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Abstract The “local porosity theory” proposed by Hilfer was revisited to develop a “local clay theory” (LCT)
that establishes a quantitative relationship between the effective electrical conductivity and clay distribution
in clay rocks. This theory is primarily based on a “local simplicity” assumption; under this assumption, the
complexity of spatial clay distribution can be captured by two local functions, namely, the local clay
distribution and the local percolation probability, which are calculated from a partitioning of a mineral map.
The local clay distribution provides information about spatial clay fluctuations, and the local percolation
probability describes the spatial fluctuations in the clay connectivity. This LCT was applied to (a) a mineral
map made from a Callovo-Oxfordian mudstone sample and (b) (macroscopic) electrical conductivity
measurements performed on the same sample. The direct and inverse modeling shows two results. First,
the textural and classical model assuming that the electrical anisotropy of clay rock is mainly controlled by
the anisotropy of the sole clay matrix provides inconsistent inverted values. Another textural effect, the
anisotropy induced by elongated and oriented nonclayey grains, should be considered. Second, the effective
conductivity values depend primarily on the choice of the inclusion-based models used in the LCT. The impact
of local fluctuations of clay content and connectivity on the calculated effective conductivity is lower.

1. Introduction

Clay rocks are currently under investigation as potential host rocks for high-level radioactive waste repositories
in several industrial countries. This interest can be explained by the following two properties [e.g., Pusch, 2006]:
(1) because of their high-specific surface area, clay rocks can absorb a significant amount of ions and (2) they
have low-hydraulic conductivities (typically of the order of 10�13m s�1). These particular physicochemical
properties are mainly controlled by the type and the amount of clay minerals that are present in argillaceous
rock. But clay rocks are rarely pure clayey materials. They often contain accessory minerals (up to 40wt %),
such as quartz and carbonates, which can affect their mechanical properties [e.g., Vasin et al., 2013] as well as
their transport properties [e.g., Horseman et al., 1996].

The effect of the microscopic organization of the accessory minerals (or its counterpart the microscopic clay
organization) on the transport properties of clay rocks has been investigated both experimentally and
theoretically. Considering experimental studies, their objective was to establish qualitative relationships
between microscopic patterns obtained from imaging techniques (e.g., Scanning Electron Microscopy (SEM),
electronic microprobe analysis, X-ray microtomography, analysis of diffraction images, and autoradiography)
and the tortuosity of diffusion paths. On the basis of SEM element distribution maps and porosity maps
obtained by autoradiographic method, Sammartino et al. [2003] identified that carbonate content
determines Callovo-Oxfordian (COx) mudstone microstructure by its large aggregates and elongated
bioclasts, thus influencing on the accessible pore volume and the tortuosity. Robinet et al. [2007, 2012] and
David et al. [2007] confirmed the existence of a preferential orientation of carbonates and quartz, leading to
partial control of the macroscopic diffusion anisotropy measured in the COx mudstone. Wenk et al. [2007,
2008] characterized also the preferential orientation of minerals of two clay rocks (COxmudstone from France
and Opalinus clay from Switzerland) by using X-ray diffraction. Their results show that both investigated
clay rocks exhibit a significant alignment of clay minerals and calcite. The authors also extracted from their
data quantitative information about phase fractions and their preferential orientation (i.e., orientation
distribution), which could be used to model macroscopic physical properties. More recently, Keller et al.
[2011] used Focused Ion Beam tomography to construct 3-D microstructures of pore space of three samples
taken from Mont-Terri site (i.e., Opalinus clay) with a resolution of 10 nm. The resulting voxel-based
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representation of the 3-D pore structure was numerically converted into a skeleton. This skeleton representation
allowed for calculations of orientation data (i.e., pore path orientation) and associated numerical values
(i.e., pore path length and pore path tortuosity). These analyses confirmed again that the microstructure of
Opalinus clay rock shows a preferential orientation parallel to the bedding plane in combination with a lower
pore path tortuosity in this plane. Pore path tortuosity perpendicular to the bedding plane was observed to be
higher by a factor of as much as 5, but a large part of the pore space (pores smaller than 10nm) was not
accounted for in this analysis whereas these pores correspond to pore throats deeply impacting the tortuosity
of the medium.

At this stage, although these petrographic observations provided insights in identifying the relevant
microstructural patterns involved in the transport mechanisms in clay rocks, their quantitative connection to
macroscopic measurements of transport properties, especially electrical conductivity, is still a critical issue.
Indeed, these petrographic observations are not integrated in conventional theoretical approaches used for
modeling macroscopic electrical conductivity.

To our knowledge, there exist three distinct approaches to calculate effective electrical conductivity: (1)
semi-empirical approaches mainly based on Archie’s relationship, (2) numerical models, and (3) effective
medium approximations (EMAs).

In the first group, the empirical concepts of “formation factor” F and “characteristic pore size” Λ [e.g., Sen,
1997; Sen et al., 1997; Jougnot et al., 2009, 2010; Leroy and Revil, 2009; Zisser and Nover, 2009; Revil and Florsch,
2010; Revil et al., 2013] are preferentially used. These approaches do not require a fine description of the clay
rock microstructure, since the latter is embedded in the parameters F and Λ. In the second group, numerical
methods are used for solving the Laplace equation for various random packings of spheres and ellipsoidal
particles [e.g., Coelho et al., 1997; Paszkuta et al., 2006] or for microstructural units (i.e., clay platelets and/or
aggregates) [e.g., Tabbagh et al., 2002; Tabbagh and Cosenza, 2007]. Nevertheless, these works based on
sophisticated calculations performed for idealized clayey geomaterials did not account for the actual spatial
organization of clay minerals and their associated accessory minerals.

In the third group, i.e., in the effective medium theories, the effective electrical conductivity is calculated
by using inclusion-based models that view the clay rock as a clay matrix with randomly embedded spherical
or ellipsoidal inclusions representing alternatively pores or accessory minerals [e.g., Jakobsen et al., 2003;
Giraud et al., 2007; Cosenza et al., 2008, 2009]. The most popular EMAs such as self-consistent scheme and
differential effective medium approach allow to account for various shapes and orientations of inclusions.
However, these theoretical works did not consider the spatial clay distribution in clay rocks.

Thus, the main objective of this paper is to quantitatively relate a statistical characterization of the spatial clay
distribution and macroscopic electrical property of clay rocks. This quantitative relationship is achieved by
revisiting the “Local Porosity Theory” (LPT) [Hilfer, 1991, 1992, 1993, 1996], which offers two advantages: (1) it
introduces geometric observables such as the clay fraction and clay connectivity that can be easily measured
from mineral maps or images and (2) it can be conveniently used for effective medium calculations of
electrical conductivity, as explained further.

A “local clay theory” (LCT), an extension of the LPT, is presented in the first part of the paper. In the second
part, it is applied to an accurate mineral map computed from an electronmicroprobe chemical map [e.g., Prêt
et al., 2010a, 2010b] from a COx sample. The results of a direct and inverse modeling are presented in the
second part. In the third part, the contributions of this new LCT to the geometric characterization and to the
modeling of macroscopic electrical property of clay rocks are presented and discussed.

2. Local Clay Theory
2.1. Geometric Characterization of Clay Rocks

The starting point of our approach is to consider a clay rock as a two-phase medium constituted by a clay phase
and a nonclay phase (i.e., accessory minerals). The electrical conductivities of the accessory minerals (quartz
and calcite) in the nonclay phase are very low (typically lower than 10�3 Sm�1) and will be neglected in
comparison to that of the clay phase. Moreover, the effect of the largest macropores (whose size may be
compared to that of accessory minerals) will be omitted: all pores implied in the electrical transfer mechanisms of
clay rock are included in the clay phase. This assumption is also physically reasonable because the amount of
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macropores in clay rocks is low and thesemacropores are unconnected (see, for instance, Sammartino et al. [2003]
and Robinet et al. [2007, 2012]): their contribution to the macroscopic transport will also be neglected in a
first-order approach.

Following LPT, we do not try to identify grains, clay aggregates, or other geometrical patterns within the clay
rock as the fundamental carrier of randomness but rather the clay fraction itself. More precisely, the clay
fraction, ϕc, which is the counterpart of the porosity in the LPT, will be considered as a fundamental random
variable. This idea leads to the introduction of two quantitative geometric characterizations of clay rocks
[Hilfer, 1991, 1996]: local “clay” distributions, named hereafter μ(ϕc), and local clay percolation distribution
probabilities λ(ϕc). In other words, this approach replaces the characterization of the randommicrogeometry
in terms of clay fraction by these two local functions λ(ϕc) and μ(ϕc). This assumption, which is called by
Hilfer, the “local simplicity,” offers three advantages: (1) it is generally applicable and mathematically well
defined; (2) it is experimentally simpler and more operational than other approaches, which use multiple
order correlation functions to describe geometrically heterogeneous media [e.g., Torquato and Stell, 1982];
and (3) as explained further, it can be used to easily calculate the effective transport properties. The reader is
referred to Hilfer [1991, 1992, 1993, 1996] for details.

To define functions λ(ϕc) and μ(ϕc), we consider a clay rock sample S (a photograph, a numerical image, or a
mineral map), constituted in a clay space C and a solid nonclay space NC (i.e., S= C∪NC). We choose a
partitioning K= {K1,…, Kj ,…, KM} of the sample space S intoMmutually disjoint subsets, called measurement

cells. As a result, ∪M
j¼1Kj ¼ S and Ki∩ Kj=∅ if i≠ j. Each measurement cell Kj is constituted itself in Mj

elementary volume elements. An elementary volume element is the elementary voxel in a 3-D sample or the
elementary pixel in a 2-D sample or map.

A particular and simple partitioning K is a cubic lattice for a 3-D sample or a square lattice for a 2-D sample.
This choice conveniently features cells Kj that are translated copies of one another and the same set (they all
have the same shape). The local clay fraction ϕc(Kj) inside a measurement cell Kj can be defined as

ϕc Kj
� � ¼ V C ∩ Kj

� �
V Kj
� � ¼ 1

Mj

X
ri∈Kj

χc rið Þ (1)

where V(Kj) is the volume of a subset, Mj denotes the number of volume elements (voxels or pixels) in Kj; χc is
the characteristic function (indicator function) of clay space C:

χc rið Þ ¼ 1 if ri ∈C

0 if ri ∉C

�
(2)

From this definition of the local clay fraction ϕc(Kj), a local clay distribution, μ(ϕc,K), can be introduced as follows:

μ ϕc;Kð Þ ¼ 1
MΔϕc

XM
j¼1

δ ϕc � ϕc Kj
� �� �

(3)

where δ(x) is the Dirac δ distribution which is defined as follows:

δ ¼ 1 if ϕc � ϕc Kj
� ��� ��≤Δϕc

0 otherwise

(
(4)

For a given value of ϕc, the sum
XM
j¼1

δ ϕc � ϕc Kj
� �� �

indicates the number of measurement cells having local

clay fraction values included in the interval (ϕc, ϕc+Δϕc). In this way, the parameter Δϕc defines the interval
(of the variable ϕc) used to build the histogram associated with the distribution μ(ϕc,K). In the practical
case of a cubical measurement cell Kj= K(rj, L) of side length L centered at the lattice vector rj (i.e., typically a
Bravais lattice), the local clay distribution can be rewritten as follows:

μ ϕc; Lð Þ ¼ 1
MΔϕc

XM
j¼1

δ ϕc � ϕc rj; L
� �� �

(5)
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The local clay distribution, μ(ϕc,L), has the following physical meaning: it measures the probability to find the
local clay fraction ϕc between ϕc and ϕc + dϕc in a measurement cell of linear dimension L. Thus, this

distribution allows to define a mean clay content ϕc Lð Þ as (if Δϕc →dϕc with dϕc<<1)

ϕc Lð Þ ¼ ∫
1

0

ϕc μ ϕc; Lð Þ dϕc (6)

For a homogeneous clay rock, the mean clay content ϕc Lð Þ is independent of L and

ϕc Lð Þ ¼ ϕc Sð Þ ¼ V Cð Þ
V Sð Þ (7)

where the bulk (volumetric) clay content, ϕc(S), is the ratio of the volume of the clay fraction, V(C), to the
volume of the total sample, V(S).

The second geometrical property to characterize local geometry of clay rocks is related to the local connectivity
properties of the clay fraction. The local connectivity of clay is a crucial parameter in our approach since the
transport of charge carriers (i.e., ions) occurs in the clay phase, i.e., in the porous phase of clay rocks. Let λ(ϕc,L)
denotes the fraction of percolating measurement cells of side length L with local clay fraction ϕc. The local
function λ(ϕc,L) will be called hereafter the “local percolation probability” and is defined as follows:

λ ϕc; Lð Þ ¼

XM
j¼1

Λ rj; L
� �

δ ϕc � ϕc rj; L
� �� �

XM
j¼1

δ ϕc � ϕc rj; L
� �� � (8)

where the indicator function Λ(rj,L) for the percolation of cell K(rj, L) is given by

Λ rj; L
� � ¼ 1 if K rj; L

� �
percolates in all three directions

0 otherwise ⋯

(
(9)

Ameasurement cell K(rj, L) percolates in the x (y, z, respectively) direction if there exists a path inside the clay phase
connecting two faces of the measurement cell that are perpendicular to the x (y, z, respectively) axis. In practice,
the function Λ(rj,L) can be calculated using the Hoshen-Kopelman algorithm [Hoshen and Kopelman, 1976].

From the particular indicator Λα(rj,L) defined by

Λα rj; L
� � ¼ 1 if K rj; L

� �
percolates in α direction

0 otherwise ⋯

(
(10)

can be used to calculate the α-direction percolation probability λα(ϕc,L):

λα ϕc; Lð Þ ¼

XM
j¼1

Λα rj; L
� �

δ ϕc � ϕc rj; L
� �� �

XM
j¼1

δ ϕc � ϕc rj; L
� �� � (11)

Fromequation (8), the total fraction of percolating cells of size L is obtained by integration overall local clay fractions:

p Lð Þ ¼ ∫
1

0

μ ϕc; Lð Þλ ϕc; Lð Þdϕc (12)

The function p(L) characterizes the overall connectivity of the sample at length scale L and is critical for
modeling effective properties as explained further.

In summary, the two local functions μ(ϕc,L) and λ(ϕc,L) are assumed to constitute an approximate but
reasonable geometric characterization of the clay distribution in clay rocks (i.e., the local simplicity
assumption). By definition, these functions can be calculated from photographs or numerical images of 2-D
thin sections in a fairly straightforward manner.

However, the local functions μ(ϕc,L) and λ(ϕc,L) depend a priori on L. As explained by Hilfer [1991], two
competing effects should exist. At small L (i.e., L is close to the elementary voxel/pixel size of the image), the local
geometries of measurement cells are highly correlated to each other: the local functions μ(ϕc,L) and λ(ϕc,L)
cannot capture these complex correlations. At large L (i.e., L close to the size of the clay rock sample S), the local
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geometries are statistically uncorrelated but each is nearly as complex as the geometry of the full clay
distribution of the sample S. This complexity cannot be described by the local clay functionϕc and the indicator
function for the connectivity Λ(rj,L) (i.e., the local simplicity assumption fails). Moreover, at large L, in a practical
sense, the number of measurement cells may be low affecting the statistical representativeness of functions
μ(ϕc,L) and λ(ϕc,L). Consequently, we seek an intermediate and optimal scale, called hereafter the critical length
L*, at which the local geometries are uncorrelated; and on the other hand, the local functions have a sufficiently
nontrivial geometric content to reasonably capture the spatial fluctuations of clay content and connectivity.
The existence of L* implies implicitly that the clay rock is assumed to be spatially and statistically homogeneous:
the local functions μ(ϕc,L) and λ(ϕc,L) do not depend on the position of the measurement cell.

There exist several candidates for the optimal size L* [Boger et al., 1992; Biswal et al., 1998; Widjajakusuma
et al., 1999, 2003]: the largest grain size, the length scale at the percolation threshold, the two-point
correlation length obtained from the clay fraction autocorrelation function, and the percolation length
Lp defined from p(L) as follows:

d2p

dL2

�
L¼Lp

¼ 0 (13)

Following LPT and Widjajakusuma et al. [2003], the percolation length Lp is the length around which p(L),
which is often sigmoidal in shape, changes rapidly from a low value at small L to its trivial value p(L→∞) = 1
(if the clay space C is clearly connected at the scale of S). In other words, the condition (13) defines the domain
of the transition between local connectivity (at small L) and global connectivity (at large L). Widjajakusuma
et al. [2003] show that LPT provides a reasonable estimate of the effective permittivity at length Lp.

In the following, the optimal size L* will be considered equal to the percolation length Lp defined by equation
(13). As mentioned byWidjajakusuma et al. [2003], this choice offers two advantages: (a) it has been validated
for a physical property, i.e., permittivity which is linked, in its complex form, to electrical conductivity (the
imaginary part of complex permittivity is directly related to electrical conductivity) and (b) the calculation of
Lp is straightforward.

2.2. Effective Medium Calculations of Effective Electrical Conductivity

The main objective of this section is to show how the local functions μ(ϕc ,L*) and λ(ϕc ,L*) can be connected
to conventional EMAs (Figure 1).

For this purpose, following our modeling approach (i.e., LCT), consider our previous partition of a clay
rock sample S: a square lattice of M measurement cells of length L* for which all measurement cells are
statistically independent. To build histograms of local functions μ(ϕc,L*) and λ(ϕc,L*), k classes of local clay

fraction ϕ j
c (ϕ

j¼1
c , …, ϕ j¼k

c ) with equal intervals Δϕc have to be introduced. For each class of value ϕ j
c , the

fraction of percolating (measurement) and nonpercolating (measurement) cells areλ ϕ j
c ; L*

� �
μ ϕ j

c ; L*
� �

Δϕc and

1� λ ϕ j
c ; L*

� �� �
μ ϕ j

c ; L*
� �

Δϕc, respectively. For a particular value ofϕ
j
c, the effective property of the conductive

fraction and that of the nonconductive (or blocking) fraction is referred as σP ϕ j
c

� �
and σB ϕ j

c

� �
, respectively.

Since all measurement cells of length L* are statistically independent, our clay rock sample S can be considered
as a mixture of 2k conductive and nonconductive phases associated with the previous k classes of local clay

fractions (ϕ j ¼1
c ,…,ϕ j ¼ k

c ). The conventional EMAsmay then be used to this 2k phasemixture. For instance, the
self-consistent approximation of the effective electrical conductivity σeff is written as [e.g., Berryman, 1995]

Xk
j¼1

λ ϕ j
c ; L*

� �
μ ϕ j

c ; L*
� �

Δϕc
σP ϕ j

c

� �� σeff
σP ϕ j

c

� �þ 2σeff
þ 1� λ ϕ j

c ; L*
� �� �

μ ϕ j
c ; L*

� �
Δϕc

σB ϕ j
c

� �� σeff
σB ϕ j

c

� �þ 2σeff

" #
¼ 0 (14)

where parametersσP ϕ j
c

� �
andσB ϕ j

c

� �
are local effective electrical conductivities of percolating or conducting

(index p) and nonpercolating or blocking (index B) measurement cells. The mathematical formulations of
σP ϕ j

c

� �
and σB ϕ j

c

� �
are discussed further.

If Δϕc tends to zero (Δϕc<<1) (increasing the number k accordingly), the Riemann integral formulation
proposed by Hilfer is retrieved [Hilfer, 1991, 1996]

∫
1

0

λ ϕc; L*ð Þμ ϕc; L*ð Þ σP ϕcð Þ � σeff
σP ϕcð Þ þ 2σeff

þ 1� λ ϕc; L*ð Þð Þμ ϕc; L*ð Þ σB ϕcð Þ � σeff
σB ϕcð Þ þ 2σeff

� �
dϕc ¼ 0 (15)
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It should be emphasized that equations
(14) and (15) hold for isotropic electrical
properties that are not representative of
the physical behavior of clay rocks. Indeed,
clay rocks are mostly transverse isotropic:
they show a rotational symmetry around
the axis perpendicular to the bedding
planes [e.g., Horseman et al., 1996; Cosenza
et al., 2002; Jakobsen et al., 2003; Van
Loon et al., 2003, 2004; Giraud et al., 2007;
David et al., 2007; Wenk et al., 2007, 2008;
Hubert et al., 2013]. The physical properties
in all directions parallel to the bedding
planes are the same and differ from those
perpendicular to the bedding planes. In
this case, the anisotropic effective electrical
conductivity, σeff , is written as follows:

σeff ¼ σHeff ex ⊗ ex þ ey ⊗ ey
� �

þ σVeff ez ⊗ ezð Þ (16)

where⊗: dyadic product (if ā and b are two
vectors, the second-order tensor a⊗ b is
defined by a⊗ b ¼ aibj where ai and bj are
the Cartesian coordinates of ā and b,
respectively); ex ; ey ; ez : vector units in the
Cartesian coordinate system; vectors ex ; ey
are in the horizontal bedding planes,
whereas ez is perpendicular to the
bedding planes. Both parameters σHeff and
σVeff are the horizontal and the vertical
component of the tensor σeff, respectively.

Both components σHeff and σVeff can be independently written because the eigendirections of the effective
electrical conductivity tensors of the host medium (i.e., clay matrix) and those of the heterogeneities
(i.e., quartz and calcite grains) will be assumed to be parallel in the following (Appendix A) as evidenced
by Robinet et al. [2012].

As a matter of fact, equations (14) and (15) have to be rewritten to introduce both parameters σHeff and σVeff. In
case of a self-consistent approximation, the mathematical formulation of effective electrical conductivities
of anisotropic mixtures may lead to rather cumbersome integral equations that are complicated to solve.
This is why in the following, the differential effective medium (DEM) approach, another conventional
EMA, will be preferred since (a) it is easier to implement and (b) it integrates the physical (electromagnetic
and mechanical) interactions in a more realistic way than other EMAs (i.e., dilute approximation and
Maxwell-Garnett mean field approach).

Moreover, the DEM approach was widely and successfully used in rocks physics in order to model the
following properties of sedimentary rocks: (a) elastic properties related to seismic velocities [e.g., Le Ravalec
and Guéguen, 1996; Berryman et al., 2002]; (b) DC electrical conductivity [e.g., Sen et al., 1981; Bussian, 1983];
(c) dielectric properties in a wide range of frequencies [e.g., Feng and Sen, 1985; Cosenza et al., 2003;
Endres and Bertrand, 2006]; and (d) thermal conductivity [e.g., Revil, 2000]. In comparison with other EMAs,
the DEM approach used for modeling effective electromagnetic properties is found to correspond best
with experiments involving a large range of geometries and volume fractions [Merrill et al., 1999; Weber
et al., 2003].

The DEM approach is fundamentally an iterative process: the effective property of the mixture is explicitly
calculated from an initial material through a series of incremental additions of elementary volumes

Figure 1. Flowchart of the local clay theory (LCT) used in this work.
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(Appendix B). In our case, the procedure begins with the initial material m corresponding to an electrical

conductivity, σ ϕmax
c ; L*

� �
, i.e., the electrical conductivity of conductive measurement cells of local clay

fraction ϕmax
c and of size L*. The fraction ϕmax

c is the particular value of ϕc corresponding to the highest
number of measurement cells of size L*. The choice of this most conductive fraction as the initial material
is classical to model effective electrical conductivity following the DEM scheme [e.g., Mendelson and
Cohen, 1982]: in the case of a biphasic rock (typically a saturated sandstone), the starting material in the
DEM scheme is the most conductive material, i.e., brine in order to obtain the so-called Archie’s law
validated experimentally.

In a second step, small volumes of conductive and blocking phases are imbedded in phase m in such a
way that the volume remains fixed at V0. The effective transport of the mixture is calculated considering a
dilute suspension of these small fractions in the medium m. Now, in the volume V0, the mixture has a

homogenized effective electrical conductivity σ2 L*ð Þ and constitutes the initial medium of the next step. The
construction process continues such that (a) at each stage, the embedded phases are in dilute concentration
and (b) the required volume fractions of conductive and blocking phases are satisfied.

A first-order expansion of a Maxwell-Garnett formulation gives the increment of horizontal electrical

conductivity, δσHn , between two steps (step n and step n� 1) of the iterative procedure (appendixes A and B):

δσHn ¼ ∫
1

0

λ ϕc; L*ð Þμ ϕc; L*ð Þ σHP � σHn�1

� �
σHn�1

σHn�1 þ N′H σHP � σHn�1

� �
" #

dϕc

þ ∫
1

0

1� λ ϕc; L*ð Þð Þμ ϕc; L*ð Þ σHB � σHn�1

� �
σHn�1

σHn�1 þ N′H σHB � σHn�1

� �
" #

dϕc (17)

The vertical increment, δσVn , is written in the same way as the horizontal increment δσHn : the superscript H is
replaced by the superscript V in equation (17). Equation (17) and its counterpart following the vertical
direction have been numerically integrated with a left Riemann rule (δϕc=10�5) in order to obtain the

anisotropic effective electrical conductivity, σeff defined by equation (16).

2.3. Effective Properties of Conductive Cells and Blocking Cells

To use the EMA defined previously, the mathematical formulation of the conductivities of percolating
measurement cells, σP ϕcð Þ and blocking measurement cells σB ϕcð Þ (see equation (17)) must be explicitly
addressed (Figure 1).

At this stage, the transport property of blocking cells, σB ϕ j
c

� �
, is taken equal to zero: this choice leads to

mathematical simplification of previous equations (14), (15), and (17).

The conductivities of percolating measurement cells, σc ϕcð Þ, are modeled by two inclusion-based models,
i.e., EMAs (Figure 1): a mixture of aligned isotropic ellipsoids (oblate spheroids) embedded in an isotropic clay
matrix (case 1) and a mixture of isotropic spheres embedded in a transversely isotropic clay matrix (case 2). In
both cases, the inclusion corresponds to accessory minerals (quartz and calcite grains). These two mixtures
are assumed to model the two microstructural origins of the macroscopic anisotropy evidenced by
petrographic observations of clay rocks [e.g., Robinet et al., 2007, 2012; David et al., 2007; Wenk et al., 2007,
2008]. In the first mixture, the macroscopic anisotropy is due to aligned spheroidal grains parallel to the
bedding planes. In the second mixture, the anisotropy is controlled by that of the clay matrix itself. These two
cases are considered separately in the following in order to study their respective contribution on the
measured transport properties.

In the first mixture, the spheroidal grains exhibit two horizontal and equal semiprincipal axes (ax= ay)
with respect to the transverse isotropic symmetry of clay rocks. The third semiprincipal axe, az, is smaller
than the other two to be consistent with petrographic observation. Consequently, spheroidal grains are
defined here as oblate spheroids. Moreover, in our calculations, the directions given by the unit vectors ez ; ey
fixed by the semiprincipal axes ax and ay are parallel to the bedding planes. In other words, the principal
directions of the spheroidal grains are the same as the principal directions of the effective transport property.
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By using again a DEM approach, both components, σH
P
and σV

P
, of the tensor σP ϕcð Þ can be written as follows

(Appendix C):

σHP ¼ σcϕ
1= 1�NHð Þ
c (18)

σVP ¼ σcϕ
1= 1�NVð Þ
c (19)

with

σP ϕcð Þ ¼ σHP ex ⊗ ex þ ey ⊗ ey
� �þ σVP ez ⊗ ezð Þ (20)

σc: the electrical conductivity of the isotropic clay matrix. It should be noted that equations (18) and (19) are
mathematically similar to those established by Mendelson and Cohen [1982] for aligned spheroidal grains
embedded in a interstitial water. The conventional depolarization coefficients NH and NV for oblate spheroids
are given by [e.g., Sihvola, 1999]

NV ¼ c

c � 1ð Þ3=2
ffiffiffiffiffiffiffiffiffiffiffi
c � 1

p
� arctan

ffiffiffiffiffiffiffiffiffiffiffi
c � 1

p
 �
(21)

NH ¼ 1
2

1� LV
� �

(22)

where the square of axial ratio c is

c ¼ a2x
a2z

(23)

As mentioned previously, parameters ax(= ay) and az are the horizontal semiprincipal axes and the vertical
semiprincipal axes of oblate spheroids, respectively.

In the secondmixture, the principal axes of the anisotropic clay matrix are the same as the principal axes of the
effective transport property. The grains are spheres and of isotropic material. Following Sihvola [1999, 2005],

both components, σHP and σVP , of the tensor σp ϕcð Þ exhibit similar mathematical expressions as previously
(Appendix C):

σHp ¼ σHc ϕ
1= 1�N′Hð Þ
c (24)

σVp ¼ σVc ϕ
1= 1�N′Vð Þ
c (25)

but now, the tensorial electrical conductivity of the anisotropic clay matrix, σc , is given by

σc ¼ σHc ex ⊗ ex þ ey ⊗ ey
� �þ σVc ez ⊗ ezð Þ (26)

The modified depolarization coefficients N ′ H and N ′ V are those of a prolate spheroid:

N′V ¼ c′

2 1� c′ð Þ3=2
ln
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� c′
p

1� ffiffiffiffiffiffiffiffiffiffiffiffi
1� c′

p � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c′

p !
(27)

N′H ¼ 1
2

1� N′V
� �

(28)

since

c′ ¼ σVc
σHc

< 1 (29)

The condition (29) is introduced to be consistent with experimental observation: the horizontal transport
property parallel to the bedding is greater than the vertical transport property [e.g., Van Loon et al., 2003,
2004; Cosenza et al., 2007; Robinet et al., 2007, 2012; Woodruff et al., 2014].

3. Application to Callovo-Oxfordian Mudstone
3.1. Samples Description and Mineral Map

The LCT presented in the previous section and summarized in Figure 1 is now applied to a mineral mapmade
from a Callovo-Oxfordian mudstone.
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The Callovo-Oxfordian mudstone involved in this study is a clayey formation at the site where the French
Meuse/Haute-Marne Underground Research Laboratory has been built. It is a 130m thick formation of age
150–160 My, located 420–550m below the surface, in the eastern part of the Paris Basin [Andra, 2005]. The
Callovo-Oxfordian formation contains mainly 25 to 65wt % clay minerals, with 20–42wt % carbonates
(calcite, dolomite, and ankerite) and 15–31wt % quartz and feldspars [Andra, 2005]. Clay minerals include
illite, an illite-smectite mixed layer phase, kaolinite, and chlorite.

The mineral map used in this study was prepared from a drill core, named EST05-709 (�494m) and retrieved
from the Andra EST205 borehole. The rough mineral composition estimated by X-ray diffraction and the
petrophysical properties measured in this sample are given in Tables 1 and 2, respectively. The electrical

conductivities parallel to the bedding σHexp

 �

and perpendicular to the bedding σVexp

 �

were measured with a

two-electrode device at 100 kHz [Comparon, 2005].

The mineral map was obtained at a micrometer spatial resolution from an advanced image processing of a
chemical elements map that was acquired through the use of a Cameac SX100 electron probe microanalyzer
[Prêt, 2003]. This electron microanalyzer provides quantitative concentration maps of 14 chemical elements
(Al, Na, K, Ca, Si, Mg, Ti, Fe, S, Ba, Zr, P, Zn, and Sr) on a 3 × 0.5mm2 area with a spatial resolution of 2μm/pixel.
The image processing of these maps is based on mineral thresholding methods that accommodate mixtures
and solid solutions. For details, the reader is referred to Prêt [2003] and Prêt et al. [2010a, 2010b]. In our case,
this methodology allows to locate spatially 16 different minerals including three different clay minerals:
illite-smectite mixed layers, kaolinite, and chlorite. No pure illite was detected but two micas are recognized:
glauconite andmuscovite. The result of this image analysis is given in a numerical file in which the location and
mineral code of each pixel of the mineral map are indicated. This numerical file constitutes the input file for
calculations of local geometry distributions associated with LCT (see section 3.2).

A region of interest and the properties of the corresponding map are given in Figure 2 and in Table 3,
respectively. This map was prepared from a polished thin section in a plane perpendicular to the stratigraphic
plane. Thus, the map used in our calculations is strictly 2-D and does not account for the 3-D mineral
distribution. The x and y directions indicated in Figure 2 are parallel to the bedding planes, whereas the z
direction is perpendicular to the bedding.

The content of a givenmineral indicated in Table 3 is the ratio of the number of pixels of the givenmineral divided
by the total number of pixels. Consequently, Table 3 indicates mineral composition given in terms of “surface”
contents (equal to volumetric contents for a Transverse Isotropic (TI) material observed in a plane perpendicular
to the stratigraphic plane), whereas mineral contents in Table 2 are expressed in weight percent estimated by
processing of X-ray diffraction data. This mainly explains the differences observed between Tables 1 and 3.

3.2. Calculation of the Local Geometry Distributions

The mineral map is now used for calculating the local functions associated with LCT, namely the local clay
distribution, μ(ϕc,L), and the local percolation probabilities, λ(ϕc,L), λH(ϕc,L), λV(ϕc,L). Figure 3 illustrates these
calculations for different sizes of measurement cell L. For the sake of clarity, the histograms have been
calculated with a large interval Δϕc=0.02 and smoothed with a Stineman function [Stineman, 1980]. These
local functions, which significantly depend on L, show three significant features.

Table 1. Mineral Composition of the Two Samples Used in This Study [From Comparon, 2005]

Depth (m) Quartz (%) Carbonates (%) Clay Minerals (%) Smectite (%) Kaolinite (%) Chlorite (%) Illite-Smectite (%)

494.76 15 20 65 0 20 30 15

Table 2. Petrophysical Properties Measured in the Sample EST05-709 Used in This Study [From Comparon, 2005]a

Hg Porosity (%)
CEC

(meq/100 g)
Bulk Density
(g cm�3)

Grain Density
(g cm�3)

Horizontal Electrical
Conductivity σHexp (S m�1)

Vertical Electrical
Conductivity σVexp (S m�1)

12.4 11.8 2.32 2.66 9.3 × 10�3 2.8 × 10�3

aHg porosity is the porosity measured by mercury intrusion. CEC is the cation exchange capacity expressed per 100 g of rock. Grain density was determined by
helium pycnometry. The terms σHexp and σVexp are horizontal electrical conductivity and vertical electrical conductivity, respectively.
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First, the local clay distributions μ(ϕc,L)
calculated for L greater than 10 pixels
appear roughly as Gaussian-type curves
centered on the mean “surface” clay

contentϕc (i.e.,ϕc = 50.44%, see Table 3).
It can be observed that these local
clay distributions exhibit a slight
dissymmetry toward the high values of
σc in a second-order analysis. A similar
dissymmetry was also evidenced on
local porosity distributions obtained
from sedimentary formations in the
framework of the Local Porosity Theory
[Widjajakusuma et al., 1999; Boger et al.,
1992; Biswal et al., 1998].

Second, the calculated local percolation probabilities λ(ϕc,L) and the corresponding connectivities increase
with L (Figure 4). Moreover, they show that a minority fraction of measurement cells at the clay fraction

ϕc =ϕc percolates. In other words, all the measurement cells percolate (i.e., λ= 1) forϕc values of considerably

greater than the mean value ϕc calculated from the mineral map.

Third, Figure 5 indicates that for this sample and whatever the value of L, the horizontal probability values
are greater than the vertical probability values with distributions simply shifted: the connectivity of this
sample is better in the direction parallel to the bedding planes. In this case, the anisotropy of connectivity
is controlled by the preferential orientation of nonclayey grains following the direction of bedding. This
feature, which is not clearly observable in the mineral map, confirms previous studies [e.g., Robinet et al.,
2007, 2012; David et al., 2007] and justifies the reliability of case 1 in our modeling approach (i.e., isolated and
aligned spheroids in isotropic clay matrix; see Figure 1). This anisotropy of connectivity should induce an
anisotropy of effective electrical conductivity.

To calculate the effective electrical conductivity of this mineral map, the total fractions of percolating cells
p(L) and the corresponding critical length L* have to be determined. Following the results given in Figure 6,
three domains can be identified. The first domain (Domain 1) is associated with a “local” connectivity
(length sizes less than 40 pixels). In this domain, the total fraction of percolating cells increases significantly
with L. The domain of large values of L (Domain 3) is related to a “global” connectivity of measurement
cells whose length sizes, greater than 75pixels, are close in dimension to that of the mineral map. Between
these domains, the intermediate domain 2 exhibits a plateau for which the criterion defined by equation (13)
can be satisfied. As a result and from criterion (13), a critical length L* of 55 ± 5pixels is estimated (Figure 6).

This estimation with the EMAs described previously can be used to model effective electrical conductivity.

3.3. Direct and Inverse Modeling

On the basis of the linear equations involved in the DEM scheme, it is easy to note that for both mixture cases
considered in our modeling approach, the following linear relationships are satisfied:

Case 1 (mixture of aligned spheroids in an isotropic clay matrix)

σHeff∝σc and σVeff∝σc (30)

or

σHeff ¼ f H
ax
az

; L*

� �
σc and σVeff ¼ f V

ax
az

; L*

� �
σc (31)

Figure 2. Extraction of the mineral map (sample EST05-709) used in
this work.

Table 3. Geometrical and Mineralogical Features of the Mineral Map Used in This Work

Resolution (μm) Total Number of Pixels Dimensions (Pixels) Dimensions (μm) Clay Minerals (%) Quartz (%) Calcite (%)

2 384 000 250 × 1536 500 × 3072 50.44 13.83 24.99

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011429

COSENZA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 154



where σc: the electrical conductivity of the isotropic clay
matrix; fH and fV: functions of ax/az and L*.

Case 2 (mixture of spheres in an anisotropic clay matrix)

σHeff∝σ
H
c and σVeff∝σ

V
c (32)

or

σHeff ¼ g
H

σHc
σvc

; L*

� �
σHc and σVeff ¼ g

V

σHc
σvc

; L*

� �
σVc (33)

where σ H
C
(σ V

C
respectively): the horizontal (vertical

respectively) component of the tensorial electrical
conductivity of the anisotropic clay matrix; gH and gV:
functions of σHc =σ

V
c and L*.

For case 1, relationships (31) lead to

σHeff
σVeff

¼
f H

ax
az
; L*


 �
f V

ax
az
; L*


 � ¼ f
ax
az

; L*
� �

(34)

This equation means that at a given L*, the effective conductivity ratio, σHeff=σ
V
eff, only depends on the ratio of

semiprincipal axes of oblate spheroids (ax/az).

For case 2, relationships (33) yield

σHeff
σVeff

¼ σHc
σVc

g
H

σHc
σVc
; L*


 �
g

V

σHc
σVc
; L*


 � ¼ σHc
σVc

g
σHc
σVc

; L*
� �

(35)

For this case, at a given L*, the effective conductivity ratio, σHeff=σ
V
eff, only depends on the matrix conductivity

ratio, 1=c′ ¼ σHc =σ
V
c (the parameter c′ was introduced in section 2.3, see equation (29)).

Consequently, from (34) and (35), at a given L*, the effective conductivity ratios of both cases only depend on

a single parameter (ax/az or σHc =σ
V
c ), respectively; thus, these ratios can be simply plotted on the same figure

(Figure 7).

By considering a critical length of L* of 55 pixels (see section 3.2), Figure 7 shows that the effective
conductivity ratio is more sensitive to changes in axes ratio of nonclay grains than to changes in matrix
conductivity ratio. A multiplication of the effective conductivity ratio by a factor 4 requires a multiplication by

a factor 4.1 of the axes ratio and by a factor 5.7 of the matrix
conductivity ratio. This difference in sensitivity and curve
shape can be explained by the mathematical formulation of
depolarization coefficients used in the calculations of the
effective properties of conductive cells (compare equations
(21) and (27)).

As illustrated in Figure 7, the univoque relationships
between the effective conductivity ratio and the

microstructural ratios (ax/az and σHc =σ
V
c ) can be also used to

invert the microstructural parameters of both mixture
models describing the percolating measurement cells. If we
assume a statistical homogeneity at the EST05-709 sample
scale, i.e.,

σHeff ¼ σHexp and σVeff ¼ σVexp (36)

where the electrical conductivity measurements σHexp
and σVexp are given in Table 2, microstructural parameters

Figure 3. Local clay distribution, μ(ϕc,L), calculated
for different sizes of measurement cell L.

Figure 4. Local percolation probability, λ(ϕc,L),
calculated for different sizes of measurement cell L.
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(ax/az and σc for case 1 and σHc and σVc for case 2) can be
deduced in a two-step procedure.

First, from the experimental ratio (σHeff=σ
V
eff ¼ σHexp=σ

V
exp

¼ 3:32 see Table 2) and equations (34) and (35), the axes

ratio, ax/az, and the matrix conductivity ratio, σHc =σ
V
c ,

are calculated by resolving numerically the following
equations (from (34) and (35)):

f
ax
az

; L* ¼ 55

� �
¼ 3:32 (37)

σHc
σvc

g
σHc
σvc

; L* ¼ 55

� �
¼ 3:32 (38)

Then, in a second step, on the basis of the previous
calculations, the isotropic electrical conductivity, σc
(case 1) and both components σHc and σVc (case 2) are

determined from the functions fH, fV (case 1), gH, and gV (case 2). Since these functions are independent of

clay conductivities (σc, σHc , and σVc ), they are obtained from linear equations (31) and (33) in particular cases,

i.e., at σc ¼ σHc ¼ σVc ¼ 1S m�1, as explained below.

Case 1: The horizontal effective conductivity estimated at σc= 1 Sm�1, namely σHeff;σc¼1, and the vertical

effective conductivity estimated at σc=1 Sm�1, σVeff;σc¼1, are introduced from (31):

σHeff;σc¼1 ¼ f H
ax
az

; L*
� �

�1 (39)

σVeff;σc¼1 ¼ f V
ax
az

; L*

� �
�1 (40)

From (39), (40), and (31), fH and fV are given by

f H
ax
az

; L*

� �
¼ σHeff;σc¼1

1
¼ σHexp

σc
(41)

f V
ax
az

; L*

� �
¼ σVeff;σc¼1

1
¼ σVexp

σc
(42)

And finally, from (41) and (42), the isotropic clay
conductivity, σc, is given by

σc ¼
σHexp

σHeff;σc¼1

�1 ¼ σHexp
σHeff;σc¼1

(43)

or

σc ¼
σVexp

σVeff;σc¼1

�1 ¼ σVexp
σVeff;σc¼1

(44)

The parameters σHeff;σc¼1 and σ
V
eff;σc¼1 are calculated following

the DEM scheme described in sections 2.2 and 2.3 (formally
written by equation (31)) by considering σc=1Sm

�1 and
the value of axes ratio, ax/az, calculated from the first step.

Figure 5. Horizontal and vertical local percolation
probabilities, λΗ(ϕc,L) and λV(ϕc,L), calculated for
different sizes of measurement cell L.

Figure 6. The total fraction of percolating cells of size
L, p(L). For the sake of clarity, a polynomial fit is also
indicated. To use the criterion (13), the tangent
crossing the curve at the inflection point is drawn.
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Case 2: Following the same idea, the horizontal

effective conductivity estimated at σHc ¼ 1 S m�1,
namely σHeff;σHc ¼1, and the vertical effective

conductivity estimated at σVc ¼ 1 S m�1, σVeff;σVc ¼1,

are introduced from (33):

σHeff;σHc ¼1 ¼ gH

σHc
σVc

; L*

� �
�1 (45)

σVeff;σVc ¼1 ¼ g
V

σHc
σVc

; L*
� �

�σVc

¼ g
V

σHc
σVc

; L*
� �

�c′�σHc

¼ g
V

σHc
σVc

; L*
� �

�c′�1 (46)

Parameter 1/c′ is the known matrix conductivity

ratio σHc =σ
V
c which is calculated from the first step.

From (45), (46), and (33), gH and gV are given by

g
H

σHc
σVc

; L*

� �
¼

σHeff;σHc ¼1

1
¼ σHexp

σHc
(47)

g
V

σHc
σVc

; L*
� �

¼
σVeff;σVc ¼1

c′�1
¼ σVexp

σVc
(48)

Finally, from (47) and (48), the tensorial components, σHc and σVc are calculated by

σH
c
¼ σHexp�1

σHeff;σHc ¼1

¼ σHexp
σHeff;σHc ¼1

(49)

σV
c
¼ σVexp�c′�1

σVeff;σVc ¼1

¼ σVexp�c′

σVeff;σVc ¼1

(50)

The σHeff;σHc ¼1 and σ
V
eff;σVc ¼1 are calculated following the DEM scheme described in sections 2.2 and 2.3 (formally

written by equation (33)) by considering σHc ¼ σVc ¼ 1 S m�1 and the value of the matrix conductivity ratio,

σHc =σ
V
c ¼ 1=c′ð Þ, obtained from the first step.

By considering the estimated range of L* (i.e., 55 ± 5 pixels), the final results obtained from this inversion

scheme are given in Table 4. They show that the inverted microstructural parameters, i.e., σc, ax/az, σHc , and σ
V
c

are slightly dependent on L*.

4. Discussion
4.1. Microstructural Origins of the Anisotropy in Electrical Conductivity

If the statistical homogeneity implied in (34) is valid, one may wonder if the inverted values of both mixture
models (cases 1 and 2) can provide some physical insights into the origins of the anisotropy in electrical
conductivity measured in clay rocks. To answer to this question, we propose to compare the inverted values
of both model mixtures with those expected from the literature.

If the sole microstructural ratios ax/az and σHc =σ
V
c are considered, the inverted values obtained in Table 4 are

consistent with previous petrophysical and petrographic studies. Petrographic observations performed in

Figure 7. Matrix conductivity ratio (case 1) σHc =σ
V
c and axes

ratio (case 2) ax/az versus effective conductivity ratio. The
experimental value of effective conductivity ratio (3.32) is also
indicated. Grey arrows give the estimations of matrix
conductivity ratio and axes ratio used in this work.
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the COxmudstone [Jorand, 2006; Robinet et al., 2007, 2012] have shown that the axes ratios of the accessory
minerals (carbonates and quartz) were mainly in the range of 1.3–4. The inverted values of ax/az, close to 3.7
(Table 4), are a little high in comparison with the average of the previous range but they do not contradict

fundamentally the previous petrographic observations. Concerning the ratio σHc =σ
V
c of pure and saturated

clayey materials, experimental data are scarce in literature but Mousseau and Trump [1967] and Comparon
[2005] reported values in the range of 1.1–25.5, obtained in compacted and saturated kaolinite and bentonite

samples. This range of values includes our inverted values of σHc =σ
V
c .

The values of conductivities σc and σHc fall in the range of 2 × 10�2–10 (Sm�1) obtained from studies
performed on pure clayey systems [e.g., Cremers and Laudelout, 1965;Weiler and Chaudisson, 1968; Revil et al.,

1998; Saarenketo, 1998; Tabbagh and Cosenza, 2007]. However, the value ofσVc (about 6 × 10�3 Sm�1) appears
to be too low for pure clayey materials: it is likely unrealistic for a pure clay matrix. This discrepancy may have
petrophysical and theoretical origins.

The petrophysical origins include a small desaturation of the sample after its recovery and the existence of a
microscopic and nonclayey phase hidden in the clay matrix. Considering the latter, small amounts of calcite
cements known as isolating electrical materials may have precipitated in the microporosity associated with
the clay matrix [e.g., Buschaert et al., 2004] inducing a lower electrical conductivity.

However, some theoretical bias associated with our modeling process cannot be excluded. The first bias is
obvious: this modeling approach is based on a 2-D information (a mineral map), whereas electrical
measurements imply 3-D tortuous paths of charge carriers. Moreover, though our approach accounts for local
fluctuations of clay phase and connectivity, it does not integrate the spatial variability and hence the
distribution of (a) orientations and elongations of nonclayey particles and that of (b) the ratios ax/az
and σHc =σ

V
c . Indeed, these microstructural features may have significant and nonlinear impacts of the

macroscopic electrical conductivity [e.g., Mendelson and Cohen, 1982; Sen, 1997]. The estimation of these
effects will be the purpose of a future work.

Summarizing the confrontation between the inverted values in Table 4 and those given in literature shows
that the simplified and usual picture proposed in the model case 2 (i.e., spherical nonclayey grains in a
transverse isotropic clay matrix) cannot solely explain the anisotropy in the measured electrical conductivity.
In contrast to the usual belief that the anisotropy of transport properties is mainly controlled by the
anisotropy of the clay matrix [e.g., Van Loon et al., 2004; Motellier et al., 2007], our results confirm that others
candidates, for instance, the anisotropy induced by elongated and oriented nonclayey grains, should
be considered.

However, this conclusion is clearly associated with the choice of two basic morphological units or
inclusion-based models (i.e., case 1 and case 2 in Figure 1) and one may wonder if more classical EMAs, which
would not account for local fluctuations of clay content and connectivity, would have provide the same
qualitative results. This question is addressed in the following section.

4.2. Impact of the Local Fluctuations of Clay Content and Connectivity on the Macroscopic Conductivity

In order to study the sole impact of local fluctuations of clay content and connectivity on the macroscopic

conductivity, the results from LCT and those obtained from a DEM rule using the sole mean value ϕc

(ϕc ¼ 50:44%, see Table 3) are compared. The latter model is called the “mean clay model” in the following.

Table 4. Inverted Values of Microstructural Parameters Obtained From LCT (L* = 50, 55, and 60 Pixels) and the Mean Clay Modela

L* = 50 Pixels L* = 55 Pixels L* = 60 Pixels Mean Clay Model

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

ax/az σc σHc σVc ax/az σc σHc σVc ax/az σc σHc σVc ax/az σc σHc σVc

3.59
± 0.005

2.07
± 0.005

2.91
± 0.005

0.61
± 0.005

3.67
± 0.005

1.97
± 0.005

2.75
± 0.005

0.59
± 0.005

4.11
± 0.005

1.83
± 0.005

2.47
± 0.005

0.55
± 0.005

3.34
± 0.005

2.12
± 0.005

3.03
± 0.005

0.63
± 0.005

aAll the conductivity values (σc, , and σVc ) are expressed in 10�2 Sm�1. Both inclusion-based models in LCT are considered (case 1: aligned spheroids in an
isotropic clay matrix; case 2: spheres in a transverse isotropic clay matrix).

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011429

COSENZA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 158



For case 1, the effective conductivity of the mean
clay model can be written as follows:

σeff ¼ σc ϕc
1= 1�NHð Þ ex⊗ ex þ ey⊗ ey

� �
þ σc ϕc

1= 1�NVð Þ ez ⊗ ezð Þ (51)

where the conventional depolarization coefficients
NH and NV for oblate spheroids are given by
equations (21) and (22).

For case 2, it yields

σeff ¼ σHc ϕc
1= 1�N′Hð Þ ex⊗ ex þ ey⊗ ey

� �
þ σVc ϕc

1= 1�N′Vð Þ ez⊗ ezð Þ (52)

where the modified depolarization coefficients
N ′ H and N ′ V are expressed in (27) and (28).

The results obtained from LCT and the mean clay
model are displayed in Figures 8 and 9. It should be
noted that these calculations were performed with

σc= 1 Sm�1 (case 1, Figure 8) and σHc ¼ 1 S m�1

(case 2, Figure 9). These values are of the same order of magnitude as those inverted previously in section 3.3
(see Table 4).

Figures 8 and 9 show that the effective conductivities calculated by LCT are systematically greater than those
obtained from the mean clay model. In other words, for the same values of microstructural parameters, if the
local fluctuations of clay content and connectivity are considered, the effective medium appears more

conductive than that with a mean clay fraction ϕc .

This result can be explained if the local functions μ(ϕc,L*) and λ(ϕc,L*) are both taken into account (Figure 10).
For the mean value ϕc= 50.44%, Figure 10 shows that less than 55% of the measurement cells percolate
(see the vertical arrow in Figure 10). The greatest value of clay fraction for which the fraction of percolating
cells is maximum is indicated in Figure 10 by a circle: it is greater than 50.44% and close to the value of 55 %.
In other words, for the same microstructural parameters, the effective medium sees a clay fraction

contributing significantly to the effective
conductivity, considerably greater than the mean

clay fraction ϕc of 50.44%. Since the effective
conductivity is an increasing function of clay
fraction, ϕc, the effective conductivity will be
greater when the local functions μ(ϕc,L*) and
λ(ϕc,L*) are considered.

However, if the microstructural parameters of the
mean clay model (for both mixture cases) are
now inverted, the results given in Table 4 seem
to contradict the previous statement: the
conductivity values of the clay matrix associated
with the mean clay model are significantly
lower than those given by LCT. This apparent
contradiction can be understood as a consequence
of two effects (Figure 11).

First, considering case 1, the mean clay model
shows lower values of ax/az than those calculated
from LCT. To compensate this effect, the clay
conductivity σc has to increase.

Figure 8. Vertical σVeff
� �

and Horizontal σHeff
� �

components of
the effective conductivity tensor calculated from the mean
clay model and LCT as a function of the axes ratio (case 1).

Figure 9. Vertical σVeff
� �

and horizontal σHeff
� �

components of
the effective conductivity tensor calculated from the mean
clay model and LCT as a function of the matrix conductivity
ratio (case 2).
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Second, considering case 2, the mean clay model

leads to greater values of σHc =σ
V
c than those

obtained from LCT. This results from an increase of

both clay conductivities σHc and σVc .

Consequently, these results confirmed two
important features of our modeling approach. On
the one hand, the effective conductivity is not
only governed by that of the clay matrix: the

microstructural ratios, ax/az and σHc =σ
V
c , play an

important role. On the other hand, effective
conductivity mainly depends of the choice of
morphological units in the inclusion-based models
(i.e., aligned spheroids in an isotropic clay matrix
and spheres in an anisotropic clay matrix) included
in the DEM scheme. In comparison with the
mean field approach associated with DEM, the
introduction of local fluctuations of clay content
and connectivity does not modify the order of
magnitude of the inverted values ofmicrostructural

parameters (Table 4): the differences between the inverted values of the mean clay model and that of LCT are
less than 15%.

5. Conclusion

This work introduced a LCT to establish a quantitative relationship between the effective (macroscopic)
electrical conductivity and the clay distribution of clay rocks. This theory is based on three assumptions. First,
a clay rock can be considered as a two-phase medium composed of a clay and a nonclay phases. Second, a
local simplicity assumption implies that the complexity of spatial clay distribution can be captured by two
local functions μ(ϕc,L) and λ(ϕc,L) calculated from a partitioning of a mineral map (L: the map side length) and
a local clay fraction ϕc of each subset called measurement cell. The local clay distribution μ(ϕc,L) provides
information about spatial clay fluctuations, and the local percolation probabilities λ(ϕc,L) describe spatial
connectivity fluctuations. Third, there exists a side length L* for which the local geometries given by local
functions μ(ϕc,L*) and λ(ϕc,L*) in each measurement cells are uncorrelated with each other. This assumption
allows for the connection of both local functions for EMAs (here, a DEM scheme).

This LCT was applied to (a) a mineral map made
from a Callovo-Oxfordian mudstone sample
and (b) electrical conductivity measurements
performed on the same sample. This application
shows three results.

First, the horizontal probability values are greater
than the vertical probability values: the connectivity
of this sample is better in the direction parallel to
the bedding planes. In this case, the anisotropy
of connectivity is controlled by the preferential
orientation of nonclayey grains following the
direction of bedding.

Second, the textural and classical model assuming
that the anisotropy is mainly controlled by
the anisotropy of the clay matrix provides
inconsistent inverted values of the clay vertical
conductivity. On the basis of this result and the
previous calculations of the percolation

Figure 10. Local clay distribution, μ(ϕc,L*), and local percola-
tion probability, λ(ϕc,L*), as a function of local clay fraction. L*
is taken equal to 55 pixels. The circle indicates an optimum
clay fraction of percolating measurement cells.

Figure 11. Matrix conductivity ratio (case 1), σHc =σ
V
c , and axes

ratio (case 2) ax/az as a function of effective conductivity ratio
for two models: mean clay model and DEM-LCT.
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probabilities, our approach suggests that the anisotropy induced by elongated and oriented nonclayey
grains should be considered.

Third, the effective conductivity values obtained from this LCT primarily depend on the choice of the
morphological units implied in EMAs. The local fluctuations of clay content and connectivity slightly modify
the modeling results.

These modeling results suggest the need for further investigations in two directions. First, this work has
accounted for simple microstructural patterns but can be extended by incorporating additional microscopic
features (e.g., orientation of nonclay grains) that would have been quantified [e.g., Robinet et al., 2012]. Thus,
this work confirms the interest of microstructural investigations and mapping techniques to identify the
microscopic and geometric factors controlling the effective properties measured in the field. Second, this LCT
which can be seen an easy-to-use model in comparison with other numerical approaches should be tested
for other transport properties (e.g., diffusion coefficient or thermal conductivity).

Appendix A: Effective Transport Coefficient of an Anisotropic Mixture of Anisotropic
Spherical Inclusions—The Maxwell-Garnett Scheme

In this section, the results obtained from the Maxwell-Garnett scheme are presented. They are essential in our
approach since they will be used to establish the mathematical formulation of the effective electrical

conductivity, σeff following the DEM scheme (Appendix B).

Consider a mixture of n anisotropic spherical inclusions of radius a in an anisotropic host medium. In the case
of the static limit (i.e., at very low angular frequencies, ω→0), the Maxwell-Garnett rule allows to obtain the

effective electrical conductivity of this mixture, σeff , a second-order tensor, as follows [Sihvola, 1996, 1999]:

σeff ¼ σe þ 1 � σe
�1N′

Xn
j¼1

βj

" #�1Xn
j¼1

βj (A1)

with

βj ¼ f j σj � σe
� �

σe þ N′ σj � σe
� �h i�1

σe (A2)

where σe: the electrical conductivity tensor of the host medium; fj: the volumetric fraction of spherical
inclusions j; σj : the electrical conductivity tensor of the spherical inclusions j; and N′: the modified
depolarization tensor [Sihvola, 1999]:

N′ ¼ detA

2∫
∞

0

dsσ
e

A
2
þsσe

� ��1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det A

2
þsσe

� �q
(A3)

where A is a symmetric and positive-definite second-order tensor given by

A ¼
X
i¼x;y;z

aei ⊗ ei (A4)

with a: radius of the spherical inclusions, ēx, ēy, ēz: vector units in the Cartesian coordinate system, and ⊗:
dyadic product. The tensor A also obeys to the following property:

detA ¼ a3 (A5)

In case of a transverse isotropic material for which the eigendirections of both tensors, σe and σj, are parallel

σe ¼ σHe ex ⊗ ex þ ey⊗ ey
� �þ σVe ez⊗ ezð Þ (A6)

σj ¼ σHj ex⊗ ex þ ey⊗ ey
� �þ σVj ez⊗ ezð Þ (A7)
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The horizontal component, σHeff , and the vertical component, σVeff , of the effective electrical conductivity, σeff ,
given in (A1) can be simplified as follows:

σHeff ¼ σHe þ

Xn
j¼1

βHj

1� N′H

σHe

Xn
j¼1

βHj

(A8)

σVeff ¼ σVe þ

Xn
j¼1

βVj

1� N′V

σVe

Xn
j¼1

βVj

(A9)

with

βXj ¼
f j σXj � σXe

 �

σXe

σXe þ LX σXj � σXe

 � X ¼ H or Vð Þ (A10)

and [e.g., Sihvola, 2005]

N′V ¼ 1� e2

2e3
ln
1þ e
1� e

� 2e

� �
(A11)

with

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σVe

σHe

s
if σVe < σHe
� �

(A12)

N′H ¼ 1� N′V

2
(A13)

Here it should be noted that the horizontal direction corresponds to that of the bedding planes.

In the framework of our modeling approach (i.e., LCT), consider a clay rock sample S as a mixture of 2k

conductive and nonconductive phases associated with k classes of local clay fractions (ϕ j¼1
c ,…,ϕ j¼k

c ). On the
basis of the previous equations, the Maxwell-Garnett rule allows to write the effective electrical conductivity,

σeff , as follows:

σeff ¼ σHeff ex⊗ ex þ ey⊗ ey
� �þ σVeff ez⊗ ezð Þ (A14)

where the horizontal component, σHeff , is now given by

σHeff ¼ σH ϕmax
c ; L*

� �þ
Xk�1

j¼1

βPj ϕ j
c ;ϕ

max
c ; L*

� �þXk
j¼1

βBj ϕ j
c ;ϕ

max
c ; L*

� �

1� N′H

σH ϕmax
c ;L*ð Þ

Xk�1

j¼1

βPj ϕ j
c ;ϕ

max
c ; L*

� �þXk
j¼1

βBj ϕ j
c ;ϕ

max
c ; L*

� � ! (A15)

with

βPj ¼
f pj σHP; j ϕ

j
c ; L*

� �� σH ϕmax
c ; L*

� �j k
σH ϕmax

c ; L*
� �

σHP; j ϕ
j
c ; L*

� �þ N′H σHP; j ϕ
j
c ; L*

� �� σH ϕmax
c ; L*

� �h i (A16)

βPj ¼
f Bj σHB; j ϕ

j
c ; L*

� �� σH ϕmax
c ; L*

� �j k
σH ϕmax

c ; L*
� �

σ H
B; j ϕ

j
c ; L*

� �þ N′H σHB; j ϕ
j
c ; L*

� �� σH ϕmax
c ; L*

� �h i (A17)

The σH ϕmax
c ; L*

� �
: the horizontal electrical conductivity of conductive measurement cells of size L* and of local

clay fraction ϕmax
c . The value ϕmax

c is the particular value of ϕc corresponding to the highest number of

measurement cells of size L* (i.e., the highest value ofϕ j
c among the k classes of local clay fractionϕ j¼1

c ,…,ϕ j¼k
c ).

Following this choice, the class of cells of local clay fraction ϕmax
c is considered as a host medium.

The parameters f Pj and f
B
j are the fraction of percolating (measurement) cells (i.e., λ ϕ j

c ; L*
� �

μ ϕ j
c ; L*

� �
Δϕc) and

the fraction of nonpercolating (measurement) cells (i.e., 1� λ ϕ j
c ; L*

� �� �
μ ϕ j

c ; L*
� �

Δϕc), for each class of local
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clay fraction ϕ j
c , respectively. The parameter σHP; j ϕ

j
c ; L*

� �
(respectively σHB; j ϕ

j
c ; L*

� �
) is the horizontal electrical

conductivity of percolating (respectively, blocking) cells of size L* and clay fraction ϕ j
c . The modified

depolarization coefficient N ′ H is given by the equations (A11), (A12), and (A13).

The vertical component, σVeff , is written in the same way: the superscript H is replaced by the superscript V in
equations (A15), (A16), and (A17).

Appendix B: Effective Electrical Conductivity of an Anisotropic Mixture of Anisotropic
Spherical Inclusions—The Differential Effective Medium Rule
Following an iterative process, the effective property of the mixture is explicitly calculated from an initial
material through a series of incremental additions of elementary volumes. The procedure begins with the

initial material m corresponding to an electrical conductivity σ ϕmax
c ; L*

� �
, i.e., the electrical conductivity of

conductive measurement cells of local clay fractionϕmax
c and of size L*. As previously, the valueϕmax

c defines
the particular value of ϕc corresponding to the highest number of measurement cells of size L*.

Small volumes of (k� 1) conductive phases and (k� 1) blocking phases are imbedded in phase m in such a
way that the volume remains fixed at V0. The (k� 1) conductive phases and the (k� 1) blocking phases are

associated with the electrical conductivities σP; j ϕ j
c; L*

� �
(with j=1,.., k� 1) and σB; j ϕ j

c; L*
� �

(with j= 1,.., k� 1),

respectively. The effective transport of the mixture is calculated considering a dilute suspension of these 2

(k� 1) small volumes in themediumm: the volumetric fractions f Pj , (with j= 1,.., k� 1) and f Bj , (with j=1,.., k� 1)

in equations (A15) and (A16) (and their counterpart following the vertical direction) are replaced by δVP
j =V0

and δVB
j =V0, respectively. Now, in the volume V0, the mixture has a homogenized effective electrical

conductivity σ2 L*ð Þ and constitutes the initial medium of the next step. The construction process continues
such that (a) at each stage, the embedded phases are in dilute concentration and (b) the required volume

fractions f Pj (with j=1,.., k� 1) and f Bj (with j=1,.., k� 1) are satisfied.

By replacing in theMaxwell-Garnett equations (A15) and (A16), the parametersσHeff,σ
H ϕmax

c ; L*
� �

, f pj , and f
B
j byσ

H
n,

σHn�1, δV
p
j =V0 (<<1), and δVB

j =V0 (<<1), respectively, a first-order expansion of equation (A15) gives the

increment of horizontal conductivity, δσHn , between two steps (step n and step n� 1) of the iterative procedure:

δσHn ¼
Xk�1

j¼1

δVP
j

V0
σHj;P � σHn�1


 �
σHn�1

σHn�1 þ N′H σHj;P � σHn�1


 �þXk
j¼1

δVB
j

V0
σHj;B � σHn�1


 �
σHn�1

σHn�1 þ N′H σHj;B � σHn�1


 � (B1)

where parameters σHn and σHn�1 are the horizontal effective property at step n and the horizontal effective
property at step n� 1, respectively; parameter σHj;p (respectively σ

H
j;B) is the horizontal conductivity of the

percolating (resp., blocking) phase j; parameter δVP
j (respectively δV

B
j ) is the volumetric increment of the

percolating (respectively blocking) phase j.

Due to the high number of phases in the mixture, the overlapping between inclusions of phase j and those of
phase l (l≠j) is neglected in the construction process. Consequently, the “incompressibility” assumption
recommended by Norris [1985] leads to

δVP
j

V0
¼ δf Pj

1� f pj
¼ λ ϕj

c; L*
� �

μ ϕj
c; L*

� � δϕc

1� λ ϕj
c; L*

� �
μ ϕj

c; L*
� �

δϕc

(B2)

δVB
j

V0
¼ δf Bj

1� f Bj
¼ 1� λ ϕj

c; L*
� �� �

μ ϕj
c; L*

� � δϕc

1� 1� λ ϕj
c; L*

� �� �
μ ϕj

c; L*
� �

δϕc

(B3)

If δϕc tends to zero (δϕc<<1) in equations (B1), (B2), and (B3), equation (B1) can be written as follows:

δσHn ¼ ∫
1

0

λ ϕc; L*ð Þμ ϕc; L*ð Þ σHP � σHn�1

� �
σHn�1

σHn�1 þ N′H σHP � σHn�1

� �
" #

dϕc

þ ∫
1

0

1� λ ϕc; L*ð Þð Þμ ϕc; L*
σHB � σHn�1

� �
σHn�1

σHn�1 þ N′H σHB � σHn�1

� �
 " #

dϕc (B4)
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where the first integral in the right member of equation (B4) can be considered here as an improper Riemann
integral since its calculation excludes the local clay fraction ϕmax

c for which the associated electrical
conductivity was calculated separately for the initial material:

∫
1

0

f ϕcð Þ dϕc ¼ lim
ε→0þ ∫

ϕmax
c �ε

0

f ϕcð Þ dϕc þ lim
ε→0� ∫

1

ϕmax
c þε

f ϕcð Þ dϕc (B5)

with

f ϕcð Þ ¼ λ ϕc; L*ð Þμ ϕc; L*ð Þ σHP � σHn�1

� �
σHn�1

σHn�1 þ N′H σHP � σHn�1

� � (B6)

The vertical increment, δσVn , is written in the same way: the superscript H is replaced by the superscript V in
equation (B4).

Appendix C: Differential Effective Medium Schemes for the Electrical Conductivities
of Conductive Measurement Cells

First, consider the simplest mixture: aligned prolate spheroids of transport property σi embedded in an
isotropic host medium with transport property being σe. Note that in our case, the spheroids are aligned
parallel to the bedding planes.

TheMaxwell-Garnett formula for the two components of the effective electrical conductivity of this mixture is
[e.g., Sihvola, 1999]:

σHeff ¼ σe þ f σe
σi � σe

σe þ 1� fð ÞNH σi � σeð Þ (C1)

σVeff ¼ σe þ f σe
σi � σe

σe þ 1� fð ÞNv σi � σeð Þ (C2)

where f is the volumetric fraction of spheroids; NH and NV are the conventional depolarization factors. If the
semi-axes of the prolate spheroid in three orthogonal directions are ax, ay, and az, the conventional
depolarization factors are given by

NV ¼ c

2 1� cð Þ3=2
ln
1þ ffiffiffiffiffiffiffiffiffiffiffi

1� c
p

1� ffiffiffiffiffiffiffiffiffiffiffi
1� c

p � 2
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p� �
(C3)

NH ¼ 1
2

1� NV
� �

(C4)

where the axial ratio c is

c ¼ a2x
a2z

(C5)

For instance, if we focused on the horizontal component σHe ,the equation (C1) can be also given the form

σHeff=σe � 1
σHeff=σe þ u

¼ f
σi=σe � 1
σi=σe þ u

(C6)

with u= (1�NH)/NH being a coefficient that depends on the shape of the spheroid.

In the framework of a DEM scheme, the volumetric fraction f, the parameters σi and σe are replaced in (C1) by

the parameters δV/V0, σHn , and σHn�1, respectively:

δσH

δσH þ 1þ uð ÞσHn�1
¼ δV

V0

σi � σHn�1

σi þ uσHn�1
(C7)

where parameters σHn σHn ¼ σHn�1 þ δσH
� �

and σHn�1 are the horizontal effective property at step n and the
horizontal effective property at step n � 1, respectively; δV is an infinitesimal increment of volume of
spheroidal inclusions; V0 is the volume of the mixture (held constant in the construction process). Since the
spheroidal grains are made of isolated material (quartz or calcite) (σi=0), a first-order expansion of equation (C4)
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gives the increment of horizontal electrical conductivity, δσHn , between two steps (step n and step n � 1) of
the iterative procedure:

δσHn
1þ uð ÞσHn�1

¼ δV
V0

�1
u

� �
(C8)

In the construction process associated with the DEM scheme, the volume of the mixture is held constant
(i.e., V= V0): at each replacement, the removed material must have the same volume fraction of material.
This “incompressibility” assumption leads to the following condition [e.g., Norris, 1985]:

δV
V0

¼ δf
1� f

(C9)

Now, the differential equation (C4) can be written as follows:

δσHn
1þ uð ÞσHn�1

¼ δf
1� f

�1
u

� �
(C10)

By integrating (C10) from σHn�1 ¼ σc and f= 0 to σHn�1 ¼ σH and f= fc= 1 � ϕc, the following equation is
obtained:

σH ¼ σcϕ 1þuð Þ=u
c ¼ σcϕ

1= 1�NHð Þ
c (C11)

A similar formulation can obtained for vertical effective property σV (the horizontal depolarization factor NH is
replaced by its vertical counterpart NV in equation (C8)).

In the second mixture used to calculate the electrical conductivities of conductive measurement cells, the
anisotropy is controlled by that of the clay matrix itself: a mixture of isotropic spheres embedded in a
transversely isotropic clay matrix is now considered. Furthermore, it is assumed that (a) the grains are spheres
and of isotropic material and (b) the principal axes of the anisotropic clay matrix are the same as the principal
axes of the effective electrical conductivity. In this case, the tensorial electrical conductivity of the anisotropic

host medium (i.e., clay matrix), σe, is given by

σe ¼ σHe ex ⊗ ex þ ey ⊗ ey
� �þ σVe ez ⊗ ezð Þ (C12)

where, as previously, the directions given by the unit vectors ēx, ēy are parallel to the bedding planes.
Following a Maxwell-Garnett rule, the two components of the effective medium are given by Sihvola
[1999, 2005]:

σHeff ¼ σHe þ f σHe
σi � σHe

σHe þ 1� fð ÞN′H σ i � σHe
� � (C13)

σVeff ¼ σVe þ f σVe
σi � σVe

σVe þ 1� fð ÞN′V σi � σVe
� � (C14)

where themodified depolarization factors N′H and NV depend on both componentsσHe andσ
v
e via the uniaxility

c′ given by

c′ ¼ σVc
σHc

(C15)

If c′< 1

N′V ¼ c′

2 1� c′ð Þ3=2
ln
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� c′
p

1� ffiffiffiffiffiffiffiffiffiffiffiffi
1� c′

p � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c′

p !
(C16)

If c′> 1

NV ¼ c′

c′ � 1ð Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
c′ � 1

p
� arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
c′ � 1

p
 �
(C17)
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In both cases

N′H ¼ 1
2

1� N′V
� �

(C18)

Equation (C14) is similar to equation (C1) except that σe is replaced by σHe . Consequently, the same procedure
similar to the first mixture can be used to obtain

σH ¼ σHeϕ
1= 1�N′Hð Þ
c (C19)

The vertical component, σV, is written in the same way: the superscript H is replaced by the superscript V in
equation (C19).
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