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Abstract 
Background 

We are currently facing a proliferation of heterogeneous biomedical data sources accessible 
through various knowledge-based applications. These data are annotated by increasingly 
extensive and widely disseminated knowledge organisation systems ranging from simple 
terminologies and structured vocabularies to formal ontologies. In order to solve the 
interoperability issue, which arises due to the heterogeneity of these ontologies, an alignment 
task is usually performed. However, while significant effort has been made to provide tools 
that automatically align small ontologies containing hundreds or thousands of entities, little 
attention has been paid to the matching of large sized ontologies in the life sciences domain. 

Results 

We have designed and implemented ServOMap, an effective method for large scale ontology 
matching. It is a fast and efficient high precision system able to perform matching of input 
ontologies containing hundreds of thousands of entities. The system, which was included in 
the 2012 and 2013 editions of the Ontology Alignment Evaluation Initiative campaign, 
performed very well. It was ranked among the top systems for the large ontologies matching. 

Conclusions 

We proposed an approach for large scale ontology matching relying on Information Retrieval 
(IR) techniques and the combination of lexical and machine learning contextual similarity 
computing for the generation of candidate mappings. It is particularly adapted to the life 
sciences domain as many of the ontologies in this domain benefit from synonym terms taken 
from the Unified Medical Language System and that can be used by our IR strategy. The 
ServOMap system we implemented is able to deal with hundreds of thousands entities with 
an efficient computation time. 

Keywords 
Ontology matching, Life sciences ontologies, Entity similarity, Information retrieval, 
Machine learning, Semantic interoperability 



Introduction 
With the wide adoption of Semantic Web technologies, the increasing availability of 
knowledge-based applications in the life sciences domain raises the issue of finding possible 
mappings between the underlying knowledge organisation systems (KOS). Indeed, various 
terminologies, structured vocabularies and ontologies are used to annotate data and the 
Linked Open Data Initiative is increasing this activity. The life sciences domain is very 
prolific in developing KOS [1-4] are examples of such resources) and intensively using them 
for different purposes including documents classification [5] and coding systems to 
Electronic Health Records [6]. 

One of the key roles played by these KOS is providing support for data exchanges based on a 
common syntax and shared semantics. This particular issue makes them a central component 
within the Semantic Web, the emerging e-science and e-health infrastructure. 

These KOS, which are independently developed at the discretion of various project members, 
are heterogeneous in nature, arising from the terminology used, the knowledge representation 
language, the level of semantics or the granularity of the encoded knowledge. Moreover, they 
are becoming more complex, large and multilingual. For instance, the Systematized 
Nomenclature of Medicine--Clinical Terms (SNOMED-CT) [7], a multiaxial, hierarchical 
classification system that is used by physicians and other healthcare providers to encode 
clinical health information, contains more than 300,000 regularly evolving concepts. Each 
concept is designated by synonymous terms, sometimes by several. Another example is the 
International Classification of Diseases (ICD), the World Health Organization’s standard 
diagnostic tool for epidemiology, health management and clinical purposes used to monitor 
the incidence and prevalence of diseases and other health issues. The current ICD-10 version 
contains more than 12,000 concepts designated with terms in 43 different languages 
including English, Spanish and French. 

There is a clear need to establish mappings between these different KOS in order to make 
inter-operable systems that use them. For instance, the EU-ADR project [8] developed a 
computerised system that exploits data from eight European healthcare databases and 
electronic health records for the early detection of adverse drug reactions (ADR). As these 
databases use different medical terminologies (ICD-9, ICD-10, Read Codes, International 
Classification of Primary Care) to encode their data, mappings are needed to translate a query 
posed to the global system into queries understandable for the different data sources. 
Performing manual mappings between all the mentioned resources is not feasible within a 
reasonable time. Generally speaking, the data integration domain [9], the semantic browsing 
of information domains [10] and web services composition [11] are areas where the matching 
of knowledge resources is usually performed. 

There is therefore a crucial need for tools which are able to perform fast and automated 
mapping computation between entities of different KOS and which can scale to large 
ontologies and mapping sets. Significant effort has been expended in the ontology 
alignment/matching domain. A matching system is defined by the Ontology Alignment 
Evaluation Initiative (OAEI) [12] as a software program capable of finding mappings 
between the vocabularies of a given set of input ontologies [13]. Formally, given two 
ontologies, a mapping is a 4-tuple [14]: 
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such that: 

• id is an identifier for the given mapping; 

• e1 and e2 are entities, i.e. classes and properties of the first and second ontology, 
respectively; 

• r is a relation, e.g. equivalence (=), subsumption (⊒), disjointness (⊥)between e1 and e2. 

Some metadata, including a confidence value, w (usually ⋲ [0, 1]), are often associated with 
the mapping. 

In the following section we will briefly give an overview of different approaches and systems 
in line with the approach we propose in this paper. In particular, we will review approaches 
which use a space reduction strategy for large scale ontology matching and machine learning- 
(ML) based matching and briefly present systems evaluated recently for the largest task in the 
context of the international OAEI campaign. We will further discuss, in Section 6, systems 
for matching ontologies in the biomedical domain. 

Related work 
Ontology matching is an active research area. Existing ontology matching systems use 
terminological, structural and semantic features for the computation of candidate mappings 
(please see [14-16] for a complete survey). Despite the advances achieved in matching 
relatively small size ontologies, the large scale matching problem still presents real 
challenges to tackle, due to the complexity of such a task. These challenges include efficiency 
issues in term of space and time consumption, the use of background knowledge, user 
involvement and the automated evaluation of the matching system [14,17]. Therefore, 
approaches for ontology matching have been proposed in the literature including clustering 
and blocking strategies (reduction of search space), ML- based matching (in particular for 
reusing existing alignments or combing results for parallel matches), interactive alignment 
(taking into account the user) and the use of specialised background knowledge (in particular 
for the life sciences domain). 

A structure-based clustering approach for the matching of large ontologies is introduced in 
[18]. The idea is to partition each input schema graph into a set of disjointed clusters before 
identifying similar clusters in the two schema graphs to be matched. The COMA++ system 
[19] is finally used to solve individual matching tasks and combine their results. Hamdi et al. 
provide TaxoMap [20], a tool which is based on the implementation of the partition-based 
matching algorithm proposed in [21] to find oriented alignment from two input ontologies. 
TaxoMap provides one-to-many mappings between single concepts and establishes three 
types of relationships: equivalence, subclass and semantically related relationships. The 
semantically related relationships denote an untyped link indicating the closeness of two 
concepts. Hu et al. [21] address the issue of aligning large ontologies by proposing a 
partition-based block approach for the matching of large class hierarchies. Their matching 
process is based on predefined anchors and uses structural affinities and linguistic similarities 
to partition small block input class hierarchies. In contrast to these divide-and-conquer 
methods, Wang et al. [22] use two kinds of reduction anchors to match large ontologies and 
reduce time complexity. In order to predict ignorable similarity calculations, positive 



reduction anchors use the concept hierarchy while negative reduction anchors use locality of 
matching. A partial reference alignment strategy is used in [23] in order to partition 
ontologies to be aligned, computing similarities between terms and filter mapping 
suggestions. To test the approach, alignments provided by OAEI and from previous 
evaluation of the SAMBO system [24] are used. 

On the other hand, Nezhadi et al. use an ML approach to combine similarity measures of 
different categories in order to align two given ontologies [25]. Their evaluation of different 
learning classifiers – K Nearest Neighbor, Support Vector Machine (SVM), Decision Tree 
(DT) and AdaBoost – on real life (small) ontologies for bibliographic references provided by 
the OAEI campaign [12], showed that using feature selection and a combination of AdaBoost 
and DT classifiers improves the F-measure. Ichise describes a framework which follows a 
SVM-based approach for ontology matching [26] while the GLUE system [27] applies a 
meta-learning approach in order to generate matching hypotheses using multiple local 
classifiers. These classifiers are trained first on different aspects of the models that are 
matched. 

Some research works have addressed the user involvement issue in matching large 
ontologies. Lambrix and Kaliyaperumal [28] proposed an ontology alignment framework at 
large scale, which includes components from the SAMBO system [24], that allows a user to 
interrupt and resume the different stages of the ontology alignment task. Jiménez-Ruiz et 
al.[29] implemented in the LogMap system a strategy based on asking the user to 
interactively revise the candidate mappings arranged in a partial order based on their 
similarity. 

The OAEI campaign has played an important role in the area of ontology matching. It is an 
international campaign for the systematic evaluation of ontology matching systems. Few 
systems, including GOMMA (Generic Ontology Matching and Mapping Management) [30] 
and LogMap [29], were able to complete, in the 2011 edition, the largest task of the 
campaign: the LargeBiomed track, which consisted of matching the Foundational Model of 
Anatomy (FMA) [31], the National Cancer Institute (NCI) Thesaurus [32] and the 
SNOMED-CT, with a good F-measure in a reasonable time. The (not) Yet Another Matcher 
or YAM++ system [33] joined these systems during the 2012 edition of the campaign. 
GOMMA [30] implements various techniques to match large ontologies in particular for the 
life sciences domain. It uses parallel matching on multiple computing nodes; composition 
techniques of previously computed ontology mappings; and finally a blocking strategy to 
reduce the search space. LogMap is a scalable ontology matching system which uses lexical 
and semantic indexing techniques and implements a reasoning-based diagnosis and 
inconsistency repair capabilities [29]. It further supports user interaction during the matching 
process. LogMap provides a lightweight variant called LogMapLt, which does not use 
reasoning nor repair facility and semantic indexing. YAM++, is a self-configuration, flexible 
and extensible ontology matching system which combines various techniques to perform 
mappings between two input ontologies [33]. The DT learning model is used to combine 
different terminological similarity measures, and a similarity propagation method is 
performed to discover mappings by exploiting structural information of entities. A semantic 
verification is used to refine computed mappings in order to eliminate those which are 
inconsistent. All these three systems obtained very good results for the task related to large 
ontologies matching during the 2012 edition of OAEI. Among the systems which were used 
at OAEI and are primarily dedicated to matching ontologies in the biomedical domain, the 
SAMBO system [24] achieved the best performance for alignment of the largest task 



(anatomy track) before the introduction of the LargeBiomed track. This system uses a 
terminological matcher (based on the textual descriptions of concepts and relations), a 
structural matcher based on the is-a and part-of hierarchies and domain knowledge based on 
the Metathesaurus of the Unified Medical Language System (UMLS) [34]. 

Our contribution 

We propose a generic approach to matching large ontologies. Our first contribution is an 
approach based on Information Retrieval (IR) techniques and an indexing strategy, in contrast 
to the previously presented blocking strategy, to address the challenge of scalability and 
efficiency of matching techniques. One of the novelties of the approach is the reduction of the 
search space through the use of an efficient searching strategy over the built indexes to be 
matched. The second contribution is the use of a new contextual ML-based strategy to 
provide candidate mappings to complement lexical (or terminological) candidate mapping 
generations. The third contribution is a fully implemented and evaluated system on standard 
benchmarks provided by the OAEI campaign. Eventually, general purpose background 
knowledge is used to improve the performance of the system and addresses the matching with 
background knowledge requirement [14]. In addition the current performance of ServOMap 
(described below) does not depend on any domain specific background knowledge. 

The work presented in this paper is an extension introduced partly in [35] of the approach 
implemented within the ServOMap system [36,37], a highly configurable large scale 
ontology matching system able to process large ontologies associated with multilingual 
terminologies. ServOMap takes as input ontologies described in standards languages RDF(S) 
[38], OWL [39], OBO [40] and SKOS [41] and provides equivalence mappings between their 
entities. It relies on an Ontology Repository (OR) system, ServO [42,43], a system able to 
manage multiple KOS while providing indexing and retrieving features. It is based on the 
Lucene full text search engine API [44]. ServO provides an ontology management module for 
parsing and navigating ontologies and an ontology indexing and retrieval module, which 
implements the vectorial space model (VSM) [45]. Lucene is a highly and quickly scalable 
open-source library for IR. With the API, the data being indexed are stored as documents. A 
Lucene document represents a collection of fields. Thus, each document in an index contains 
one or more named fields. Each field corresponds to a piece of data that is either queried 
against or retrieved from the index during search. 

Because it is based on the ServO system, ServOMap follows an IR-based technique [46] for 
computing of similarity between entities. An ontology is seen as a corpus of semantic virtual 
documents which represent the entities of the ontology. Specific fields are created to handle 
the different elements describing the entities of the ontology. 

The rest of the paper is structured as follows. In Section 4 we give an overview of the method 
that we propose for the matching of large ontologies. In particular we detail the new 
contextual similarity computing strategy for the retrieval of candidate mappings based on the 
structure of the input ontologies. In Section 5 we present the results obtained by our approach 
on an official dataset dedicated to evaluating ontology matching systems. We discuss the 
obtained results and the limitations of the approach then offer new perspectives on our work 
in Section 6 before concluding. 

From now on we use the generic term ontology (formally defined in the following section) to 
denote any KOS, ranging from simple thesauri to very formal ontologies. 



Methods 
In this section, we describe in detail the overall process that is followed in our ontology 
matching approach. We start by introducing a formal definition of an ontology as used in the 
paper, based on the metamodel defined for ServO [42] and the primitives introduced in [47] 
adapted to the definition given by [48]. 

Then, we define the notion of descendant, ancestor and sibling concepts, and finally our 
notion of virtual documents. 

Definition 1 (ontology): an ontology is a 5-tuple O = <Co, R, Hr, T, Lex > and R = RI ∪ RT ∪ 
RD such that: 

• Co is a set of concepts; 

• RI ⊂ Co x Co is a concepts taxonomy and h = (c1, c2) ∈ RI means c1 is a subsumer of c2, the 
is-a relation; 

• RT ⊂ Co x Co x LT is a set of transversal relationships where LT is a set of relations labels; 

• RD ⊂ Co x P x LD is a set of attributes where P is a set of xml primitive data types and LD 
is a set of relations labels; 

• Hr ⊂ R x R is a taxonomy of relationships on RT and RD; 
• T is a set of (multilingual) strings terms that are concept labels (synonym terms); 
• Lex: T → Co is a function which associates concepts with their labels. 

RT and RD are respectively object and datatype properties in the sense of web semantic 
languages. Some constraints can be associated with these properties, for instance the notion 
of functional property. 

Definition 2 (direct descendant concepts, 12345 ): given an ontology O and a concept c, the 
direct descendant concepts of c within O denoted 12345  is the set: 

678 ∈ 9:|78 < 7, 7%=>%78%?@#%AB7C ∈ 9:,%7%=>%7C%?@#%7C%=>%78DE   

Definition 3 (direct ancestor concepts, 12F45 ):given an ontology O and a concept c, the 
direct ancestor concepts of c within O denoted 12F45  is the set: 

678 ∈ 9:|%78 < 7,%78%=>%7%?@#%AB7C ∈ 9:,%78%=>%7C?@#%7C%=>%7DE   

Definition 4 (sibling concepts, 1"34: ): given an ontology O and a concept c, the sibling 
concepts of c within O denoted 1"34:  is the set: 

G78 ∈ 9:%|%HI ∈ 9:,%I% ∈ %12F48%5 ?@#%I% ∈ %12F4%5J.   

We can now define the notion of virtual document that is subdivided into direct virtual 
document and extended virtual document. The notion of virtual documents from the RDF 
graph has been previously used in [49]. 

Definition 5 (direct virtual document): Given an ontology O and an entity e ∈ O, a direct 
virtual document or dVD(e) is constituted by the combination of its uniform resources 



identifier, the uri, obtained by ID(e), the local name (locName(e)), the labels in different 
languages extracted by the inverse of the function Lex (Lex−1) and the set of annotations 
associated with it. Formally, 

#KLA&D M

% N
OPLA&D,%QR7S?T&A&D,%U&VW'A&D,%=XA&D,%=YA&DZ"[%&%"\%?%7R@7&F]

OPLA&D,%QR7S?T&A&D,%U&VW'^LRTA&D_,%U&VW'^=?@`&A&D_,%7R@\]A&DZ
"[%&%"\%?%F)RF&)]I

a (1) 

where RT(e), RD(e) give the properties attached to e and their information. Dom(e) and 
Range(e) give respectively the list of domains and ranges of the property e and const(e) gives 
the property constraints associated to e (e.g. functional property). 

Now we define the notion of extended virtual document for a concept, which represents its 
virtual transitive closure. 

Definition 6 (extended virtual document): given an ontology O and a concept c ∈ O, let’s 
assume that SupLex(c) = {t ∈ T| H ci ∈ Co,  ci RI c and t ∈ Lex− 1(ci)} denotes the terms (labels) 
associated with the ancestors of c and SupLocName(c). = {ln | H ci ∈ Co,  ci RI c and ln ∈ 
locName(ci)} denotes the local names of the super-concepts of c in O. The extended virtual 
document eVD(c) is constituted by dVD(c), SupLex(c) and SupLocName(c). Formally, 

&KLA7D M
OPLA&D,%QR7S?T&A&D,%U&VW'A&D,%=XA&D,%=YA&D,%12FbcdA7D,%12Fb:4efgcA7DZ (2) 

And for a property p, the eVD(p) is constituted by the dVD(p) and the local names of the 
super-properties of p, which belong to Hr in the sense of Definition 1. 

Let’s now detail the matching process. ServOMap relies on the use of IR techniques for 
ontology matching. In particular, it uses the VSM [45] on which the ServO OR is based. In 
the VSM, documents and queries are represented as weighted vectors in a multi-dimensional 
space, where each distinct index term is a dimension, and weights are tf-idf values. In the 
following sections, we detail the overall process of the approach as depicted in Figure 1. 

Figure 1 Matching Process of ServOMap. 

Initialisation phase 

Ontology loading 

The ontology loading step takes charge of processing the input ontologies. For each entity 
(concept, property), a direct virtual document from the set of annotations is generated for 
indexing purposes. We consider any ontology, regardless of its degree of formalism, as a 
corpus of semantic documents to process following Definition 1. Each entity (concepts, 
properties including both object properties and data type properties) is therefore a document 
to process. For each input ontology, we use ServO to dynamically generate a direct virtual 
document corresponding to any retrieved entity and instantiate the ServO metamodel. The 
objective is to gather the terminological description of each entity in order to build a vector of 
terms. Each virtual document has a set of fields for the storing its different elements. 



The generation process is dynamic as each entity is described according to the features it 
holds. Thus, some concepts may have synonyms in several languages or may have comments 
whereas others may only have English terms. Some concepts may have declared properties 
(either object properties or datatype properties, etc.), therefore it may arise that some fields 
may not be instantiated. 

Metadata and metrics generation 

After the loading ontologies, a set of metrics are computed. They include the size of input 
ontologies in terms of concepts, properties and instances, as well as the list of languages 
denoting the annotations of entities (labels, comments), etc. Determining the input size helps 
in later adapting the matching strategy. We distinguish two categories regarding the size: 
matching two ontologies with less than 500 concepts each and matching ontologies with a 
number of concepts ≥ 500. Further, we pre-identify whether the matching problem is an 
entity level or instances level matching. The purpose of detecting the set of languages allows 
the use of the latter as the appropriate list of specific stopwords and the use of stemming 
during pre-processing. 

Ontology indexing 

As in the traditional IR domain, the purpose of the indexing step is to build an inverted index 
for each input ontology from the virtual documents previously generated. Each index 
contains a set of fields identified during the generation of virtual documents. Figure 2 gives 
an example of available fields for three different resources: a) the NCI Thesaurus; b) the 
FMA; and c) the Thesaurus for the Social Sciences (TheSoz) (c) which is used to index 
documents and research information in the social sciences (available at 
http://lod.gesis.org/thesoz/). This latter resource provides label terms in English 
(directLabelCEN), German (directLabelCDE) and French (directLabelCFR). 

Figure 2 Generated fields for respectively the NCI Thesaurus (a), the FMA (b) and the 
Thesaurus for the Social Sciences (TheSoz) (c). 

For each field, we can see the number of entries in this figure. For instance, there are 79,042 
entries for the uri field of the FMA, which represents the number of entities of this ontology. 

We proceed as follows to build the index. Each dVD is passed through a set of filters: 
stopwords removal, non-alphanumeric character removal (for harmonisation of the terms 
description), lowercasing and label stemming and converting numbers to characters. Indeed, 
we use a VSM -like system from the IR field to compare terms. Therefore non-alphanumeric 
symbols are removed in order to harmonise the description of terms. The conversion of 
numbers to characters contributes too in reducing mistakes during the matching process. For 
instance, for the two biomedical ontologies FMA and NCI, the Ninth_thoracic_vertebra of 
the FMA corresponds to the T9_Vertebra of the NCI thesaurus (knowing that the latter also 
has T8_Vertebra and so on). 

In addition, to deal with the variation in naming concepts, labels denoting concepts are 
enriched by their permutation before stemming and after stopwords and non-alphanumeric 
character removal. We use permutation in order to deal with variation in naming concepts. 
Indeed, in the biomedical domain, many ontologies reuse the UMLS [34] to acquire 
synonymous terms. It is common to come across concepts denoted by all possible 



permutations between words of the terms. For instance, the concept “Myocardial Infarction” 
with the UMLS CUI C0027051 has among its labels: myocardial infarction, heart attack, 
infarctions myocardial, attacks heart, etc. The permutation operation is applied to the first 
four words of each label. We limit it to the first four words for two reasons: i) most terms 
used to denote entities that we encounter are of less than five words; ii) increasing this 
threshold affects the performance in terms of computation time without a significant gain in 
terms of F-measure. For instance, after enriching the term thoracic vertebral foramen we 
obtain, before stemming, the set {thoracic vertebral foramen, thoracic foramen vertebral, 
vertebral thoracic foramen, foramen vertebral thoracic, foramen thoracic vertebral, 
vertebral foramen thoracic}. The permutation process slightly increases the size of the index 
(around 20%). For instance, the index of SNOMED-CT is 22.8 Megabyte with permutation 
against 18 Megabyte. We can notice that the increase of the size of a Lucene index is not 
linear according to the input data due to internal compression strategy. In addition, our 
experiments show that the impact of the permutation on the precision is negligible compared 
to the gain in terms of F-measure. It is of the order of 2%. This low impact could be 
explained by the combined use of the concatenation. 

Two strategies are used for indexing: exact and relaxed indexing. Exact indexing allows 
highly precise candidate retrieving. In this case, before the indexing process, all words for 
each label are concatenated by removing the spaces between them (e.g. thoracic vertebral 
foramen becomes thoracicvertebralforamen). In addition, for optimisation purposes, the 
possibility of indexing each concept’s dVD with information about the siblings, descendants 
and ancestors of the entity that it describes is provided. 

Table 1 gives an example of three kinds of entries for an index: a concept, a datatype property 
and an object property. The example is taken from the Thoracic_vertebral_foramen concept 
and the Outdated_meaning datatype property of the FMA, and the NCI 
Gene_Product_Chemical_Classification object property. The permutations of the label of the 
concept are partially represented in the table to save space. The different entries have been 
passed through different filters according to the given field. As we can observe, for a datatype 
property we keep a propertyType field that indicates the constraint, if available (in the 
example, it is a functional property). For the concept, the local name (directNameC), the 
English label (directLabelCEN) and the uri are generated and indexed. 



Ta
bl

e 1
 E

xa
m

pl
e o

f t
he

 en
tr

ie
s o

f t
he

 in
de

x 
fo

r a
 co

nc
ep

t, 
a 

da
ta

ty
pe

 a
nd

 o
bj

ec
t p

ro
pe

rt
ie

s a
fte

r 
pr

e-
pr

oc
es

sin
g 

En
tit

y 
Fi

el
d 

D
es

cr
ip

tio
n 

V
al

ue
 

Co
nc

ep
t 

di
re

ct
La

be
lC

EN
 

La
be

ls 
in

 E
ng

lis
h 

th
or

ac
ve

rte
br

fo
ra

m
en

 fo
ra

m
en

th
or

ac
ve

rte
br

 fo
ra

m
en

ve
rte

br
th

or
ac

 v
er

te
br

fo
ra

m
en

th
or

ac
 

di
re

ct
N

am
eC

 
Lo

ca
l n

am
e 

th
or

ac
ic

ve
rte

br
al

fo
ra

m
en

 
ur

i 
U

RI
 o

f t
he

 e
nt

ity
 

ht
tp

://
bi

oo
nt

ol
og

y.
or

g/
pr

oj
ec

ts/
on

to
lo

gi
es

/fm
a/

fm
aO

w
lD

lC
om

po
ne

nt
_2

_0
#T

ho
ra

ci
c_

ve
rte

br
al

_f
or

am
en

 
D

at
at

yp
e 

Pr
op

er
ty

 
dR

an
ge

 
Ra

ng
e 

re
str

ic
tio

n 
xs

d 
str

in
g 

di
re

ct
N

am
eP

 
Lo

ca
l n

am
e 

ou
td

at
m

ea
n 

do
m

ai
nL

ab
el

sD
P 

D
om

ai
ns

 re
str

ic
tio

n 
(c

on
ce

pt
 h

ie
ra

rc
hy

) 
co

nc
ep

t n
am

e 
at

tri
bu

te
 e

nt
ity

 
pr

op
er

ty
Ty

pe
 

Co
ns

tra
in

t o
n 

th
e 

pr
op

er
ty

 
fu

nc
tio

n 
ur

i 
U

RI
 o

f t
he

 e
nt

ity
 

ht
tp

://
bi

oo
nt

ol
og

y.
or

g/
pr

oj
ec

ts/
on

to
lo

gi
es

/fm
a/

fm
aO

w
lD

lC
om

po
ne

nt
_2

_0
#O

ut
da

te
d_

m
ea

ni
ng

 
O

bj
ec

t P
ro

pe
rty

 
di

re
ct

N
am

eP
 

Lo
ca

l n
am

e 
of

 th
e 

pr
op

er
ty

 
ge

ne
pr

od
uc

tc
he

m
ic

cl
as

si
f 

do
m

ai
nL

ab
el

sO
P 

D
om

ai
ns

 re
str

ic
tio

n 
G

en
e 

Pr
od

uc
t K

in
d 

ra
ng

eL
ab

el
sO

P 
Ra

ng
es

 re
str

ic
tio

n 
G

en
e 

Pr
od

uc
t K

in
d 

ur
i 

U
RI

 o
f t

he
 e

nt
ity

 
ht

tp
://

nc
ic

b.
nc

i.n
ih

.g
ov

/x
m

l/o
w

l/E
V

S/
Th

es
au

ru
s.o

w
l#

G
en

e_
Pr

od
uc

t_
H

as
_C

he
m

ic
al

_C
la

ss
ifi

ca
tio

n 



Candidate mappings retrieving phase 

After the preliminary phase, which prepares the matching process, the main component for 
candidate retrieving is launched. 

Definition 7 (candidate mappings): given two inputs, ontologies O1 and O2, their respective 
indexes, I1 and I2, and an optional background knowledge (denoted as BK), the candidate 
mappings, denoted as ℳcandidate is the union of the candidates generated using respectively 
lexical (denoted as ℳexact for concepts, ℳprop for properties), extended (denoted as 
ℳcdicjkck

lm   and contextual (denoted as ℳcontext) similarity computing: 

ℳ4fjk8kfic M ℳcdf4i ∪ℳno:n ∪ℳcdicjkck
lm ∪ℳ4:jicdi  (3) 

Knowing that the following property is satisfied: ℳcdf4i pℳno:n pℳcdicjkck
lm p

ℳ4:jicdi M q . Indeed, these different results are successive. In our strategy, each result 
provides candidates not previously found. Each set is constituted by a set of triples < e1, e2, s 
> such that &' ∈ 95r  and &( ∈ 95s  and s is the computed similarity between e1 and e2 and 
which acts as an annotation. Please note that sometimes in the paper we would like to only 
refer to e1 and e2 belonging to the above sets; in this case we use the term pairs. 

We detail now the strategy used for computing the different candidate mappings. 

Lexical similarity computing 

Definition 8 (cosine-similarity Cossim): given two virtual documents, either dVD or eVD, 
representing a first entity as a query q and an indexed entity e, the cosine similarity between 
their weighted vectors is: 

9R\t8gAu, &D M vAwD.vAcD
|vAwD||vAcD|  (4) 

V(q) V(e) is the dot product of the weighted vectors and |V(q)| and |V(e)| are their Euclidean 
norms. From the above classical cosine similarity formula, the Lucene API introduces some 
normalisation and boosting factors for the purpose of taking into account the following 
factors: i) some query terms are more important than others (queryBoost(q)); ii) some 
documents (in our case entities) may be more important than others (docBoost(e)); iii) for a 
query with a multiple terms, users can further reward entities matching more query terms 
through a coordination factor (coordFactor(q, e)); and finally iv) in order to avoid known 
bias introduced by the difference of documents length in the classical VSM, Lucene 
introduces a length normalisation factor (in our case docLenNorm(e)) which replaces the 
Euclidian norms of V(e) in formula [4]. Therefore the adapted Lucene score between two 
documents (or entities) q,and e, known as the Lucene Conceptual Scoring Function (LCSF) 
is: 
\7R)&Au, &D M
7RR)#y?7]R)Au, &D. u2&)IzRR\]AuD. vAwD.vAcD|vAw| . #R7U&@SR)TA&D. #R7zRR\]A&D . Document 
length norm docLenNorm(e) and document boost docBoost(e) are known at indexing time 
and computed by Lucene in a single value norm(e). As each document may have several 
fields (t), the single computed value is rather norm(t, e). From the LCSF we define Simlucene 
(q, e) as [44]: 



1"T{|4cjcAu, &D M
7RR)#Au, &D.%u2&)ISR)TAuD.∑i%∈w ][i,c.%"#[i(. 3RR\]A]D. @R)TA], &D (5) 

where 

• 
tft,e correlates to the term’s frequency, defined as the number of times term t appears in the 
currently scored entity e. ][i,c M ~[)&u2&@7IA]D ; Where frequency(t) denotes the 
number of occurrences of t within the entity e. 

• "#[i
(  stands for inverse document frequency. This value correlates to the inverse of 

EntityFreq(t) within the index (the number of entities in which the term t appears); 

• coord(q, e) is a score factor based on how many of the query terms q are found in the 
specified concept e; 

• queryNorm(q) is a normalising factor used to make scores between queries (or even 
different indexes) comparable; 

• boost(t) is a search time boost of term t in the query q as specified in the query text; 

• norm(t, e) encapsulates a few (indexing time) boost and length factors such as concept 
boost and field boost. 

All the above built-in functions are detailed in the description of the TFIDFSimilarity class of 
the Lucene API available on the library web sitea and documentation [44]. 

Now, let’s assume that ISub(s1, s2) is the ISub string similarity between two input strings, a 
measure adapted for ontology matching [50]. Q-Gram (s1, s2) is the n-gram similarity 
distance between two texts string, which is simply the number of common/distinct n-grams 
between two strings [51]. Finally Lev(s1, s2) is the Levenshtein distance between two strings, 
which is the minimum number of single-character edits (insertion, deletion, substitution) 
required to change one word into another [52]. We introduce in the following the lexical 
similarity. 

Definition 9 (lexical similarity between entities): given two entities (concepts or properties) 
e1 and e2 such that e1 ∈ O1 and e2 ∈ O2, the lexical similarity Simlex(e1, e2) is defined as: 

������ M
^� � ����A&KLA&'D,%&KLA&(D_D �
%A� � �����A&KLA&'D,%&KLA&(DDD � A� � ���A&KLA&'D,%&KLA&(DDD 

(6) 

where α, β, γ ∈ [0, 1] are respectively the weight for the ISub, Q-Gram and Levenshtein 
distances (α + β + γ = 1). 

The objective of the lexical similarity computing is to build the exact candidate sets Mexact 
and Mprop. Mexact is constituted of all triples < e1, e2, Simlucene(e1, e2) > such that &' ∈ 95r  and 
&( ∈ 95s  and Simlucene(e1, e2) is greater than a given threshold. The followed process is 
depicted in Figure 3. 

Figure 3 Lexical similarity computing. 

Given two input ontologies, O1 and O2, and their respective indexes, I1 and I2, obtained after 
the indexing step described previously, by using the search component of ServO, we perform 



an exact search respectively for I1 using O2 as search component and for I2 using O1. To do 
so, for each &' ∈ 95r  query from its direct virtual document is generated and sent to the 
index I2. Similarly, for each &( ∈ 95s  a query from its virtual document is generated and sent 
to the index I1. We intersect the two resulting sets to keep all pairs found from the two way 
search. From the intersected results, we select the Best-k results (k chosen empirically) that 
have Simlucene greater than a given MaxScore. This MaxScore is chosen manually. The 
obtained pairs are filtered out in order to keep only those satisfying a lexical similarity 
condition. This condition is to keep all pairs < e1, e2 > such that Simlex(e1, e2) ≥. To compute 
Mexact, Simlucene acts as a pre-filter which compares two entities as a “whole”, regardless of the 
order of words within a term. For instance, Simlex combines finer similarity metrics. In 
addition, with the use of an index, Simlucene allows reduction of the search space 

During the querying process, each direct virtual document constituting a query is passed 
through the same set of filters that are applied during the indexing step. 

A similar strategy of computing Mexact is used to compute the similarity between the 
properties of input ontologies, which generates the Mprop set. 

Extended similarity computing 

For extended similarity computing which provides Mextended, first the same process as 
previously described is repeated in order to compute a set from the concepts not yet selected 
with the exact search. Then, in order to deal with the synonym issue, we implemented a 
general purpose background knowledge-based strategy. From the set of concepts not selected 
after the previous phase, we use the WordNet dictionary [53] for retrieval of alternative labels 
for concepts to be mapped. The idea is to check whether a concept in the first ontology is 
designed by synonymous terms in the second one. All pairs in this case are retrieved as 
candidates. 

Contextual similarity computing 

The idea of the contextual similarity computing is to retrieve possible new candidate 
mappings which cannot be found with the terminological description of entities only. 
Therefore, it introduces the further inclusion of the structure of the input ontologies. 

The experiments conducted with our previous approach described in [36] show that the 
lexical similarity computing provides very highly precise candidate mappings. Therefore, we 
hypothesise that the Mexact set can be used as a basis for retrieval of new candidate mappings 
using contextual features. 

Definition 10 (possible context candidates pcc): given two input ontologies, O1 and O2, and 
a set Mexact of triples obtained by lexical similarity computing, the set of contextual-based 
candidate pairs, denoted pcc, is defined as: 

F77 M 6AV,%ID%|HA9',%9(D:%A9',%9(D ∈ �cdf4i%and%V ∈ 1234'5 ,%I% ∈
1234(5 E ∪ 6AV,%ID%|HA9',%9(D:%A9',%9(D ∈ �cdf4i%and%V ∈ 12F4'5 ,%I% ∈
12F4(5 E ∪ 6AV,%ID%|HA9',%9(D: A9',%9(D ∈ �cdf4i%and%V ∈ 1"34'5 ,%I% ∈
1"34(5 E  

(7) 



The strategy of retrieving possible context candidates is illustrated in Figure 4. Let’s assume 
that (a6, b6) ∈ Mexact. The possible contextual-based candidate pairs are then the new 
candidates from the entourage of (a6, b6). 

Figure 4 Strategy for generating possible candidate pairs. 

Now we detail how we compute the set Mcontext, which represents the new triples obtained 
from the contextual similarity computing. We follow a ML strategy to classify the pairs from 
pcc by assuming that the set Mexact is the base learner. Figure 5 gives the followed workflow 
for the context-based similarity computing. The main idea is to characterise the pairs in Mexact 
by a set of features and do the same for the pcc. 

Figure 5 Machine Learning based contextual similarity computing. 

First we generate the learning set from the Mexact set. Each pair in this set, assumed correct, is 
labelled as “Yes” and we randomly generated incorrect pairs denoted as “No” (see (1) and (2) 
in Figure 5). To do so, for each pair in Mexact we compute a set of five similarity measures (Q-
Gram, Levenshtein, BlockDistance, Jaccard and Monge–Elkam) between the eVD (which 
does not in this case include the properties). Further, we randomly generate a set of incorrect 
candidate pairs such that for each (c1, c2) ∈ Mexact we obtain 
6A7',%1234(5 ,%A71, ? 12F?4 25D, A? 123?4 15, 72D, A? 12F?4 15, 72DE . The main idea here is that a 
concept c1 cannot be mapped both by a concept c2 and its descendant or ancestor concepts. 
We have chosen five different similarity metrics to cope with short and long text strings. The 
Jaccard measure [54] computes the number of words two strings have in common divided by 
the total number of unique words. The Monge–Elkam measure [55] is a simple but effective 
method of measuring similarity between two text strings containing several tokens, using an 
internal similarity function, sim(a, b), able to measure the similarity between two individual 
tokens. The block distance between two vectors a and b is ∑ |?8 � 38|j

8�'   where n is the 
dimension of the vectors. 

After generating these features, the next step is to build the classifier from the data generated 
previously ((3) and (4)). We use a DT [56], which was proven to be efficient, and the J48 
algorithm implemented within the Weka frameworkb. From the pcc we keep as test set all 
pairs having the computed score s = getScoreSub() + getScoreSup() + getScoreSib() > φ (φ is 
chosen manually) and we generate the same features based on the five similarity measures 
((5) and (6) in Figure 5). The functions getScoreSub(), getScoreSup(), getScoreSib() compute, 
respectively, for each possible pair (c1, c2) a score from the sub-concepts pairs, super-
concepts and siblings pairs. The idea is to compute the similarity between two concepts c1 
and c2 from the similarity between their surrounding concepts, taking into account the depth 
of these surrounding concepts from c1 and c2. For instance, for the getScoreSub(), the sub-
concepts of c1 and those of c2 are considered. The sub-concepts that are far apart in terms of 
depth contribute less to those that are closer. 

Finally the set of contextual-based candidate mappings Mcontext is generated from the test set 
which is classified using the previously built classification model ((8) in Figure 5). 



Post-processing phase 

This step involves enriching the set of candidates mapping, the selection of the best 
candidates, performing a logical consistency check and finally, if a reference alignment is 
available, performing the system performance evaluation. The enrichment consists mainly of 
incorporating those identified, not originally mapped pairs and mapping all of their sub-
concepts after the similarity computing phase. The selection of the final candidates from the 
set ℳcandidate is performed using a new, improved filtering algorithm from the previous 
ServOMap implementation [36]. The filtering algorithm implements a greedy selection 
strategy to select the best candidates based on their scores. 

The logical consistency check consists of two steps. First we filter out possible incorrect 
mappings mainly due to the extended and contextual similarity computing which generates 
less precise candidate mappings than lexical similarity computing. Therefore, two kinds of 
consistency checks are performed as indicated in Figure 6. The first check (Figure 6 (a)) is to 
discard candidate pairs constituted by disjoint entities if c1 ∩ c2 = q and (c1, c3) ∈ Mexact then 
we remove any (c2, c3) from the candidate mappings set ℳcandidate. The second check involves 
removing all criss-cross candidate mappings. The idea is to select the best candidates that are 
not in conflict with the candidate mappings belonging to Mexact. In Figure 6 (b), if the pair (c1, 
c2) ∈ Mexact then we discard all generated candidates between c1 and 1234(5( , c1 and 12F4(5(  
and finally 1"34'5'  and c2. 

Figure 6 Discarding incorrect candidate mappings. The green dashed line of the part (b) 
of the figure identifies the pair from Mexact. The dashed black lines with red cross identify the 
candidate mappings to remove. 

In addition to these trivial checks, we reuse the LogMap-Repair facility system [8] to perform 
logical inconsistency checks. This repair facility has proven to be effective in providing 
almost clean mappings from the results provided by the ServOMap system [57]. 

Finally, we have implemented an evaluator to compute the usual precision (P), recall (R) and 
F-measure (the harmonic mean) for the generated final mappings if a reference alignment is 
provided. If CM is a set of correct mappings (the reference mappings), and RM the set of 
mappings returned by ServOMap, then these metrics are computed with the following 
formulas: 

� M % |��|p| �|| �|   (8) 

= M |��|p|¡¢|
|��| ,  (9) 

y M (�£� 
£¤    (10) 

Evaluation and results 
In this section we report the evaluation performed for ServOMap and the results obtained. 
We will first describe the dataset used for the evaluation and then present the different results. 



The dataset used 

The dataset used is the LargeBiomed dataset of the OAEI campaign. The LargeBiomed 
dataset is one of the official datasets which has been provided since 2012 within the context 
of the OAEI campaign. It is currently the most challenging task in terms of scalability and 
complexity. It is dedicated to the evaluation of automated large scale matching systems. The 
ontologies in this dataset are semantically rich and contain tens of thousands of entities. The 
track consists of finding alignments between the FMA containing 78,989 concepts [31], the 
SNOMED-CT containing 306,591 concepts [7] and the NCI Thesaurus (NCI) containing 
66,724 concepts [32]. 

For this evaluation, the 2009AA version of the UMLS Metathesaurus is used as the gold 
standard for the track reference alignments [34]. The Metathesaurus is a very large, multi-
purpose, and multi-lingual vocabulary database that contains information about biomedical 
and health related concepts, their various names and the relationships among them. It is built 
from the electronic versions of more than 160 biomedical resources including thesauri, 
classifications, code sets and lists of controlled terms. It is worth noting that as UMLS may 
contain some incoherencies and is not complete, the performance of an automated matching 
system could be affected when using a reference alignment from this resource. 

In order to measure the behaviour of the matching system according to the size of the input 
ontologies three matching problems are identified: the FMA-NCI matching problem, the 
FMA-SNOMED matching problem, and the SNOMED-NCI matching problem as indicated 
in Table 2, with each problem divided into two subtasks: small and large. According to this 
table, we have considered six subtasks according to the size of the fragments of the input 
ontologies. Therefore, for the FMA-NCI problem, the small task consists of matching 5% of 
the FMA (3,696 concepts) and 10% of the NCI (6,488 concepts) while the large task consists 
of matching the whole ontologies. For the FMA-SNOMED problem, the small task consists 
of matching 13% of the FMA (10,157 concepts) and 5% of SNOMED (13,412 concepts). The 
large task consists of the complete FMA and 40% of SNOMED (122,464 concepts). For the 
SNOMED-NCI problem, the small fragment consists of 17% of SNOMED (51,128 concepts) 
and 36% of the NCI Thesaurus (23,958 concepts) while the large task consists of the 
complete NCI Thesaurus and 40% of SNOMED. 

Table 2 Size of input ontologies considered for the different matching problems 
Matching Problem SMALL Task LARGE Task 
FMA-NCI FMA NCI FMA NCI 

5% - 3,696 10% - 6,488 100% - 78,989 100% - 66,724 
FMA-SNOMED FMA SNOMED FMA SNOMED 

13% - 10,157 5% - 13,412 100% - 78,989 40% - 122,464 
SNOMED-NCI SNOMED NCI SNOMED NCI 

17% - 51,128 36% - 23,958 40% - 122,464 100% - 66,724 
Each cell indicates the percentage of the fragment and the corresponding number of concepts. 

Variants of the ServOMap system used for the evaluation 

The evaluation of four versions of the system corresponding to different versions is reported 
in this paper. Each version corresponds to a particular configuration of the system and/or the 
implementation of some specific strategies. Therefore we consider the following versions of 
the system. 



• 

ServOMap-lt: this version of ServOMap is a light version of the system in the sense that 
only one of the input ontologies (the larger one) is indexed during the indexing phase. In 
this case, entities from the not indexed input ontology are used as queries to search within 
the built index. It uses the direct description of entities and stemming of labels. The 
properties and contextual similarity are not taken into account during the matching 
process; only mappings between concepts are computed. In order to choose the best 
mapping candidates, Levenshtein distance is used toselect those candidates with the 
highest similarity measure between the IDs of the concepts. In addition, ServOMap-lt 
provides 1:n candidate mappingsc. That is, a concept from the first input ontology can be 
mapped to several concepts of the second ontology. 

• 

ServOMap_2012: this version indexes the two input ontologies for the retrieval of 
candidate mappings with high precision. It takes into account both concepts and properties 
and provides only 1:1 mappings. Both ServOMap-lt and ServOMap_2012 use the built-in 
cosine similarity implemented within the Lucene API as similarity measure between 
entities and no any external background knowledge is used. 

• 

ServOMap_2013: this version too indexes both input ontologies. It provides 1:n 
mappings, meaning in this case that one entity in the first ontology can be matched to 
several entities in the second ontology and vice-versa. WordNet is used as general purpose 
background knowledge and thresholds are used to select the candidate mappings during 
lexical similarity and contextual similarity, as described previously. In addition, the logical 
consistency repair facility is used during the post-processing phase. 

• 
ServOMap_V4: this version is the latest version of the ServOMap system. One of the 
main differences, compared with ServOMap_2013, is the version of the Lucene API used 
(a more recent version is used here) and it does not use the LogMap-Repair facility. 

From a technical point of view, ServOMap is fully implemented in JAVA as well as the 
ServO OR on which it relies. The JENA framework is used for processing ontologies in 
ServO for ServOMap_2012 and ServOMap-lt, and the OWLAPI for ServOMap_2013 and 
ServOMap_V4. 

All the above versions provide only equivalence mappings as ServOMap is currently not able 
to perform oriented mappings. ServOMap-lt and ServOMap_2012 were included in the OAEI 
2012 campaign while ServOMap_2013 was used during the OAEI 2013 campaign. 

The SEALS platform [58] is used for the automated evaluation of the first three versions in 
the context of the OAEI campaign. The SEALS project is dedicated to the evaluation of 
Semantic Web technologies. It created a platformd to ease this evaluation, organising 
evaluation campaigns and building the community of tool providers and tool users around 
this evaluation activity. The overall process of the OAEI campaign using this platform is 
described on the campaign website.e 

Results 
The evaluation reported in this section for the three first versions of ServOMap was 
performed in a server with 16 CPUs allocating 15 GB RAM in the context of the OAEI 
campaign. The latest version was evaluated using a laptop (Intel Core CPU 2.8GHz) running 
under Ubuntu Linux with 6 GB RAM. The computation times are expressed in seconds. The 
precision, recall and F-measure were computed according to the formulas described in 
Section 2. 



We summarise, in the following section, the performance of the different versions on the 
dataset described above. 

Results of ServOMap_2012 

The performance achieved by ServOMap_2012 is summarised in Table 3. For the FMA-NCI 
matching problem, this system obtained, for the small task, an F-measure of 85.5% with a 
precision of 99% by providing 2,300 mappings. For the large task we observed a small 
decrease of the performance with an F-measure of 82.8%. 

Table 3 Performance achieved by the ServOMap_2012 version on the LargeBio dataset 
ServOMap_2012 Task #Mappings Precision Recall F-Measure Time 
FMA-NCI Small 2,300 99% 75.3% 85.5% 25 

Large 2.413 93.3% 74.4% 82.8% 98 
FMA-SNOMED Small 6,009 98.5% 65.7% 78.8% 46 

Large 6,272 94.1% 65.5% 77.3% 315 
SNOMED- NCI Small 10,829 97.2% 55.9% 70.9% 153 

Large 12,462 83.5% 55.2% 66.4% 654 

The FMA-SNOMED matching problem took longer to process than the FMA-NCI one. 
There were more entities to compare within the input ontologies of this task. For the small 
task of this matching problem, ServoMap_2012 obtained an F-measure of 78.8% by 
providing 6,009 mappings while for the large task it achieved an F-measure of 77.3%, a small 
decrease compared to the small task. 

The SNOMED-NCI matching problem presented more entities to compare between the input 
ontologies. The observed computation time was thus greater than with the previous matching 
problems. ServOMap succeeded in providing 12,462 mappings for the large ontologies with 
an F-measure of 66.4% for the SNOMED-NCI matching problem. 

Regarding the computation times, the fastest task was, unsurprisingly, the small task of the 
FMA-NCI matching problem, which consisted of a relatively very small portion of entities. 
The system performed this task in 25 seconds while the large SNOMED-NCI task took 11 
minutes. 

Results of ServOMap_lt 

Table 4 summarises the results achieved by ServOMap-lt. For the FMA-NCI matching 
problem, the system provided 2,468 mappings with an F-measure of 88.8% and the greatest 
precision while for the large task we observed the same behaviour as in the ServOMap_2012 
case: a slightly decrease of the performance with an F-measure of 85.2%. For the FMA-
SNOMED matching problem, ServOMap-lt provided 6,563 mappings for the small task 
against 6,563 for the large task, which corresponds respectively to 81.4% and 79.7% of F-
measure. Similar to the previous system, the SNOMED-NCI matching problem was more 
difficult to handle. The F-measure was respectively 73.7% and 67.8% for the small and the 
large task with a relatively stable recall of around 59%. 



Table 4 Performance achieved by the ServOMap_lt version on the LargeBio dataset 
ServOMap-lt Task #Mappings Precision Recall F-Measure Time 
FMA-NCI Small 2,468 98.8% 80.6% 88.8% 20 

Large 2,640 91.4% 79.8% 85.2% 95 
FMA-SNOMED Small 6,348 98.5% 69.4% 81,4% 39 

Large 6,563 94,5% 68,9% 79,7% 234 
SNOMED-NCI Small 11,730 96% 59.8% 73.7% 147 

Large 13,964 79.6% 59% 67.8% 738 

We can notice here that ServOMap-lt performed better than ServOMap_2012 in regard to the 
F-measure and the computation times (expect for the large SNOMED-NCI task). We discuss 
this behaviour in Section 4. 

Results of ServOMap_2013 

The results of ServOMap_2013 are described in Table 5. Compared to the previous systems, 
the FMA-NCI was the easiest task to perform. The system obtained an F-measure of 87.7% 
for the small task (2,512 mappings) against 76.3% for the large one (3,235 mappings). We 
observed a drop of about 0.10 points between the two subtasks. For the FMA-SNOMED 
matching problem, the decrease of the F-measure was less significant: from 81.4% for the 
small task to 79.7% for the large one following the same behaviour as the ServOMap_2012 
system for this matching problem. The results for the SNOMED-NCI matching problem 
were, for the F-measure, respectively, 76.1% and 71.8% for the small and the large task, with 
a noticeable drop in terms of precision (from 93.3% to 82.2%). It is worth noting that overall, 
the computation times significantly increased compared to the two previous systems. 

Table 5 Performance achieved by the ServOMap_2013 version on the LargeBio dataset 
ServOMap_2013 Task #Mappings Precision Recall F-Measure Time 
FMA-NCI Small 2,512 95.1% 81.5% 87.7% 141 

Large 3,235 72.7% 80.3% 76.3% 2,690 
FMA-SNOMED Small 5,828 95.5% 62.2% 75.3% 391 

Large 6,440 86.1% 62% 72.1% 4,059 
SNOMED- NCI Small 12,716 93.3% 64.2% 76.1% 1,699 

Large 14,312 82.2% 63.7% 71.8% 6,320 

Results of ServOMap_V4 

Table 6 describes the results achieved by the ServOMap_V4 system. For the FMA-NCI 
matching problem, the system obtained 89.4% (2,725 mappings) and 79.3% (3,163 
mappings) respectively for the small and the large task. For the FMA-SNOMED task there 
was a significant increase in terms of recall compared to the previous system which led to 
better F-measures of 83.4% and 78.1% respectively for the small and the large tasks. 
Regarding the SNOMED-NCI matching task the F-measure was 74.4% for the small task 
(13,047 mappings) and 68.4% (15,525 mappings) for the large task. We noted that the 
computation times of ServOMap_V4 and ServOMap_2013 were roughly similar when the 
repair facility time is not taken into account. 



Table 6 Performance achieved by the ServOMap_V4 version on the LargeBio dataset 
ServOMap_V4 Task #Mappings Precision Recall F-Measure 
FMA-NCI Small 2,725 94.3% 85% 89.4% 

Large 3,163 71.1% 83,6% 79.3% 
FMA-SNOMED Small 6,978 95.5% 74% 83.4% 

Large 7,940 83.3% 73.46% 78.1% 
SNOMED- NCI Small 13,047 90.9% 62.9% 74.4% 

Large 15,525 75.7% 62.3% 68.4% 

Finally, Table 7 presents the performance achieved by ServOMap_V4 on the small fragment 
of the input ontologies of the LargeBiomed dataset when coupled with the LogMap-Repair 
logical consistency facility check. As can be seen, for most of the cases, the precision 
increased slightly while the recall decreased. Overall, compared to the ServOMap_V4 system 
alone, the F-measure is lower when the repair facility is used. One of the factors which 
caused this could have affected the step where the repair facility is used, which could have 
been either at the end of the matching process or after the lexical computing similarity. 

Table 7 Use of the LogMap repair facility with ServOMap_V4 on the small fragment of 
the input ontologies 
 #Mappings Precision Recall F-Measure 
FMA-NCI 2,651 95.2% 83.5% 88.9% 
FMA-SNOMED 6,402 95.4% 67.9% 79.2% 
SNOMED- NCI 12,587 92.7% 61.9% 74.2% 

Discussion 
The ontology matching field is maturing. We have noticed significant progress of the systems 
included in the 2012 and 2013 edition of OAEI. However, dealing with large ontologies still 
remains a key challenge. The ServOMap system, an automated a generic ontology matching 
system, has proven to be efficient when dealing with large scale matching tasks. It is based on 
IR techniques which combine the use of the lexical description of entities to be matched and 
their contextual information. 

Our findings suggest that an IR-based approach, relying on the terminological description of 
entities, combined with a structural similarity approach is very effective for the matching of 
large ontologies. They also show that it is possible to compute mappings with very high 
precision by using lexical similarity computing and dealing with the complexity of matching 
large ontologies without using blocking strategy, in contrast to the approaches described in 
Section 2. 

Regarding the participating systems or configurations in the OAEI campaign, 15 out of 23 
and 13 out of 21 were able to cope respectively with at least one of the tasks of the 
LargeBiomed track matching problems at OAEI 2012 and 2013 [59,60]. Our system was 
among the best system in terms of F-measure for all the variants and in terms of computation 
times for ServOMap_2012 and ServOMap-lt. ServOMap_2012 was able to provide mappings 
with the best precision for the task of matching the FMA, NCI and SNOMED. As shown in 
the results described previously, the computation times increased drastically for 
ServOMap_2013 and ServOMap_V4. Two factors contributed to this. First, in these latter 



versions, we assume that the F-measure is a more important factor than the computation time 
as in several use case scenarios, mappings could be computed in a batch mode and provided 
then to the running system. Second, the introduction of several string similarity metrics, 
computed for each candidate pair, as well as the new contextual similarity strategy based on 
ML, impacted the computation times of ServOMap. 

Regarding the behaviour of ServOMap_2012 and ServOMap-lt, the performance of the latter 
was better in terms of F-measure for all the tasks described above. This could be explained by 
the fact that the recall of ServOMap-lt is a step ahead due to its ability to compare the labels 
of the concepts simply in the different tasks. Using the tf.idf measure, completed by a 
Levenshtein distance-based selection of best candidates, could be sufficient for the kind of 
resources within the LargeBiomed dataset. This finding is in line with the results obtained by 
[61] after comparing different string similarity metrics of ontology matching. 
ServOMap_2012 has proven to be more stable and efficient for the other tracks of OAEI [59] 
, in particular for relatively small ontologies associated with poor terminologies. The use of 
the intersection of results provided by the search over the two indexes built from the input 
ontologies makes the ServOMap_2012 system too restrictive, to the detriment of the recall, 
but provides highly precise mappings. In addition, for the computation times, 
ServOMap_2012, in contrast to ServOMap_lt, performs the indexing of both input 
ontologies, which could be time consuming. However, because of the fact that ServOMap-lt 
uses the Levenshtein distance in addition to the indexing and searching step to select the best 
candidates result, the computation times for the large SNOMED-NCI matching problem are 
greater when using ServOMap_2012 (more than 13,000 returned mappings for ServOMap-lt) 
(Table 4). This matching problem has more entities to compare. 

The use of the WordNet general purpose background knowledge for the newer version, as 
well as the new ML-based contextual similarity, had a positive impact on the performance of 
the system in terms of recall improvement. This is particularly true for the SNOMED-NCI 
matching problem where ServOMap_2013 gained 4.4% over ServOMap_lt and 8.3% over 
ServOMap_2012 without decreasing the precision. 

Regarding the use of different string similarity metrics for the computation of the features of 
the pairs used in the ML-based contextual similarity computing, these were selected to 
optimise results obtained for both short and long text string comparisons. In the present study, 
we did not change these measures to analyse the impact on the performance of the system. 
Such an evaluation will be conducted in a future study. For the choice of these metrics, we 
can benefit from the results of the evaluation conducted by [61]. 

Regarding efficient handling of scalability, while other similar systems, when dealing with 
large ontologies, rely mainly on blocking techniques to reduce the search space [29,30,33], 
ServOMap relies only on IR techniques to build indexes from input ontologies used for 
similarity computing. 

We discuss in the following some aspects of the strategy used and the performance of the 
ServOMap system and highlighting similar research works. 

Combining lexical and contextual strategies in ontology matching 

Lexical and contextual or structural similarity computing have been used in several 
approaches of automated ontology matching at large scale in the biomedical and life sciences 



domain [62-65]. In this domain, the UMLS is widely used as a resource. A combination of 
lexical and semantic approaches is used in [63] to generate mappings between SNOMED-CT 
and the ICD-9 thanks to the use of the UMLS as knowledge base. The semantic approach 
makes use of semantic relationships between UMLS concepts to find mappings, while the 
lexical mapping uses MetaMap, a tool used to recognise UMLS concepts in texts. The 
combined approach achieved a precision of 27% and a recall of 43%. In the current version 
of ServOMap, the UMLS is not used as input resource, only as a resource which provides the 
reference alignments for evaluation of the system. However, it could be interesting to use 
some of the components of the UMLS in the future, in particular the semantic group, in order 
to check the validity of provided mappings. In [64] an automated approach to mapping the 
EMTREE thesaurus to the complete UMLS Metathesaurus is described. The approach uses 
the web service NormalizeString provided by the UMLS Knowledge Source Server to 
identify similar strings across the input terminologies in the lexical step. Then, the generated 
candidates are validated using a structural strategy which consists of computing paths to top-
level concepts and checking compatibility across the external terminology and the UMLS 
Metathesaurus. A global precision of 78% is obtained by this approach. However, the only 
available evaluation is between the EMTREE, which is not freely available, and the UMLS. 
Therefore, it is not possible to check whether the performance is similar for other resources. 
In contrast, ServOMap is a generic approach which has been evaluated using standard 
benchmarks provided by the OAEI campaign, with various datasets. 

Zhou and colleagues used Natural Language Processing techniques to map a drug dictionary 
to RxNorm [65]. They mapped about 6,000 terms from Partners Master Drug Dictionary and 
99 of the top prescribed medications to RxNorm. The mapping was performed at two levels: 
term level (by performing string-based matching using specific pre-processing techniques) 
[66] and concept level (relying on routes group). The evaluation showed an F-measure of 
84.2% for the concept level mapping. For the closest task in terms of scalability, our system 
achieved a performance ranging from 85.5% and 89% for the small task of the FMA-NCI 
consisting of matching 3,696 concepts of the FMA and 6,488 of the NCI. 

The use of the Lucene IR library 

The use of the Lucene IR library in ontology matching is not new. The YAM++ system uses 
it in its IR-based strategy, in particular to index a larger sized ontology. For large scale 
ontology matching YAM++ has recently introduced the Lucene ranking score [67] as a 
metric similarly to that used in the ServOMap system. This system was among the top three 
systems along with ServOMap during OAEI 2012 and obtained the overall best F-measure as 
well in 2013. YAM++ indexes only the description of the entities of the larger sized size 
ontology. This strategy of indexing one of the ontologies is similar to the one used in 
ServOMap-lt. 

Pirro and Talia introduced the LOM (Linguistic Ontology Matcher), a linguistic approach 
based on IR techniques using the Lucene library [68]. It gathers different kinds of linguistic 
information for the entities of the source ontology into a Lucene index. Mappings are then 
obtained by exploiting values of the entities of the target ontology as search arguments 
against the index created from the source ontology. The Protégé APIf is used to process the 
input ontologies. Similar to the previous case, the LOM approach is very close to the strategy 
implemented in ServOMap_lt as only one of the input ontologies is indexed. However it 
differs in the sense that LOM uses the same set of predefined features for each entity while in 
ServOMap they are dynamically generated. 



Effect of logical assessment on mapping repair 

According to Jiménez-Ruiz et al. [57] the application of mapping repair techniques has a 
significant impact on the quality of the mappings with respect to their logical coherence. 
They conducted an empirical evaluation using two state-of-the-art mapping repair systems, 
Alcomo [69] and LogMap-Repair [57]. The evaluation was conducted using the results 
provided by the best systems from the OAEI 2012 LargeBiomed track, including ServOMap. 
We then experimented by reusing the LogMap-Repair logical consistency repair facility in 
ServOMap_2013 and on the results provided by ServOMap_V4 with the small task of the 
LargeBiomed dataset. Even though our goal was to improve the performance of ServOMap, 
we noticed that in some cases the logical assessment is too aggressive as it discards some 
correct candidate mappings and negatively impacts the F-measure, while reducing the 
number of incoherence mappings. This is in line with Pesquita et al. [70] who reported 
recently that the repair technique employed for the LargeBiomed track to create a reference 
alignment removes a considerable portion of correct mappings which affects the performance 
of the evaluated systems. We have to further investigate this issue in order to identify the best 
strategy for use of the repair facility. 

Limitations of the ServOMap system 

ServOMap is well adapted for life sciences ontologies because these ontologies used to rely 
on rich terminological description including several synonym terms for each entity, which is 
suitable for IR techniques. But, the strategy followed in our approach is heavily based on 
lexical similarity computing. Indeed, its results are used as input for the contextual similarity 
computing. This is a major limitation because when dealing with ontologies with poor lexical 
descriptions, the system may provide results with low recall. 

Further, currently the different thresholds used in the system are chosen manually, which 
leads to the use of the same filtering value regardless of the matching task. It would be 
interesting to dynamically choose these thresholds according to the matching case and the 
parameters computed during the metrics computation step. 

In addition, ServOMap is able to provide only equivalence mappings, which is a drawback 
when dealing with some matching tasks as the recall could be negatively affected if the 
reference alignment is comprised of subsumption and disjointness relationships. 

Future work 
According to the achieved performance and the limitation raised above, there is room for 
improvement in the ServOMap system to address the challenges of large scale ontology 
matching [17]. 

Interactive matching 

We plan to introduce interactive matching strategy in ServOMap during large scale ontology 
matching in order to improve the recall in particular. Currently, as can be seen in Figure 7, 
our system only provides a user interface to set up the different parameters of the matching 
process (part (a) of the figure) before the automated generation of mappings (part (b) of the 
figure). However, automated generation of mappings can be seen as the first step in an 



ontology matching process [12]. Indeed, taking into account the user involvement can 
improve the quality of provided mappings. The OAEI campaign has introduced, since the 
2013 edition, a new track dedicated to interactive matching. Only four systems among those 
utilised addressed this challenge [60]. The results showed that LogMap and the 
AgreementMakerLight framework had improved their recall thanks to the introduction of this 
strategy [60]. The approach proposed by [28] constitutes an interesting direction to 
investigate. 

Figure 7 Graphical user interface of the system. 

We also plan, along the lines of interactivity, to improve the currently available user 
interface. The objective is to take into account the possible evolution regarding, in particular, 
the user involvement and interactive matching strategy. 

Oriented and cross-lingual mappings 

The current version does not take into account the matching of two input ontologies described 
in two different languages. For instance, comparing an ontology with terms in English to an 
ontology with terms in German. Therefore, we plan to investigate an approach for cross-
lingual ontology matching. In addition, ServOMap can only provide equivalence mappings. 
The idea is to complete our matching strategy by providing users the ability to compute 
subsumption or disjoint relationships between entities of two input ontologies. Regarding 
these oriented mappings, at a large scale, an important challenge will be the evaluation of the 
provided mappings because of the availability of suitable reference alignments. 

Finally, it is worth conducting an extensive evaluation of the impact of the different 
parameters, the type of matching problems and the characteristics of the input ontologies on 
the performance of the ServOMap system. Moreover, we intend to further investigate the 
logical assessment of computed mappings [71], which could help improve the quality of the 
mappings that are provided. 

Conclusion 
We have presented in this paper the ServOMap large scale ontology matching system. 
ServOMap is a proposed generic approach combining lexical and contextual strategies for the 
retrieval of candidate mappings. Thanks to the use of an IR-based indexing strategy, the 
system can efficiently cope with large ontologies. 

We have described the results achieved by the system using a standard benchmark with 
matching problems provided by the OAEI LargeBiomed track. The results for this track 
showed that ServOMap was among the top featured systems. They also showed that the 
recent introduction of a general purpose background knowledge and ML-based strategy for 
contextual similarity computing has a positive impact of the F-measure while increasing the 
computation times. 

Endnotes 
ahttps://lucene.apache.org/ 



bhttp://www.cs.waikato.ac.nz/ml/weka/ 

cIn some situations, like for the reference alignment provided for the OAEI Library reference, 
several equivalence candidate mappings are correct with an 1:n. We take into account all the 
selected mappings for evaluating the performance of the system. The evaluation made for the 
versions which provide 1:n candidate mappings shows an increase of the performance. 

dhttp://www.seals-project.eu/ 

ehttp://oaei.ontologymatching.org/2012/seals-eval.html 

fhttp://protege.stanford.edu/doc/dev.html 
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