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Abstract 
Since several years experiments performed on solidification of alloys with application of a static magnetic field show a 
significant effect of the latter on the solidified structure and segregation. A hypothesis suggests that these modifications 
are related to a thermoelectric magnetic force. Serious efforts were made to reproduce observed phenomena with 
numerical modeling, yet, they faced significant difficulties. In the paper we discuss some numerical issues using a 
model magneto-thermoelectric problem coupled with hydrodynamics with finite volume and a finite element method.  
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Introduction 
Experiments on solidification with static magnetic field revealed numerous results: motion of dendrites [1], shift of 
columnar to equiaxed transition conditions [2], spiral segregation [3] and others. It is supposed that thermoelectric 
magnetic forces which appear in conductive media with variable electric properties subjected to a temperature gradient 
may be responsible for observed phenomena. For qualitative and quantitative proof of this hypothesis the numerical 
modelling is ultimately needed. Yet, one can cite only a limited number of simulations of magneto-thermoelectric effect 
which were performed either with a simplified treatment of the electric problem [4] or for simplified domains [5]. The 
aim of the present paper is to discuss issues related to the simulations of thermoelectric problem coupled with 
hydrodynamic one using various numerical methods. Our presentation is based on a model problem which consists of 
an immovable spherical solid grain immersed into a liquid metal subjected to a thermal gradient as shown in fig.1. A 
vertical magnetic field is imposed over the domain parallel to the thermal gradient. In this system an electric current 
appears due to a different electric response of the system to the temperature, i.e. to a so-called thermoelectric effect. 
Further Lorentz force acting both on the liquid and on the solid appears due to the interaction between the 
thermoelectric current and the magnetic field. It creates convection in the liquid and makes a particle move. The 
thermoelectric part of the problem can be solved analytically if an infinite domain around the sphere is considered [6].  
Analytically obtained distributions of the density of the electric current along a vertical and a horizontal line which 
passed through the center of the sphere are presented in fig. 2, properties correspond to those given in Table 1.  
 

 

 
Fig. 1: A model problem for a sphere   immersed into a 

liquid. A thermal gradient 3106G ⋅= K/m and a 
static magnetic field 1B = T are imposed on the 
system along the z-axis 

Fig. 2: Distribution of the density of the thermoelectric 
current along the vertical (solid) and a 
horizontal (dashed) line passing through the 
center of the sphere placed in an infinite media 

 
 

Table 1. Properties used in analytical calculations and in simulations. 

Property Units Solid Liquid 

Thermoelectric power, S V/K 1.1⋅10-6 1.0⋅10-7 
Electrical conductivity, σ  (Ω⋅m)-1 1.37⋅107 3.8⋅106 
Dynamic viscosity, η  Pa⋅s - 0.00115 



A remarkable fact about the solution is that the maximal value of the electric current does not depend on the size of a 
particle, but is related only to the properties of the media and to the thermal gradient near the interface.  
 
Statement of the problem 
The governing equations for the thermoelectric problem presented in fig.1 are the following [7]: 
 

( )BVJ ×σ+∇σ−ϕ∇σ− TS=          (1) 

0=⋅∇ J           (2) 
 
Here J  is the density of the electric current, ϕ  is the electrical potential, V is the velocity in the liquid, B  is the 

magnetic field, other symbols and values used in simulations are given in the table 1. The boundary conditions presume 
no electric current through the walls of the calculation domain. Because of the axial symmetry of the problem, the 
electric current is developed in meridional plane ( )z,r and the resulting electromagnetic force given by eq.3 has only the 

tangential component: 
 

       BJeF ×=⋅= θF          (3) 

 
This force is to be introduced into momentum equations related to a hydrodynamic problem. However, the latter was 
treated differently with respect to software and is discussed in appropriate sections.  
 
Results obtained with a finite volume method 
A modeling with FVM approach was made in Fluent using user-defined functions and with an axisymmetric swirl 
model. A governing equation which was solved for the electric potential is obtained from the eq.(1)-(2):  
 

        ( ) ( ) ( )( )BV ×σ+∇∇σ−∇=ϕ∇σ∇ TS        (4) 

 
A natural way for treatment of the model is to use two domains separated with a sharp boundary. Another approach with 
utilization of a “phase function” is presented in this proceeding [8]. Since the temperature gradient is imposed and each 
of the domains has constant properties, the first term in the right-hand part turns to be zero. Because of restriction of an 
axisymmetric model in Fluent the eddy current in the liquid phase could not be taken into account in the liquid phase. 

Therefore, an equation to be solved for the ϕ was Laplace equation.  A continuity of the electric current at the interface 

between the domains should be assured via an appropriate boundary condition. Consequently, for the electric potential 
at the interface one obtains:  
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Here indices S and L stay for the solid and the liquid phase, respectively. Eqs.(5a)-(5b) can be reduced to a single 
Dirichlet condition using a discretised form of the governing equation. For the present case a first-order discretisation 
scheme was used with a correction for a non-orthogonal mesh.  
 
For the hydrodynamics only the tangential component of the velocity was calculated with the eq.(6) where θV  and η  

denotes the tangential component of the velocity field and dynamic viscosity, respectively. No-slip conditions were 
imposed at all boundaries including the solid/liquid interface. 
 

       ( ) 0V2 =×+∇η θθ BJ      (6) 

In calculations the radius of the particle was 610100 −⋅ m and the size of the domain was 3101 −⋅ m by 4105 −⋅ m.   
Results of simulations are shown in fig.3. The maximal calculated value of the thermoelectric currents is equal to the 
one from analytical solution (fig. 2). The current is indeed uniform inside the sphere and decreases rapidly in the liquid, 
i.e. for the thermoelectric problem the domain can be considered as an infinite one. The Lorentz force tends to create 
two vortices under and over the sphere with different direction of their rotation. However, because of walls the 
secondary flow should appear in the liquid. The values for the angular velocity are quite high and it can be supposed 
that the eddy current has an important impact on the resulting electric current.  
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Fig. 3: Results obtained with finite volume method realized in Fluent: electric potential (a); vector field for the 
density of the thermoelectric current, 29112

max
=J  A/m2 (b); contours of tangential velocity (c) 

Results obtained in Flux Expert with a finite element method 
In calculations made with Flux Expert the size of the particle was the same as in the previous case, but the size of the 
domain was two times larger. Similar to the simulation performed in Fluent, only the tangential component of the 
velocity was calculated for the hydrodynamic problem. However, the eddy current which appears due to the motion of 
conductive liquid in this direction was taken into according to eq.(1). To solve the coupled problem a Galerkin  
projective method was used. The equations (2) and (6) are projected on the basis functions iα , the continuity of the 

electric current at the interface is taken into account at this step. Further, the electric current is replaced with the eq.(1) 
which leads to the following weak finite element formulation : 
 

( )∫∫ ∫∫∫∫
Ω ΩΩ

∇α∇σ−=×α∇σ−ϕ∇α∇σ Trdrdzrdrdzrdrdz iii BV     (7a) 

∫∫ ∫∫∫∫ ∫∫
Ω ΩΩ Ω

θθ ×∇σα−=×ϕ∇σα+σα+∇α∇η rdrdzTSrdrdzrdrdzBVrdrdzV ii
2

ii BB   (7b) 

 
Here Ω  is the whole domain and because of this the FEM methods does not require a special treatment of the 
conditions at the interface since they are satisfied naturally.  Also, in this formulation strong interaction between the two 
phenomena – electrical one and hydrodynamic – are taken into account. 
 

 

 

 
Fig. 4: Results obtained with finite element method realized in Flux-Expert: electric potential (a); vector field for the 

density of the thermoelectric current, 17390
max

=J  A/m2 (b); tangential velocity (c) 

Qualitatively the distribution of the electric potential in Fig. 4a is similar to the one obtained with Fluent, however, its 
maximal difference is larger and potential isolines are “pushed” toward the vertical axis. The first effect is related to the 
size of the domain which is two times larger compared with previous calculation. The second effect may be attributed to 
the influence of the eddy current which is given by the product ( )BV ×σ  and is directed along the radius toward the z-

axis. It should be stressed that the eddy current influences both potential and the resulting current according to eq.(1)-
(2). Consequently, the maximal value of the electric current differs from the analytical one: 17390 A/m2 vs 29112 A/m2. 
The angular velocity is also lower and the vortices are displaced toward the axis of symmetry.  



Finite element method: realization with AEQUATIO 
Presented results shows that the problem is extremely sensitive to the mesh size and a fine mesh is needed near the 
interface between the two media where properties of media varies. At the same time to treat the convection properly an 
actual size of the experimental domain should be considered, otherwise boundaries alter both the thermoelectric current 
and convective flow. One of the ways to overcome these difficulties is the use of multiple meshes for treatment of 
different phenomena. This approach was realized with a numerical toolbox AEQUATIO based on the finite element 
method [9]. Coupled equations for the energy and electric current are projected over two meshes: the one which is 
constructed for the whole domain and which is coarse and a significantly finer mesh for a sub-domain around the 
particle as shown in fig. 5.  The boundary conditions for the sub-domain are obtained via interpolation of data from the 
coarse mesh and only one system of linear equations is constructed for all meshes. Simulation performed with 
AEQUATIO without convective flows gives results similar to the analytical ones (fig. 6) and obtained with Fluent, 
detailed discussion can be found elsewhere [10]. The further step is to introduce the calculation of Naviers-Stockes 
equation into the AEQUATIO. 

 

 

 

Fig. 5: Illustration of a multi-domain structure used in 
AEQUATIO, the sphere is seen as a central point 

  Fig. 6: A zoom on the subdomain with a particle with a 
calculated density of the thermoelectric current 

 
Conclusion 
The treatment of the thermoelectric problem with a FVM requires special treatment of the boundary conditions at the 
interface between two media whereas with FEM the continuity of the electric current satisfies naturally. Both methods 
are sensitive to mesh size near the interface and use of multiple meshes or adaptive meshes are required for a good 
treatment of a coupled thermoelectric hydrodynamic problem. The eddy current which appears due to the convection in 
the liquid may affect strongly the thermoelectric current.  
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