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An analytical and numerical study of Soret-driven convection in a horizontal porous layer saturated by a
binary fluid and subjected to uniform cross heat fluxes is presented. The flow is driven by the combined
buoyancy effect due to temperature and induced mass fraction variations through a binary water ethanol
mixture. In the first part of the study, a closed-form analytical solution in the limit of a large aspect ratio
of the cell (A >> 1) is developed. We are mainly concerned with the determination of the mass fraction
gradient of the component of interest along the horizontal direction, which determines the species
separation. In the second part, numerous numerical simulations are carried out in order to validate the
analytical results and extend heat and mass transfer to an area not covered by the analytical study. Good
agreement is found between analytical and numerical results concerning the species separation obtained
for a unicellular flow. In this configuration, the Soret separation process is improved by two control
parameters: the heat flux density imposed on the horizontal walls of the cell and the ratio, a, of heat flux
density imposed on vertical walls to that on horizontal walls. The influence of the heat flux density ratio,
a, on the transient regime (relaxation time) is also investigated numerically. We observe that an increase
in the parameter a leads to a decrease in the relaxation time. Thus, for a cell heated from below without
lateral heating, the onset of convection from the mechanical equilibrium state is analyzed. The linear
stability analysis shows that the equilibrium solution loses its stability via a stationary bifurcation or a
Hopf bifurcation depending on the separation ratio and the normalized porosity of the medium. The
linear stability results are widely corroborated by direct 2D numerical simulations. The thresholds of
various multicellular solutions are determined in terms of the governing parameters of the problem
using nonlinear direct numerical simulations.
1. Introduction

The aim of this work is to study, analytically and numerically,
the species separation of a binary fluid mixture saturating a hori-
zontal porous cavity of large aspect-ratio. The Soret effect is taken
into account. The convective motion is driven using constant cross
fluxes of heat on the horizontal and vertical walls.

Thermodiffusion corresponds to the migration of the compo-
nents in a gaseous mixture or aqueous solution under the tem-
perature gradient. Thermodiffusion in fluids, or the Soret effect,
was discovered by Ludwig and Soret [1]. This phenomenon implies
NPT, UPS; IMFT (Institut de
la, F-31400 Toulouse, France.
that any fluctuation in temperature will induce a variation in the
concentration of a binary mixture. The Soret effect is much larger
than the Dufour effect in liquid binary mixtures [2].

The magnitude of the Soret effect is associated with the Soret
coefficient, which is the ratio of the thermodiffusion coefficient to
the mass diffusion coefficient. Numerous previous works have
shown the importance of the Soret effect on the behavior of
multicomponent systems submitted to a temperature gradient. The
coupling between the heat and species molecular transports is
described by the mass flux density vector:

Jm ¼ �rDVC � rCð1� CÞ DTVT (1)

The first term of this equation comes from Fick's law and the
second term describes the Soret effect (thermodiffusion). VC is the
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Nomenclature

a Heat flux density ratio
A Aspect ratio
K Permeability of the porous medium
k wave number
BS Mass fraction gradient in the x direction
BT Temperature gradient in the x direction
C

0
0 Initial mass fraction

D Mass diffusion Coefficient [m2s�1]
DT Thermodiffusion coefficient[m2(sK)�1]
g Gravitational acceleration [ms�2]
H Height of the enclosure [m]
Jm Mass flux density vector [kg(m2s)�1]
L Length of the enclosure [m]
Le Lewis number
P Pressure [Pa]
Ra Thermal Rayleigh number
S Species separation
ST Soret parameter [K�1]
t Dimensionless time
T Dimensionless temperature
T

0
0 Reference temperature

(u,v) Dimensionless velocity components in Ref. (x,z)
directions

Greek symbols
bC Solutal expansion coefficient
bT Thermal expansion coefficient [K�1]
l
0
f Fluid thermal conductivity[W(mK)�1]
l' Effective porous thermal conductivity [W(mK)�1]
m Dynamic viscosity [Pas]
n Kinematic viscosity [m2s�1]
r Density [kgm�3]
j Separation ratio
ε
* Porosity of the medium
ε Normalized porosity
a Effective thermal diffusivity [m2s�1]
g Heat capacity ratio
4 Stream function
40 Intensity of the velocity field
s Temporal amplification of the perturbation
u Angular frequency

Superscript
0 For dimensional variables
0 Refers to a reference state
cr Refers to a critical value
mass fraction gradient induced by the temperature gradient, VT, [3].
Although, the assumption C(1 � C)z C0(1 � C0), where C0 is the
initial value of the mass fraction, is widely used, it remains valid
within the limits of very small variations of the mass fraction
around C0. This assumption does not take account of the variation
of DT with respect to the mass fraction C, such as in water-ethanol
systems (Kolonder et al. [4]), or the dependence on temperature,
such as in water-NaCl close to 12 �C (Mojtabi et al. [5]). In the
present work, DT is assumed to be constant.

Despite its very small values of DT, the Soret effect induces sig-
nificant mass fraction variation in many natural or technological
processes. The coupling of convection and thermodiffusion is called
thermo-gravitational diffusion. This phenomenon was pointed out
about eighty years ago with the experimental work of Clausius and
Dickel [6], and by theoretical work of Furry et al. [7], which opened
the way for the study of thermo-gravitational diffusion in vertical
columns (TGC). In 1959, Lorenz and Emery [8] suggested intro-
ducing a porous medium in the thermogravitational column to
reduce the convective motion. Thus, in a columnwith a large space
between the two plates, filled with a porous medium, the fluid
velocity is of the same order as TGC with a small gap. Thus, many
works related to species separation using thermogravitational
diffusion have been conducted in vertical columns. So the resulting
flow intensity is controlled by the porous media permeability and
an alternative means of control may be accessed by reducing the
gravity component.

In 2003, Platten et al. [9] showed that the separation of species
could be enhanced when the column was tilted. They concluded
that separation could considerably increased by choosing an
optimal inclination of the column. Charrier-Mojtabi et al. [10]
showed that it was possible to perform the separation in a hori-
zontal configuration when the separation ratio was negative or
greater than a positive value leading to the onset of unicellular flow.
They also showed that the Rayleigh number leading to optimum
separation in a horizontal cell was greater than that the one
obtained in a vertical cell (TGC). This allowed species separation in a
thick cell (Elhajjar et al. [11]). Bennacer et al. [12] used a parti-
tioning technique in order to enhance the separation within a
vertical annular porous cylinder. They reported that the separation
increased when the cylindrical annulus curvature increased and
showed that the separation ability increased with a porous layer
partitioning due to cross flow resulting from the co-rotative cells.
Khouzam et al. [13] presented a new configuration leading to
species separation in a horizontal rectangular cavity, heated from
above or from below, in the presence of mixed convection (lid
driven cavity). Their study showed that the separation could be
increased for an optimal coupling between the imposed horizontal
flow velocity and the flow induced by temperature gradient.

In Section 2, we present the physical problem and the mathe-
matical formulation. An analytical model, based on the parallel-
flow approximation for a cell with large aspect ratio, is proposed
in Section 3. In Section 4, the maximum species separation is
determined for optimal values of thermal Rayleigh number, Ra, and
heat flux densities ratio, a. Most of the results were obtained for
water-ethanol mixtures. The numerical method (FEM) employed to
solve the governing equations is also presented. In Section 5-1, an
analytical and numerical stability analysis is performed in order to
obtain the critical values associated with the onset of the unicel-
lular convection in the particular case (a ¼ 0), and either stationary
or Hopf bifurcation is obtained. In section 5-2, direct numerical
simulations are used to analyze multicellular flows obtained after
the onset of convection.

2. Mathematical formulation

The system under study consists of a horizontal rectangular
porous cavity with large aspect ratio A¼ L/H, where H, is the height
of the cavity along the z-axis and L is its length along the x-axis
(Fig.1). The reference frame is in themiddle of the cavity. The cavity
is filled with a binary fluid mixture of density r and dynamic



viscosity m. All four walls are assumed to be impermeable and
submitted to uniform heat fluxes of density q1 on the long hori-
zontal sides and q2 on the short vertical sides, opposite plates being
heated and cooled.

The Boussinesq approximation is assumed to be valid, so the
thermo-physical properties of the binary fluid are considered
constant, except the density in the buoyancy term which varies
linearly with the local temperature, T, and mass fraction, C, of the
denser component.

r
0 ¼ r

0
0

h
1� bT

�
T

0 � T
0
0

�
� bC

�
C

0 � C
0
0

�i
(2)

where bT and bC are, respectively, the thermal and mass expansion
coefficients of the binary fluid coefficients defined by:
bT ¼ � 1

r0

�
vr0

vT 0

�
C
>0; bC ¼ � 1

r0

�
vr0

vC0

�
T
<0.

In the present work, we focus on the optimal species separation
between the two horizontal ends of the cell, which appears after
the unicellular flow is established for low values of the Rayleigh
number and for positive separation ratio. The parameters of the
system studied correspond to a realistic binary mixture (water-
ethanol) with the initial mass fraction of the heavier component
(water) C0 ¼ 0.6088%wt. The kinematic viscosity and the density
are: n ¼ 2.716 � 10�6 m2s�1, r ¼ 935.17 kg m�3. Other relevant
properties are D ¼ 4.32 � 10�10 m2s�1, DT ¼ 1.37 � 10�12 m2s�1K�1,
bc ¼�2.12� 10�1, bT ¼ 7.86� 10�4 K�1, extracted from Platten et al.
[9]. Thermal diffusivity and conductivity are,
af ¼ 0.8771�10�7m2s�1, l0f ¼ 0:33794 Wm�1K�1, from Wang and
Fiebig [14].

The heat and the mass flux in the binary mixture are coupled
due to the Soret effect and both contribute to the density gradient.
The buoyancy force r g! ð g!¼ �g ez

!Þ is thus influenced by the Soret
effect, considering that the Dufour effect describing currents of heat
driven by concentration gradients can be neglected. Under these
conditions, themathematical model governing this problem, which
includes the conservation equations (mass, Darcy, energy and
chemical species), are written respectively as follows:
Fig. 1. Geometrical configuration of the

8>>>>>>>>>>>><>>>>>>>>>>>>:

V$V
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ðrcÞ*vT
0

vt
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0
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0 þ V
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Typically, in Soret-driven convection, if the variation of the mass
fraction is small, C'(1 � C') can be replaced by C

0
0ð1� C

0
0), C

0
0 being

the mass fraction in the initial state.
The reference scales for length and time are, H2g/a (where

g¼ (rc)'/(rc)f, where (rc)' and (rc)f are respectively the effective and
fluid volumetric heat capacity), and for pressure and velocity are
a m/K, a/H with a ¼ l'/(rc)f (a and l' are the effective thermal
diffusivity and effective conductivity of the porous-mixture sys-
tem). The dimensionless temperature and mass fraction are given
by:

T ¼ T
0 � T

0
0

DT 0 ; c ¼ C
0 � C

0
0

DC 0 with DT
0 ¼ ðq1 þ q2ÞH

.
l
0
;

DC
0 ¼ DT

0
C

0
0

�
1� C

0
0

�
ðDT=DÞ:

Thus, after eliminating the pressure, the dimensionless mathe-
matical formulation of the problem is given by:8>>>>>>><>>>>>>>:

vu
vz

� vv

vx
¼ �Ra

v

vx
½T � jC�

vT
vt

þ �V!$V
�
T ¼ V2T

ε

vC
vt

þ �V!$V
�
C ¼ 1

Le

�
V2C þ V2T

� (4)

As usual the equation of continuity is satisfied by introducing
the stream function, 4, according to: u ¼ v4/vz and v ¼ �v4/vx.8>>>>>>><>>>>>>>:

V24 ¼ �Ra
v

vx
½T � jC�

vT
vt

þ �V!$V
�
T ¼ V2T

ε

vC
vt

þ �V!$V
�
C ¼ 1

Le

�
V2C þ V2T

� (5)

The problem under consideration depends on six non-
dimensional parameters: the Lewis number, Le ¼ a/D, the ther-
mal Rayleigh number, Ra ¼ gH2KbT(q1 þ q2)/(yal'), the separation
cell submitted to cross heat fluxes.

(3)



ratio, j ¼ �bC
bT

DT
D C

0
0ð1� C

0
0Þ, the normalized porosity ε ¼ ε

*(rc)f/
(rc)', the horizontal to vertical heat flux densities ratio a¼ q2/q1 and
the aspect ratio. A ¼ L/H.

Uniform cross heat fluxes are applied on the four boundaries,
and the walls are assumed to be impermeable with the slip con-
dition on all walls,8>>><>>>:
c z2

�
�1
2
;
1
2

	
; x¼±

A
2
: 4¼ 0;

v24

vx2
¼ 0;

vT
vx

¼�vC
vx

¼� a
1þa

c x2
�
�A
2
;
A
2

	
; z¼±

1
2
: 4¼ 0;

v24

vz2
¼ 0;

vT
vz

¼�vC
vz

¼� 1
1þa

(6)
3. Analytical solution

For the present problem, the results are obtained within the
limit of steady state and large aspect ratio (A >> 1), a regime where
the parallel flow approximation is possible, which allows us to
neglect the vertical velocity component (see, for instance, Bejan &
Tien [15]; Walker & Homsy [16]), with the characterization of the
temperature and concentration fields as linear stratification in the
horizontal direction, after neglecting the side effects.

VðzÞ

! ¼ uðzÞex!; Tðx; zÞ ¼ BTxþ f ðzÞ; Cðx; zÞ ¼ BSxþ gðzÞ; (7)

With these assumptions (Eq. (7)) the system of dimensionless
Eq. (5) with the boundary conditions (6) are reduced to a set of
ordinary differential equations8>>>>>>>><>>>>>>>>:

d24

dz2
þ Ra½BT � jBS� ¼ 0

BT
d4
dz

� d2f ðzÞ
dz2

¼ 0

BS
d4
dz

� 1
Le

�
d2gðzÞ
dz2

þ d2f ðzÞ
dz2

�
¼ 0

(8)

Solving this system of Eq. (8) gives us the expression for the
stream-function, the temperature and the mass fraction fields:8>>>>>>><>>>>>>>:

4ðzÞ ¼ 40ð2z� 1Þð2zþ 1Þ

Tðx; zÞ ¼ BTxþ BT40

�
4z3

3
� z
�
� z
1þ a

Cðx; zÞ ¼ BSxþ
ðBSLe� BT Þ40

�
4z3 � 3z

�
3

þ z
ð1þ aÞ

(9)

40 represents the intensity of the velocity field. It indicates the
maximum value of the stream factor, and is given by:

40 ¼ 1
8
Ra½BSj� BT � (10)

The variations of the temperature and the concentration field
determine the buoyancy force field which, in turn, drives the
convective flow. In particular, the temperature gradients generate
variations in the concentration field. On the other hand, concen-
tration diffusion (Fick's law) and convective flow mixing tend to
reduce these variations. The overall result of these changes is to
close the feedback loop, which gives the possibility of species
separation.

To determine the constants BT and BS, a balance of heat and
solutes through the sections of the rectangular cavity subdomain
(see dashed line on Fig. 1) is established ([16e18]). Thus, by solving
the dimensionless form of the mass conservation through the
section:

Z0:5
�0:5

ðLe$uðzÞ$Cðx; zÞ � BS � BT Þdz ¼ 0 c x2½0;A� (11)

We have

BS ¼
8BTLe42

0 � 15BT þ 10Le40=ðaþ 1Þ�
8Le242

0 þ 15
� (12)

and applying the condition on the thermal flow through sections
(see dashed subdomain Fig. 1)

Z0:5
�0:5

ðuðzÞ$Tðx; zÞ � BT Þdz ¼ � a
1þ a

c x2½0;A� (13)

gives the expression of BT

BT ¼ � 5ð240 � 3aÞ
ðaþ 1Þ�8 42

0 þ 15
� (14)

with BS defined as the mass fraction gradient along the x axis. Thus,
the species separation S is defined as the difference in mass fraction
of the denser species between the two ends of the domain
considered, i.e. x ¼ 0 and x ¼ A. Replacing BT and BS, by their
expression (Eqs. (12) and (14)), we deduce from Eq. (9) the equation
giving the expression of 40 as a function of the controlling pa-
rameters Le, j and a:

40 ¼
Xi¼5

i¼0

ai4
i (15)

a0 ¼ �225Ra aðjþ 1Þ

a1 ¼ 1800ðaþ 1Þ � 150RaððLeþ 1Þjþ 1Þ

a2 ¼ 120Le Ra aðj� LeÞ

a3 ¼ 960
�
Le2 þ 1

�
ðaþ 1Þ � 80Le2Ra

a4 ¼ 0

a5 ¼ 512Le2ðaþ 1Þ
This polynomial equation of the fifth degree admits five real or

imaginary solutions depending on the values of the controlling
parameters Ra, Le, j and a.

4. Results and discussion

Numerical simulations were performed using a commercial
code (COMSOL Multiphysics) and were validated against the
analytical results. Thus, the geometry was drawn, an aspect ratio
A ¼ 10 is considered. The flow domain was meshed using “quad-
rilateral” elements, the quadrangle spatial resolution is 30 � 150. A
Lagrange-Quadratic scheme was selected to approximate the ele-
ments when discretizing the conservation Eq. (5) associated to the
boundary conditions (6). The linear system solver “UMFPACK” was
chosen for all our simulations.



To determine the separation ability and compare the numerical
to the analytical results (parallel flow), the curve C ¼ f(x) was
plotted at a horizontal mid-plane (z ¼ 0 for instance) and the slope
was determined only in the central part of the cell, in order to
eliminate the effects of recirculation in the vicinity of the vertical
ends.

Examples of the variation of the iso-mass fraction and concen-
tration field at different values of Ra and a are presented in Figs. 2
and 3. The black lines represent the iso-mass fraction contour,
while the colors represent the intensity of the concentration of the
heaviest species.

From Fig. 2 (a), it can be seen that a very small value of a (weak
convective motion) results in almost horizontal and vertical con-
centration field stratification, and the iso-mass fraction contours
are almost parallel to the horizontal walls. Thus the separation is
small. The maximum of separation is obtained when the iso-
concentration lines are inclined at around 145� with respect to
the horizontal Fig. 2 (b), which corresponds to the apparent optimal
value of aopt. For values of a exceeding aopt the iso-mass fraction
curvature increases and the separation decreases.

Likewise, from Fig. 3, we observe that the maximum separation
takes place when iso-concentration lines are inclined at 145�, cor-
responding to optimal Rayleigh number Raopt. If the value of Ra is
changed to greater than the optimal one, there is a deformation of
the concentration field which leads to smaller separation, and for
higher values of Ra, the concentration field is significantly affected
(as shownby the distortion of the iso-mass fraction lines in Fig. 3 (c)).
8>>><>>>:
aopt ¼ ±

1
12

ffiffiffiffiffiffiffiffiffiffiffi
30Le

p
ðLe� 1Þ

Leþ 1

Raopt ¼ 120ð1þ aÞ2
ð±2xþ 17Leþ 12Þa2jþ 2ð±xþ 6Leþ 6Þa2 þ 2ð±xþ 5LeÞaj±2xaþ 5Le

(16)
The previous two figures validate the aspect ratio used to fit
with the parallel flow assumption and linear temperature and
concentration profile in the x-direction.
Fig. 2. Iso-mass fraction and variation of the concentration field in the case of water-ethanol
and for Ra ¼ 0.1.
Fig. 4 shows the intensity of the flow in the point (4, 0) of the
cavity, 40, as a function of Ra for Le ¼ 203 and j ¼ 0.2 (water/
ethanol mixture 60%/40%) and for two different values of the hor-
izontal to vertical heat flux densities ratio, a. The four real analytical
solutions of 40 are represented by solid and dashed lines and, these
analytical results are corroborated by direct numerical simulations
represented by points. As illustrated in Fig. 4, convection in the
presence of side heating (a s 0) is possible for any value of the
Rayleigh number. This figure presents only the case of heating from
the bottom Ra > 0. Analytical results show that it is possible to have
either clockwise circulation of the flow 4 > 0or counterclockwise
circulation 4< 0. However, the side thermal effects tend to decrease
the density in the left side of the cavity, which generates clockwise
circulation 4 > 0and means 40 < 0 in the center of the cavity since
4 ¼ 40(2z � 1)(2z þ 1).

As expected, the flow intensity is enhanced by the Ra value in-
crease and the lateral heating, a, and the thermal solutal coupling
(Soret separation) explains the intersection of the obtained curves.
The numerical results fit the analytical curves well, validating the
analytical approach restricted by the underlined assumptions.

The lateral heating enhances the flow intensity below a specific
Ra value and more complex coupling occurs above this value. So to
obtain the induced separation ability and the optimal cross heating
conditions, we sought the optimal values.

Using the Maple software system, we determined the optimal
value of a ¼ f(Le), and Ra ¼ f(Le,j,a) leading to maximum of sepa-
ration. Their expressions are as follows.
Introducing the function x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 Le2ð11a2þ10aþ5Þþ6ð2Leþ1Þa2

ð1þaÞ2

r
the

maximum of separation BSmax, is deduced and given by:
mixture (60%e40%) (Le¼ 203, j ¼ 0.2, A ¼ 10) for different ratios of heat flux densities



Fig. 3. Iso-mass fraction and variation of the concentration field in the case of water-ethanol mixture (60%e40%) (Le¼ 203, j ¼ 0.2, A ¼ 10) for different Rayleigh numbers and for
specific heat flux density a ¼ 0.2.

Fig. 4. The intensity of the flow 40 as a function of Ra for water-ethanol mixture and
different values of a, for Le ¼ 203, j ¼ 0.2.

Fig. 5. Mass fraction gradient BS versus the flux ratio a for Ra ¼ 0.1, 0.5 and 1 (heated
from below), Le ¼ 203 and j ¼ 0.2.
BSmax ¼ � 1
12

±xðaþ 1Þ þ 6aðLe� 1Þ
ðaþ 1ÞLe (17)

For the same conditions considered, Fig. 5 illustrates the varia-
tion of separation BS versus a for various values of Rayleigh number
Ra ¼ 0.1, 0.5 and 1.

By increasing a, at fixed Ra, we can see that the separation in-
creases until it reaches a maximum value Smax, (BSmax) for which
optimal coupling between natural convection and thermodiffusion
time is achieved. The optimal value of the heat flux densities ratio
leading to Smax increases when Ra is decreased. When a < aopt the
thermodiffusion is predominant, the separation, due mainly to
thermodiffusion, is small. Conversely when a > aopt the convection
regime increases and tends to reduce the species separation.

The analytical solution is in good agreement with the 2D nu-
merical results (represented by dots) for all the values presented.
The maximum of separation BSmax ¼ 0.501 for Ra ¼ 0.1 is obtained
at a ¼ 0.47. For higher Ra ¼ 0.5, the weaker BSmax ¼ 0.459 is
obtained at small a ¼ 0.01, and for Ra ¼ 1, BSmax ¼ 0.408 is obtained
at a ¼ 0.

Such optimal conditions are for a chosen case and the weak
separation and optimal Ra are consequences of the weak mass
diffusivity considered (Le~200). For such values, flow mixing is
dominant.

The results presented above are for the thermally unstable
case where the heating is from the bottom. The case of heating
from the top is thermally stable but the induced separation can
be stabilizing or destabilizing depending on the value of j. We
will continue by focusing on positive j and the evolution of
separation with large Rayleigh number values is presented on
Fig. 6. As before, a maximum of separation is found for an
optimal value of Ra, where optimal coupling between con-
vection and thermodiffusion time is achieved. When the ab-
solute value of the Rayleigh number is lower than the optimal
value, thermodiffusion is predominant. In this case, the sepa-
ration is small. Conversely, when the absolute value of
Ra > Raopt, the convection regime increases and tends to reduce
the species separation for both stabilizing and destabilizing
thermal cases.

On the Fig. 6, we observe that as a decreases, the location of the
maximum separation is shifted towards higher absolute values of



Fig. 6. Mass fraction gradient BS versus the Rayleigh number Ra for a¼0, 0.2 and 1,
with ¼0.2, Le ¼ 203.

Fig. 7. The temporal evolution of the mass fraction, for different values of a and for
Ra ¼ 0.1.
Ra but the global coupling shows a non-symmetrical tendency for
the two cases.

In fact, with heating from below (a > 0 and Ra > 0) the
heaviest component moves to the cold wall (the upper wall),
which is an unstable situation. In this case, a small lateral heat
flux density is enough to create motion in the mixture and
reach the maximum of separation. On the other hand, when
heating is from above (a > 0 and Ra < 0), the heaviest compo-
nent moves to the bottom wall (the cold one), which is a stable
situation. In this case, a higher lateral heat flux density is
required to obtain the optimal coupling between convection
and thermodiffusion time which leads to the maximum of
separation.

Here, we find the maximum of separation equal to
BSmax ¼ 0.5878 for a ¼ 1 and Ra ¼ 0.03. In the other cases
BSmax ¼ 0.474 for a ¼ 0.2 and Ra ¼ 0.17 and BSmax ¼ 0.459 for a ¼ 0
and Ra ¼ 0.56. Actually, having the maximum of separation at a
greater value of Ra increases the time of separation and conse-
quently the quantity separated.

The different optimal situations were analyzed in the steady
state and the time needed to achieve such separation was at
least as important as the separation level. Fast separation
conditions could be interesting in multistage separation
processes.

The separation process relaxation time (which is the time
required to reach the steady state), was analyzed numerically for
the products and mixture proportions (water-ethanol 60% � 40%)
considered previously. The evolution of the mass fraction of the
denser component as a function of time, for Ra¼ 0.1 and for various
lateral heating, a, is illustrated in Fig. 7.

As we see from Fig. 7, the steady state can be reached
considerably faster with high values of a, the critical times needed
for a ¼ 0.1, 0.5 and 1.0 are 1200, 650 and 450 respectively. A
possible explanation for this would be that, the increase in the
value of a furthers the diffusion process and the flow intensity
helps to reach the steady state in less time. The maximum sepa-
ration is not monotonous with a and exhibits a better separation
for a ¼ 0.5. Nevertheless the decrease in separation ability is
compensated by the fast separation ability where the ratio be-
tween the needed time and maximum separation, tcr/Cmax are
1045, 418 and 338.
5. Linear and non-linear stability analysis for a ¼ 0

5.1. Convection in the particular case of a ¼ 0

The difference between the natural convection in laterally
heated cavities and a cavity heated from below is well known
theoretically and experimentally (Bejan [3]). In the absence of
lateral heating, it is easy to show that there is a mechanical equi-
librium solution characterized by:8><>:

V0

! ¼ 0
T0 ¼ �z
C0 ¼ z

(18)

In order to analyze the stability of this conductive solution, we
introduce a vertical velocity component perturbation w, and per-
turbations of temperature, q, and concentration, c. If we assume
that the perturbations (w, q, c) are small, we obtain the following
linearized equations

8>>>>>>><>>>>>>>:

V2w ¼ Ra

"
v2

vx2
ðq� jcÞ

#
vq

vt
þw

vT0
vz

¼ V2q

ε

vc
vt

þw
vC0
vz

¼ 1
Le
V2ðqþ cÞ

(19)

associated with the boundary conditions:

w ¼ 0;
vq

vz
¼ 0;

vc
vz

¼ 0; for z ¼ �1
2
;
1
2
cx (20)

The perturbation quantities are chosen as follows:

ðw; q; cÞ ¼
h bwðzÞ; bqðzÞ;bcðzÞieikxþst (21)

where k is the wave number in the horizontal direction (ox) and
i2 ¼ �1, and s is the temporal amplification of the perturbation.

We developed two procedures to obtain the critical values of
(Racs, kcs) and (Raco, kco,co). The first procedure was to solving the
dispersion equation analytically for a stationary transition so as to
obtain the exact values of the critical parameters numerically and



Table 1
Critical values of Racs and kcs obtained with the exact solution and the Galerkin
method, for the stationary bifurcations and for different values of j.
b Case of long-wave disturbances

Le ¼ 203 Le ¼ 10

Rac kc Rac kc

j ¼ �0.1 Exact �0.619 0 - 120.001 0
Galerkin �0.619 0 - 120.001 0

j ¼ 0 Exact 12 0 12 0
Galerkin 12 0 12 0

j ¼ 0.1 Exact 0.561 0 5.714 0
Galerkin 0.561 0 5.714 0
the second one using the Galerkin method (long-wave and oscil-
latory cases) leading to approximate values.

a Stationary transition

In the first part, we focus on steady bifurcation. Eq. (19) with the
boundary conditions 20 imply:

bc ¼ �bqðLeþ 1Þ þ constant (22)

This result shows, that, near the bifurcation point, the perturbed
parts of the temperature and the concentration are similar, a result
which is in a good agreement with our numerical simulations.

Eliminating c in the system of Eq. (19), we obtain a fourth-order
system of equations governing the variables w and bq:
�
D2 � k2

�2bqðzÞ þ Rak2ð1þ jð1þ LeÞÞbqðzÞ
¼ Rak2j½a1sinhðkzÞ þ a2coshðkzÞ� (23)

where D ¼ d/dz and a1 and a2 are integration constants verifying

bq0 ¼ 0 for z ¼ �1
2
;
1
2
cx;

bq00 � k2bq ¼ 0 for z ¼ �1
2
;
1
2
cx;

The characteristic equation associated with Eq. (23) is:

�
r2 � k2

�2 ¼ Rak2ð1þ jð1þ LeÞÞ

The general solution of the fourth order ordinary differential
equation (Eq. (23)) is given as a combination of four particular in-
dependent functions whose expression depends on the sign of.
Ra(1 þ j(Le þ 1)).

The solution obtained depends on four arbitrary constants.
When we assume that this general solution verifies the boundary
conditions (Eq. (20)), we obtain a homogeneous linear algebraic
system with four equations and four unknowns corresponding to
the four constants. This system has a nontrivial solution if the
associatedmatrix determinant, det (Ra, k, Le, j) is equal to zero. The
expression of this determinant was obtained using the Maple
algebra code.

Once we have calculated the determinant, we obtain the rela-
tion between the Rayleigh number, the wave number, the Lewis
number and the separation ratio j:

2sinhðR1ÞsinðR2Þk2 þ 2coshðR1ÞR1R2cosðR2Þ þ sinh
�
R21
�
R1R2

� R1sin
�
R22
�
R2 � R1cos

�
R22
�
R2 � cosh

�
R21
�
R1R2

¼ 0

(24)

where

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
�
kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rað1þ jðLeþ 1ÞÞ

p �r
;

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
�
� kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rað1þ jðLeþ 1ÞÞ

p �r
We can then determine the exact value of the stationary critical

Rayleigh number and the corresponding critical wave-number ac-
cording to the separation ratio and the Lewis number (Table 1).
These results were confirmed using the Galerkin method for the
perturbation quantities:8>>>><>>>>:
bw ¼ PN

i¼1
a½i�

�
z� 1

2

�i

$

�
zþ 1

2

�

bq ¼ b½1� þ b½2�$z$
�
z2 � 3

4

�
þ
XN�2

i¼1

b½iþ2�

�
z� 1

2

�iþ1

$

�
zþ 1

2

�2

(25)

Where bwðzÞ; bqðzÞ represent the vertical component of the velocity
and temperature perturbation.

Table 1 reports the critical values of Racs and kcs obtained with
the exact solution and the Galerkin method, for the stationary bi-
furcations and for different values of. j:

Although, in the general case, the solution of the eigenvalue
problem (Eqs. (19) and (20)) can only be obtained numerically, the
case of longwave disturbances (wave-number k¼ 0) can be studied
analytically (see, for instance, Charrier-Mojtabi et al. [10]). To study
the behavior of long-wave disturbances, it is possible to develop the
regular perturbation method with the wavenumber k as a small
parameter. In our case, using the Maple algebra code, we expand
the determinant in the vicinity of k ¼ 0 to obtain

detðRaðkÞ; k; Le;jÞ ¼ Ra
1þ jþ Lej

ðf1ðRa; Le;jÞk6 þ f2ðRa; Le;jÞk8

þ 0ðk10
�

(26)

Setting the expression corresponding to the order 6 of the
determinant development (f1(Ra,Le,j)) to zero, leads to

Rac ¼ 12
1þ jðLeþ 1Þ (27)

In this case, we find that the line jH ¼ �1/(Le þ 1) is an
asymptote of the curve. Racs(j).
c. Oscillatory instability
The linear stability Eq. (19) with the boundary conditions (20)

are solved using the Galerkin method where the perturbations are
chosen as Fourier functions and polynomial expansions. The
convergence of the critical parameters obtained by these two ap-
proximations is similar. The purpose is to find an oscillatory
instability (s ¼ iu) for a Rayleigh number Raco smaller than the one
at which marginal stability s ¼ 0 is observed. This stability study
leads to a homogeneous linear algebraic system, which has a non-
trivial solution if the associatedmatrix determinant is equal to zero.
The Maple software was used for the symbolic calculations of the
residue and of the 3N � 3N determinant A.



With all the approximations used, the determinant has the
following form:

det(A )¼ R(Ra, ε, Le, j, k, u) þ i S(Ra, ε, Le, j, k, u), where R and S
are real polynomial functions of (Ra, k, u, ε ,Le, j). The degrees of the
variables Ra and k in these functions increase according to the or-
der, N, of truncation.We performed the symbolic calculations of the
3N � 3N determinant A for levels N ¼ 3, 4 and 5.

To calculate the value of the critical Rayleigh number corre-
sponding to a Hopf bifurcation, we proceed as follows.

We first fix the particular values of j, ε and Le. We resolve the
following algebraic system, with two unknowns (Ra, u) and a
parameter k:�

RðRa; k; uÞ ¼ 0
SðRa; k; uÞ ¼ 0 (28)

Whenwe solve this system, we obtain the real roots of indices j:
Raj¼ fj(k) and uj¼ hj(k). We can then look for theminimumvalue of
Ra according to k and obtain the critical parameters Rajc ¼ fj(kc) and
ujc ¼ hj(kc). In Fig. 8 (a) and (b), we present the stability diagrams
Fig. 8. Stability diagram of the equilibrium state for (a) Le ¼ 10, (b) Le ¼ 200 and for
different porosity values (ε ¼ 0.4, 0.8). Solid lines: stationary bifurcation; dotted line:
Hopf bifurcation.
Rac ¼ f(j) obtained for Le ¼ 10 and 200 respectively (the solid lines
are associated with the stationary bifurcation). Fig. 8a and b show
that, for values of j less than jH ¼ �1/(Le þ 1), the primary tran-
sition is a Hopf bifurcation. In this domain, we can see the impor-
tant role of porosity: when it decreases, the stability of the
equilibrium solution is reinforced.

5.2. Nonlinear numerical analysis of the multicellular flow for a ¼ 0

The numerical solution of the problem admits, in principle, an
infinity of solutions, each of them associated with a given set of
initial conditions. Depending on the initial conditions introduced in
the computations, the stationary solution is characterized by
Ref. [1e9] rolls. In Fig. 9, we present the flow intensity as a function
of the Rayleigh number for all numerical solutions that may exist in
this domain of Rayleigh number. We started the numerical proce-
dure using pure conduction, as the initial condition. For high values
of thermal Rayleigh number, we found a particular multicellular
flow. We used the values of velocity; thermal and solutal fields
obtained for this multicellular flow as a new initial condition and
progressively decreased the value of Ra until the nature of the
multicellular flow changed. These solutions remained stable with
decreasing Rayleigh number until they lost this stability via an
instationary bifurcation. The structure of the flow obtained after
each bifurcation point is associated with a smaller number of rolls.
We also note that the intensity of flow increases as the number of
rolls decreases.

6. Conclusion and perspectives

In this work, analytical and numerical studies were performed
to investigate the species separation in a binary fluid saturating a
horizontal porous layer subjected to cross heat fluxes. The Darcy
model and the Boussinesq approximation were used to solve the
governing equations of the problem. In this configuration, the two
main control parameters are the thermal Rayleigh number, Ra, and
the heat flux density, a, for given values of Lewis number, Le, and
separation ratio, j. The heat flux imposed on the vertical walls in
addition to that imposed on the horizontal walls allows more mass
fraction horizontal gradient evolutions in comparison to the case of
classical thermogravitational columns where only one temperature
gradient induces convective heat and mass transfer.
Fig. 9. The intensity of the flow 40 as a function of Ra for water-ethanol mixture for all
possible multicellular flows (symbols) compared with the unicellular flow (solid line).



The results were obtained for a wide range of governing pa-
rameters, namely the thermal Rayleigh number, Ra, and the flux
ratio, a, for given values of the Lewis number, Le, and the separation
ratio, j. In the first part of the paper, an analytical solution was
determined in the case of a shallow cavity (A >> 1). This theoretical
study allowed us to determine the expression for the velocity,
temperature and mass fraction fields as a function of various
dimensionless parameters of the problem. From this theoretical
study, we deduced the optimal species separation values BSmax
according to the two control parameters, Ra and a. The analytical
results were corroborated by direct 2D numerical simulations using
a commercial finite element code (COMSOL). The comparison with
the separation obtained in other physical configurations showed
that the species separation may be greater in this configuration
even if the optimal separation values BSmax are equal in these
different geometries.

All previous studies have mainly focused on the optimal species
separation and avoided the transient regime to reach such a steady
state. We observed that the real optimal situation for separation
depends on a new criterion: the ratio of tcr to the maximal mass
fraction gradient, tcr/BSmax, where tcr is the time to reach the steady
state. Such an optimal criterion needs to be completed in forth-
coming studies and generalized versus the main control parameters,
a and Ra. For the particular case of no lateral flow (a ¼ 0), the linear
stability theory allowed us to predict the critical threshold of the
convection according of the control parameters. The new possible
multiple solutions depending on the initial state constitutes one of
the interesting new challenges in the thermodiffusion area.
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