) — f1 (1 D(1) > —
Consequently,

(@) (t) = f1(t,0-(t)) — (C + 1)evc(t)
Aut g7 Mype®,r () — (C + 1)ev.(t)

>

)\wT’fT

=Mre®,r pr(t)( —(C+ 1)) = (C+ Dew"(#).

Yet € € (0, %) So

AwT7 f7

4

)\wT’ fT

5 —(C+1)e >

Hence

)\wT7 £

(D) (1) = ST (8, 0e(t) — (C + 1)eva(t) = Mpe®,r 4o (t) —(C + Dew™ (1)

= a(A“’Z’fT My ,r g (t) — (C + D' (1))

Consequently, according to the definition of My, it follows that

)\wT,fT

P t
M supw’ — wT(t))(C +1)>0.
Inf iy o

Mr®,r gr(t) = (C + Dw () = (2

Finally, 7. is a strict supersolution of (57).
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We now show that w’ is a strict subsolution of this problem. Let ¢t € R. We have
(wh)'(t) — fL(t,w" (1)) — (C + Dew’ (t) = —(C + 1)ew™ (t) < 0.
According to Lemma 3.1 of [21], there exists a solution w. of (57), and one has
w” (t) < w.(t) < wh(t) + Mredr pr(t), VtER. (58)

In particular, . is a positive solution of (57). So, by uniqueness, we have W, = wET.
Finally, inequalities (58) rewrite

sup |w’ (t) —w? (t)] < eMy,
te[0,T]

where My is defined by Mr = My SupPjo. 77 D, yr.

We now give a sketch of the proof of the second inequality of Lemma 3.1. We define the
function v, : R — R by .
Qg(t) = wT(t) - Mqu)wTJ‘T.

We are interested in the problem

{y' = 2.ty on E, (59)

y(0) = y(T).
We can show in the same way as previously that v, is a strict subsolution and that w’ is

a strict supersolution of (59). According to Lemma 3.1 of [21], there exists a solution .
of (59), and one has

w” () — Mpe®,r pr(t) < -(t) < w'(t), VtER. (60)
inf w?
Yet € € (0, W). So for any t € R
.1
w? (t) — Mpe® (t) > w’(t) — L Suryr inf w’ >0
TEFT ) = 2sup @, s 07] '

(0,77

Consequently @, is a positive solution of (59). So, by uniqueness, we have 0, = w’
Finally, inequalities (60) rewrite

sup |w’(t) —w’ (t)| < eMr,
t€[0,T]
which completes the proof of Lemma 3.1. O]

Let us now complete the proof of Theorem 1.6. We recall that € € (0,£r), where ér is
defined in (54). Let K C R be a compact set and let n > 0. We consider @, : R X R — R
and 7i_. : R" x R — R solving respectively

{(ag)t — (@) ge = fL(t, @) on (0,+00) X R,
as(ov ) = us(nsT7 ) on R,
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and
(t-e)y — (li—e)ee = fT.(t,1_.) on (0,400) X R,
U_c(0,-) = ue(nT,-) onR,

where n. € N is such that (46) holds for all (t,u) € [n.T,+o0) x R, and u. solves (26).
The function v, : R" x R — R, (¢,7) — u.(t + n.T, ) satisfies

(Ué)t - (Ua)xx - fa(t + ngT, UE) on RT x R,
UE(Oa ) - ug(ngT, ') on R

Owing to (46) and the T-periodicity of fZ, it occurs that on RT x R
(Us)t - (Us>:m: = fs(t + nsTa Us) < ng(t + nsTa UE) = ng(t> Us)
Consequently, since v.(0,-) = u.(n.T,-) = u.(0,-) on R, applying a comparison principle,

we obtain
ve(t,z) < a.(t,x), V(t,z) € RT X R.

In other words
u(t +n.T,x) < u.(t,x), V(t,z) € RT X R.

Actually, we can show in the same way that
U_o(t,r) <u(t+nT z) <a.(t,x), V(t,r) ERT xR.
According to the T-periodicity of w”, we have w’ = w” (- + n.T) on R. Hence
i o(t,z)—w (t) < u(t+nT,x)—w’ (t+n.T) < a.(t,z)—w’(t), V(t,z) € RT xR. (61)
Therefore, for any (t,7) € RT x K,

i_o(t,z) —w' (t) > —sup |i_.(t,2) —w' _(t)| — sup |wl_(t) —w’(t)|,

zeK te[0,T)
Ue(t,x) — w' (t) < sup [ae(t, ) — wg (8)] + sup |wg (t) —w" (1)),
zeK tG[O,T]

On the other hand, owing to Proposition 1.2, there exists ¢, x, > 0 such that for any
t Z te,K,n

sup |ti_.(t, r) — wr_(t)| + sup |G (t, v) — w? ()] < 7. (62)
zeK zeK

According to Lemma 3.1, (61) and (62), we thus have, for any (¢,x) € [t k,, +00) X K
luc(t +n.T,z) —w’ (t +n.T)| <n+ Mre.
In other words, for any ¢ > t. k., + n.T" we obtain

sup |u(t, x) — wT(t)| <n+ Mre,
rzeK

That is

lim sup sup |u.(t, x) — w’ (t)| < Mre,
=400 zeK

which completes the proof of Theorem 1.6.
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3.2 Proof of Proposition 1.7
We begin by proving (I). According to (25), there exists to > 0 such that

ft,u) < f7(tu) — g<22)u, Vt € [tg, +00),Vu € [0, 400), (63)

where we recall that g(2) < 0. According to (4) and (6), for any u € [2,+00), we have
g(u)/u < g(2)/2 < 0. Consequently, (63) implies that

ft,u) <0, Vt e [tg, +00),Vu € [2,+00), (64)

We define
M = max{2,supug}.
R

The real number M is a supersolution of (26). Furthermore, 0 is solution of (26) and
0 <u(0,-) < M on R. Consequently, according to the maximum principle we have

0<u(t,z) <M, VteR, Vx €R. (65)

We denote v : Rt — R the function satisfying

v = f(t,v) on RT,
v(0) = M.

Owing to (65), we have 0 < u(to,-) < M on R. It follows from the comparison principle
that
0 <wu(t+ty,z) <o(t), Vt>0, Vr €R.

Furthemore, since 2 < M, it follows from (64) that
o(t) < M, Vt>0.

To summarize

0 <wu(t,+to,z) <wv(t) <M, Yt>0, Vo €R. (66)
We will show that v(t) 27 0. We argue bwoc assuming there exists a real number

n—-+00

do > 0 and a sequence t,, ——— +00 such that
U(tn) > 0y, Vn €N.

For any n € N, we write ¢, = t,, + k,T*, where ¢, € [0,77) and k,, € N, and we define the
function vy, : [—k,T", +00) — R by v,(t) = v(t + k,T). The function v, satisfies

v (t) = f(t+ kaT* 0a(t)) Vt € [—k, T, +00),
v (t) = v(tn) > .

Up to extraction of a subsequence, ,, 2252 ¢* € [0, T*]. Consequently, according to (25)
n—-+o0o

and the Arzela-Ascoli theorem, there exists v* : R — R such that v, ———— v* locally
uniformly on R and which satisfies

() = f7(t,v*) onR,
v (t*

(t7) = do. (67)

29



Furthermore, owing to (66), we have
0<v*(t) < M, VteR. (68)
We consider o : Rt — R such that
{0’ = fT(t,0) onRT,
c(0) = M.

Owing to (7) and the fact that M > 1, we have ¢(0) > o(T™). Consequently, the sequence
(o(nT™)), is nonincreasing. Furthermore, it is bounded below by 0. Hence, it converges
up to extraction of a subsequence to a real number [ > 0. For any n € N, we define
the function o, : R* — R by 0,(t) = o(t + nT*). The sequence (o), converges up to
extraction of a subsequence in C*([0,77]) to a function o* satisfying

{(a*)’ = fT"(t,0") on [0,T7],
c*(0) = o™ (T") = L.

According to Proposition 1.1, we have necessarily ¢* = 0, and thus, the convergence holds
for all the sequence. Owing to (68), for any n € N, we have v*(—nT™) < M. Consequently,
since fT" is T*—periodic, we can apply a comparison principle and we obtain

v (—nT* +t) <o(t), Vt R, VneEN.

In particular
v*(t") < o,(t*), VYn €N,

Passing to the limit as n — +o00, we obtain

which is a contradiction with (67). Consequently v(t) =22% 0 and thus, we conclude the

proof of (I) using (66).

We now prove (II). We begin by considering the case where f(t,u) = f* (¢,u) and
p(t,u) = u for any (t,u) € Rt x R, In this case, we have

fo(t,u) = 7 (tu) +eu, Y(t,u) €RxRT.
Let € € (0, —g(2)/2). The function f. is T"*-periodic, and we have
fe(t,u) <0, VteR, Yue€ [2,+00).

Furthermore Aoy = Ag v — & = —& < 0. Consequently, owing to Theorem 1.1, there
exists w! : R — (0, +00) solving (14) with f. as nonlinearity. According to Proposition
1.2, for all compact set K C R, we have

sup |ug(t, z) — wl (t)| F225 0.
zeK

We now consider the case where p(t,u) < 0 for any (t,u) € R x R". In this case

fo(tu) < f77(tu), Y(t,u) € RT x RY,
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We denote u the solution of the Cauchy problem
{ut —Upy = f1 (t,u) on (0,400) X R,
u(0,-) = ug on R.
From the comparison principle, it occurs that
0 <uc(t,z) <u(t,z) V(t,r) ERT X R. (69)

According to (1), we have sup u(t, z) = 0. Consequently sup u. (¢, x) = 0, which concludes
zeR zeR
the proof.

3.3 Proof of Theorem 1.8

Proof. Let T > T* and ¢ € (0, ¢}), where ¢ is the critical speed associated with f7 defined
in Proposition 1.3. We recall that for ¢ € (0,£r), where &7 is defined in (54), inequalities
(46), (48), (49) and (55) are satisfied. Furthermore, the critical speeds associated with
nonlinearities f7 and f2_ are respectively defined by

e = 2/Pogrl =2/ Ao pr + (C +1)e, and ¢, =2,/ 7 [ =2/~ Aoy — (C + D)e.

In particular, since ¢ = 2\/ Ao, fr| = 2\/ —No g7, there exists .7 > 0 such that for all
e € (0,e.7) we have
ce (0, )N (0,cr,). (70)

We define
éch = min{éT, 8C,T} > 0. (71)

We consider € € (0,&.7). According to the strong maximum principle, we have u.(n.T,-) >
0 on R, where n. € N is such that (46) holds for all (¢,u) € [n.T, +00) x RT. Consequently,
there exists a nonnegative and nontrivial compactly supported function @, : R — R such
that

us(nT,x) > U9, Vr€R. (72)

Let 7. : R" X R — R be the solution of the Cauchy problem

Owing to (46), (72) and the fact that f”_ is T-periodic, we can apply a comparison
principle and get that

G.(t,z) <u(t+n.T,x), V(t,r) ERT xR, (73)

According to (49), we have f. < 0 on R x [2,+0c). Hence, since ug is bounded, if we
define .
C' = max{2,supuo},
R

then according to the maximum principle, we have u. < C' on Rt x R. In particular

u(n.T,x) < C, VYr €R. (74)
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Let v. : R™ — R be the solution of

(ve)y = fiT(t, v.) on RT, (75)
v:(0) = C.
Owing to (46) and (74), we can still apply a comparison principle to get that
u(t +n.T,x) <wv(t), V(t,z) €RT xR (76)

According to (49) and the fact that C' > 2, it occurs that v.(T) < v.(0). So the sequence
(ve(nT)),, is nonincreasing. Furthermore, this sequence is bounded below by 0. Conse-
quently, it converges to a real number [ > 0. For any n € N, we define v.,, : Rt — R by
Ven(t) = v-(t +nT'). The sequence (v, ), converges up to extraction of a subsequence to
v* >0 in C'([0, 7)) satisfying

{(v:>'= T(t,0%) on [0,T],
v:(0) =0X(T) = 1.

(LI

So v? is equal to 0 or w!. Yet, there exists x. > 0 such that 0 < k.®, ;7(0) < C and

AT
2 (8 e, (1)) = (T )ult, 0)ei, 2 (1)) < ="y (1), Wt € 0,7,

Consequently, we have on R™

Ao #T
(Ke®o yr) — f2(t, 5ePg yr) < KD yr (Ao,fg“ + (f1)ult, 0)) - (Fés@o,fg(fg)u(ﬁ 0)+ 0?fs’faq)o,fg)

A
< 0./F

Ha®07fg S 0.

Hence, the function x.®, ;r is a subsolution of the problem (75) on RT. Therefore
0 < ke®g yr(t) <we(t), VEeR™.
Using the T-periodicity of ®, yr and passing to the limit as n — +o00, we obtain

0 < ke®g yr(t) < vI(t), VteR".

Consequently, we have necessarily v = w! on [0,7]. In particular, the uniqueness of

accumulation point of the sequence (v. ), implies that the convergence to wET holds for
the whole sequence. Let n > 0. There exists n, . € N such that

n>n,.= sup |v.(t+nT)— weT(t)| <. (77)
t€[0,T]

On the other hand, according to (70), the spreading properties in periodic case (Proposi-
tion 1.3) give the existence of ¢, . > 0 such that

t>tlene = sup \wi(t) —u(t,x)| <n. (78)

|| <ct

Let (t,2) € R" X R such that ¢ > max{t.,.,n, I} and |z| < c¢t. According to (73) and
(76), it occurs that
ﬂs(ta 13) < ue(t +n.T, .I‘) < Us<t)
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The fact that ¢ > n, .7 implies that we can write ¢t = n,7'+¢, where { € [0,7) and n, €N
such that n, > n, .. Consequently, as the function w’ is T-periodic, we have

e (t, z) —wh (t) < uc(t +nT,2) —w' (t +n.T) <v.(nT +1) —w’ (t)
Hence, according to (77) and Lemma 3.1
ue(t +nT,x) —w’ (t +n.T) < Jv(nT +1t) —wl ()] + |w! (t) — w” (1)| < n+ Mre,
and on the other hand, owing to (78) and Lemma 3.1, it occurs that

u(t +n.T,x) —w’ (t +n.T) > — sup |w?_(t) — @.(t,y)| —sup |w’, — w'| > —n — Mze.
ly|<ct [0,T7]

To conclude, for any ¢ > max{t., ., n, .1} + n.T, we have

sup |ue(t, z) — w? (t)] < n+ Mye,

|| <ct

which concludes the proof of the first assertion of Theorem 1.8.

We now show the second part of the theorem. We consider ¢ > ¢4 and ¢ such that
cp < ¢ < c. There exists €], > 0 such that for all € € (0, ) we have

¢ >min{cy__, .} (79)

Furthermore, according to (4), (23) and (25), there exists D > 0 such that for all € € [0, 1),
we have

f-(t,u) < Du, VteR" VueR", (80)
We define &, = min{1,é.7, e, } > 0, where .7 is defined in (71). Let € € (0,2, 7). We
consider H : Rt x R — R solving the heat equation

H,— H, =0 on (0, 4+00) x R,
H(0,-) =up onR.

The function H is given by

1 (z—)*
e 1 wuy(y)dy, Vte (0,+0),Vr eR, 81
2\/7r_t Supp(uo) O(y) Yy ( ) ( )

where Supp(ug) is the support of ug, which is here assumed to be compact. We define the
function Hp : R" x R — R by Hp(t,z) = H(t,z)e”". We have (Hp), — (Hp)ze = DHp
on (0,+00) X R. Furthermore, owing to (80), we have (u.); — (te)ze = fo(t,u.) < Du. on
(0, +00) x R. Consequently, since Hp(0,-) = u.(0,-) = uy on R, the comparison principle
yields

H(t,z) =

u(t,r) < H(t,z)eP", Vvt € R, Vz € R.
In particular, owing to (81), it occurs that

eDnET

< -
= 2/ T Jsupp(uo)

'+ /() + 4N gr

2

_ (z—y)?

e T uy(y)dy, Vx €R. (82)

ue(neT, x)

We define the real number

Ye'e =
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Let us note that (¢)* 44X yr > 0 because ¢ > ¢f. = 2,/—XAgsr. According to (82),
us(n:.T,-) has a Gaussian decay as |z| — 400 and in particular, there exists a real number
My . > 0 such that

U (nT,x) < Mo Do yr(0)e™ 7", Vo € R. (83)
We also define the function vy . : RY x R — R by
Ve e(t, 1) = Mo g g7 (t)e Ve e (@=et)
We have on RT x R
(Ve = (Voc)oa = (—2e + e+ Do g ) Mor oD gre 25D 1 (17, (1, 0) .

Hence according to (5) and the fact that —73,78 + Yo e€ 4+ Ao gr = 0, we obtain on R x R

(Vere)t — (Vere) > ng(ta Ve )

Furthermore, owing to (46), (47) and the T-periodicity of f7, it occurs that on R* x R
(us)t - (Ua)m: - fs(t + nsT; ue) S fsT(t + nsTu ue) = ng(ta ue)

Consequently, since (83) implies that u.(n.7,-) < v .(0,-) on R, the comparison principle
implies that
0 <u(t+nT,z) <ve(t,z), VY(,x)€R" XR.

For all ¢t > 0, since v (¢, -) is decreasing on R, we have

0 = Sub U5<t7 x) < sup UC/»E(t7 .T) < Uc/,E(t7 Ct) = Mc’,\r-:@(],fg (t)ef'yc/,s(cfcl)t —>t*>+oo 0.
x>ct r>ct

In the same way, we can show that

0< sup u(t+ n.T,z) 255 0.
r<—ct

To summarize

lim sup u.(t,x) =0,
t=+o00 |z|>ct €( )

which concludes the proof of the second assertion of Theorem 1.8. [

4 Influence of the protocol of the treatment

We begin by proving Proposition 1.9.

Proof. Owing to (28), the principal eigenvalue associated with 0 and f7 is given by

T T 1
Nogr == [ (FDu(t,0)de = —g'(0)+ [l (0) de = g (©)+ [ p(t)de = o r
]

We now demonstrate Proposition 1.10.
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Proof. Let T > T*. We denote P! the Poincaré map associated with f. We recall that
PT is defined on R* by

PTT(Oé) = yr,a(T)y

where y, , is the solution of the Cauchy problem

{(ym)’ = fI(t,Yr.a) on RY,

yr,a<0) = . <84)

In the same way as in the proof of Proposition 1.1, we show that the function P! has a
unique positive ﬁxed point . Furthermore o € ( 1]. Consequently there is a unique
equilibrium state w? : R — (0 1] associated Wlth fT It is the solution of the Cauchy
problem (84) with a = o

We begin by showing the continuity property. Let 7 € (0, T) and (7,), be a sequence
of (0,T) such that 7, =% 7*. We will demonstrate that w’ (0) “=% wZ.(0). The

7-*
sequence (wT )n converges up to extraction of a subsequence to a functlon w* in C% 5([0 T))
for any § € (0,1). The equilibrium state w. satisfies

wt (t) = wk (0) +/ fE(s,wl (s))ds, Vte[0,T],
w! (0) = w! (T).

Passing to the limit as n — +o00, we obtain

w*(t) = w*(0) +/ fE(s,w*(s))ds, Vte€l0,T],

w*(0) = w*(T).
¢

The function ¢ +— / L (s,w*(s))ds is of class C'([0,T]). Consequently w* is of class
0

C'([0,T)) and it satisfies

{(w*)' = fT(t,w*) on [0,T],
w*(0) = w*(T).

Owing to Proposition 1.1, it follows that w* = 0, or w* = w’.. If w* = 0, then wT — 0
as n — +oo uniformly on [0, 7). For any n € N, we have

(wr,)'(t) _ [Tt wr, (1))

NG ) , Vtel0,T].

We integrate the previous equation over [0, 7], then we pass to the limit as n — +o0o0. We

obtain —T'\y yr = 0. It is a contradiction because since T' > T, we have Ay jr = A yr <

0. Hence, we have necessarily w* = w?.. So the function 7 — w?(0) is continuous on
) T T

(0,7).

We now study the monotonicity of this function. We consider two real numbers 7 and 7
such that 0 < 7 < 7 < T. The Poincaré map Pg associated with fTT is defined on R™ by

Py (o) = yro(T),
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where y,, o is the solution of (84), with 7' = 7;. We recall that the equilibrium state w;‘s_

is the solution on R of (84) with a = al. Consequently, if we prove that PT > P;g on

(0,400), then we will deduce that ol > ozz;, that is, wl (0) > w., (0). Fix o > 0. We
define the function z;, , : RT — R by

t
2ralt) = Yra(t)elo O, (85)
This function solves on R the equation

g<Z7’ 046 Ot T (s)ds)

e~ fo mZ (s)ds

(Zn,a)/ =

For any t € [0, 7], we have
f mTl(s )ds <e f mT (s)d s (86)

According to (4) and the fact that z;, , > 0, it follows that for any ¢ € [0, T']

(o BOR) o i)
> .

T (s)ds

2 e fo mT I (s)ds
1,

27y 70467 fo e

In other terms, z;, , is a subsolution of the equation satisfied by z;, . Since 2z, (0) =
Zrya(0) = a, we can apply a comparison principle and we obtain

Zra(t) > 2na(t), Ve [0,T].

Actually, the previous inequality is strict with ¢t = 7" because (86) and (87) are strict on
(0, 72). Owing to (85), we have

T
Yr (T )efo n >y7’2a< )efo iy (9)ds

According to (28), it occurs that

/OT mfl(S)ds = /OT mz;(s)ds = /01 ©(s)ds.

Consequently

Yra(T) > Yrya(T).
In other words, P! (a) > P! (c), which concludes the proof. O
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