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Abstract

This paper deals with stability analysis for a class of linear impulsive systems
subject to a timing contract specifying bounds on the time between two con-
secutive impulses. We consider the problem of stability verification, which
consists in proving stability for a particular timing contract, and the problem
of timing contract synthesis, which consists in synthesizing a set of timing
contracts that guarantee the stability of the linear impulsive system. Our ap-
proach is based on a reformulation using parameterized difference inclusions.
We derive theoretical necessary and sufficient conditions for stability based
on the propagation of a set by the system dynamics. For linear impulsive
systems, this allow us to design a stability verification algorithm using reach-
ability analysis. We then propose an approach to timing contract synthesis,
which exploits the monotonicity of stability with respect to timing contract
parameters to design an algorithm based on adaptive sampling of the param-
eter space. Several examples are provided, which allow us to compare our
algorithm with several existing techniques, and show the effectiveness of our
approach.
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1. Introduction

Impulsive dynamical systems form a class of hybrid systems, which model
processes that evolve continuously and undergo instantaneous changes at
discrete time instants. Applications of impulsive dynamical systems include
sampled-data control systems [7], networked control systems [8] or multi-
agent systems [6]. In this paper, we deal with stability analysis of linear
impulsive systems subject to a timing contract specifying bounds on the
time between two consecutive impulses. We consider two problems of inter-
est. The first problem under study is stability verification, which consists in
proving stability of a linear impulsive system for a particular timing contract.
We then consider the timing contract synthesis problem, which consists in
synthesizing a set of timing contracts that guarantee stability of the system.

We use a reformulation of the linear impulsive systems in the general
framework of difference inclusions. Then, for a fairly large class of differ-
ence inclusions, we establish necessary and sufficient conditions for stability.
These conditions are based on the successive images of a set under the dy-
namics of the difference inclusion, and generalize some previous conditions
on the stability of discrete-time switched systems [17, 3]. For linear impulsive
systems, these conditions allow us to design a stability verification algorithm
using reachability analysis. Then, we take advantage of previous work [15],
which provides an efficient and accurate algorithmic scheme to compute the
reachable sets for linear impulsive systems. We then propose an approach to
timing contract synthesis, which exploits the monotonicity of stability with
respect to timing contract parameters to design an algorithm based on adap-
tive sampling of the parameter space, borrowing ideas from techniques for
approximating the Pareto front of a monotone multi-criteria optimization
problem [16, 22].

Some results presented in this paper appeared in preliminary form in [1]
for stability verification and in [2] for parameter synthesis. This paper widen
their applicability by considering a more general formulation using difference
inclusions, and provides technical details that were omitted in the previous
works due to space limitation. Also, a new characterization of stability based
on convexification of the difference inclusion is established (Theorem 7),
which provides new insights regarding the conservatism of the proposed ap-
proach.

The paper is organized as follows. In Section 2, the problems under
study are formulated and the relation between linear impulsive systems and
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difference inclusions is formally established. Section 3 addresses the stability
verification problem. We provide new theoretical necessary and sufficient
conditions for stability of a class of difference inclusions, which allow us to
perform stability verification for linear impulsive systems using reachabil-
ity analysis. Section 4 addresses the timing contract synthesis problem by
combining the stability verification algorithm and adaptive sampling of the
parameter space. In Section 5, examples are used to compare our technique
with existing ones and to show the effectiveness of our approach.

Related work. Several approaches have been developed in the literature for
stability analysis of linear impulsive systems. A non-exhaustive list is given
in Table 1. From the modeling perspective, the problem can be tackled using
difference inclusions, time-delay systems or hybrid systems. On the compu-
tational side, most of the approaches are based on semi-definite programming
using either Linear Matrix Inequalities (LMI) or Sum Of Squares (SOS) for-
mulations. This makes a clear distinction with our approach which relies on
reachability analysis. [9] is more closely related to our approach since it relies
on the computation, using backward reachability analysis, of sets which are
contracting between two successive impulses. In comparison, our approach
uses forward reachabiltiy analysis and we compute sets that may need sev-
eral impulses before contracting. In Section 5, we will provide comparisons
on numerical examples between our approach and those that are listed in
Table 1.

Table 1: Some of the existing approaches for stability analysis of linear impulsive systems
with description of the modeling and computational approaches.

Modeling Computation References
Difference inclusions LMI [4, 13, 20]

SOS [7, 21]
Set invariance [9]

Time delay systems LMI [10, 11, 18]
Hybrid systems LMI [4, 19]

Notations. Let R, R+
0 , R+, N, N+ denote the sets of reals, nonnegative reals,

positive reals, nonnegative integers and positive integers, respectively. For
I ⊆ R+

0 , let NI = N ∩ I. Let ‖.‖ be a norm on Rn, and let B denote the
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associated unit ball. Given a real matrix A ∈ Rn×n, ‖A‖ is the norm of A
induced by the norm ‖.‖. Given S ⊆ Rn and a real matrix A ∈ Rn×n, the
set AS = {x ∈ Rn : (∃y ∈ S : x = Ay)}; for a ∈ R, aS = (aIn)S where In is
the n× n identity matrix. The convex hull of S is denoted by conv(S). We
denote the set of all subsets of Rn by 2Rn

. We denote by B0(Rn) the set of
bounded subsets of Rn containing 0 in their interior. For any S ∈ B0(Rn),
there exist c, c ∈ R+ such that cB ⊆ S ⊆ cB. For p, p′ ∈ Rd, p ≤ p′ if and
only if pi ≤ p′i, i = 1, . . . , d.

2. Problem formulation

This paper mainly deals with stability analysis and timing contract syn-
thesis for linear impulsive systems. We use a general formulation based on
difference inclusions and later show how linear impulsive systems can be
embedded in this framework.

2.1. Difference inclusions

We consider discrete-time dynamical systems modeled by the following
difference inclusion:

zk+1 ∈ Φ({zk}), k ∈ N (1)

where zk ∈ Rn is the state of the system, and Φ : 2Rn → 2Rn
is a set-valued

map. Stability for systems of the form (1) is considered in the following
sense:

Definition 1. System (1) is globally exponentially stable (GES) if there exists
(C, ε) ∈ R+ × (0, 1) such that for all trajectories (zk)k∈N of (1), we have

‖zk‖ ≤ Cεk ‖z0‖ , ∀k ∈ N. (2)

The first problem considered in the paper is that of verifying the stability
of a difference inclusion of the form (1). We make the following assumptions
on the map Φ.

Assumption 1. For all S ⊆ Rn, λ ∈ R+
0 , the following assertions hold:

(i) Φ(S) =
⋃
z∈S Φ({z});

(ii) Φ(λS) ⊆ λΦ(S);

(iii) if S is bounded, then Φ(S) is bounded.
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Under item (i) of Assumption 1, for all S, S ′ ⊆ Rn, it follows that Φ(S ∪
S ′) = Φ(S) ∪ Φ(S ′). Also, if S ⊆ S ′, then Φ(S) ⊆ Φ(S ′). We define the
iterates of Φ as Φ0(S) = S for all S ⊆ Rn, and Φk+1 = Φ ◦ Φk for all k ∈ N.
Let (zk)k∈N be a trajectory of (1) such that z0 ∈ S, then under item (i) of
Assumption 1, for all k ∈ N, Φk(S) is the set of all possible values of zk.

For some results of the paper, the following additional assumption related
to the convexity of the map Φ is needed:

Assumption 2. For all S ⊆ Rn, Φ(conv(S)) ⊆ conv(Φ(S)).

Then, the stability verification problem can be formulated as follows:

Problem 1 (Stability verification). Under Assumptions 1 and 2, verify that
system (1) is GES.

The second problem considered in the paper deals with parameter syn-
thesis for parameterized difference inclusions:

zk+1 ∈ Φp({zk}), k ∈ N (3)

where zk ∈ Rn is the state of the system, p ∈ P ⊆ Rd is a parameter,
and for all p ∈ P , Φp : 2Rn → 2Rn

is a set-valued map. For a given value
of the parameter p ∈ P , (3) is a difference inclusion of the form (1). The
parameter synthesis problem consists in synthesizing a subset of parameters,
which guarantee the stability of difference inclusion (3). For that purpose, we
shall make the following assumption on the monotonicity of Φp with respect
to parameter p:

Assumption 3. For all p, p′ ∈ P with p ≤ p′ and S ⊆ Rn, Φp′(S) ⊆ Φp(S).

The previous assumption yields the following result:

Lemma 1. Let p, p′ ∈ P with p ≤ p′; under Assumption 3, if (3) is GES for
parameter p, then (3) is GES for parameter p′.

Proof. Let (zk)k∈N be a trajectory of (3) for parameter p′, then for all
k ∈ N, zk+1 ∈ Φp′({zk}) ⊆ Φp({zk}). Thus, (zk)k∈N is also a trajectory of (3)
for parameter p. Thus, if (2) holds for all trajectories of (3) for parameter p,
it also holds for all trajectories of (3) for parameter p′.

We will also make assumptions related to the boundedness and mono-
tonicity of the set of parameters P :
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Assumption 4. P = D∩C where D = [pm1 , p
M
1 ]×· · ·× [pmd , p

M
d ] and C ⊆ Rd

satisfies the following property:

∀p ∈ C, ∀p′ ∈ Rd, p′ ≤ p =⇒ p′ ∈ C.

Then, the parameter synthesis problem can be formulated as follows:

Problem 2 (Parameter synthesis). Under Assumptions 3 and 4, synthesize
a set P∗ ⊆ P such that for all p ∈ P∗, (3) is GES.

2.2. Linear impulsive systems

In this section, we introduce a class of linear impulsive systems and show
how they can be embedded in the formalism of the difference inclusion (3).
We consider systems of the form:

ẋ(t) = Acx(t), ∀t ∈ (tk, tk+1], k ∈ N, (4)

x(t+k ) = Adx(tk), k ∈ N, (5)

where (tk)k∈N are the impulse instants, x(t) ∈ Rn is the state of the system,
Ac and Ad are n×n matrices and x(t+) = limτ→0,τ>0 x(t+ τ). Moreover, the
sequence of impulse instants (tk)k∈N satisfies a timing contract given by

t0 = 0, tk+1 − tk ∈ [T , T ], k ∈ N (6)

where 0 < T ≤ T represent lower and upper bounds on the period between
two consecutive impulses. Stability for linear impulsive systems of the form
(4-6) is considered in the following sense:

Definition 2. System (4-6) is globally uniformly exponentially stable (GUES)
if there exists (C, λ) ∈ R+×R+ such that, for all sequences (tk)k∈N verifying
(6) the solutions of (4-5) verify

‖x(t)‖ ≤ Ce−λt ‖x(0)‖ , ∀t ∈ R+
0 . (7)

The stability verification problem is formulated as follows:

Problem 3 (Stability verification). Given Ac, Ad ∈ Rn×n, 0 < T ≤ T , verify
that system (4-6) is GUES.
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The second problem we consider is that of timing contract synthesis. For
that purpose we define a set of admissible timing contract parameters:

T = [Tm, TM ]× [Tm, TM ] ∩ {(T , T ) ∈ R2| T ≤ T}

where 0 < Tm < TM and 0 < Tm < TM . The timing contract synthesis
problem can then be formulated as follows

Problem 4 (Timing contract synthesis). Given Ac, Ad ∈ Rn×n, and T ,
synthesize a set T ∗ ⊆ T such that for all (T , T ) ∈ T ∗, system (4-6) is
GUES.

In the remaining of the section, we show that Problems 3 and 4 can be
reduced to Problems 1 and 2 respectively. To rewrite the linear impulsive
system (4-6) as a parameterized difference inclusion of the form (3), we first
define the notion of reachable set:

Definition 3. Given a continuous-time dynamical system

ẋ(t) = Ax(t), t ∈ R+
0 , x(t) ∈ Rn

the reachable set on [t, t′] ⊆ R+
0 from the set S ⊆ Rn is

RA
[t,t′](S) =

⋃
τ∈[t,t′]

eτAS.

Let us consider a trajectory x of the linear impulsive system (4-6), and
let us define the sequence zk = x(tk) for all k ∈ N. Then, the dynamics of
the sequence (zk)k∈N is characterized by a difference inclusion of the form (3)
with Φp given by

∀S ⊆ Rn, Φp(S) = RAc

[T ,T ]
(AdS), (8)

where the parameter p is defined as p = (T ,−T ). The set of parameters P
is then derived from T as

P = [Tm, TM ]× [−TM ,−Tm] ∩ {(p1, p2) ∈ R2| p1 ≤ −p2}. (9)

The following proposition establishes the equivalence between stability of
systems (4-6) and (3).

Proposition 2. System (4-6) is GUES if and only if system (3) is GES with
p = (T ,−T ) and Φp given by (8).
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Proof. Let us assume that (4-6) is GUES, and let us consider a trajectory
(zk)k∈N of (3) with p = (T ,−T ) and Φp given by (8). Then, by definition
of Φp there exists a sequence (τk)k∈N with τk ∈ [T , T ] such that zk+1 =
eAcτkAdzk, for all k ∈ N. Let x be the trajectory of (4-6) corresponding to
the initial condition x(0) = z0 and the sequence of impulse instants t0 = 0,
tk+1 = tk + τk. Then, it follows that x(tk) = zk for all k ∈ N. By remarking
that tk ≥ kT , for all k ∈ N, the stability of (4-6) gives

‖zk‖ = ‖x(tk)‖ ≤ Ce−λtk ‖x(0)‖ ≤ C(e−λT )k ‖z0‖

which proves that system (3) is GES.
Now let us assume that system (3) is GES with p = (T ,−T ) and Φp

given by (8), and let us consider a trajectory x of (4-6). By construction, the
sequence defined by zk = x(tk), for all k ∈ N is a trajectory of system (3)
with p = (T ,−T ). Then, the stability of (1) gives for all k ∈ N,

‖x(tk)‖ = ‖zk‖ ≤ Cεk ‖z0‖ = Cεk ‖x(0)‖ .

Now, let t ∈ R+, let k ∈ N be such that t ∈ (tk, tk+1], then t − tk ≤ T and
k ≥ t/T − 1. Since ε ∈ (0, 1) it follows

‖x(t)‖ ≤ e‖Ac‖(t−tk)‖Ad‖‖x(tk)‖ ≤ e‖Ac‖(t−tk)‖Ad‖Cεk ‖x(0)‖

≤ e‖Ac‖T‖Ad‖ε(t/T )−1‖x(0)‖ =
e‖Ac‖T‖Ad‖

ε
e

ln(ε)

T
t‖x(0)‖.

Since ε ∈ (0, 1), system (4-6) is GUES.

We now show that the map Φp and the parameter set P satisfy the assump-
tions formulated in Section 2.1.

Proposition 3. Let Φp and P be given by (8) and (9). Then, for all p ∈ P,
Φp satisfies Assumptions 1 and 2. Moreover, Assumptions 3 and 4 hold.

Proof. Let us prove that the different assumptions hold.
Assumption 1(i) : From the definition of reachable set, we have

Φp(S) =
⋃

τ∈[T ,T ]

eτAAdS =
⋃

τ∈[T ,T ]

⋃
z∈S

eτAAd{z}

=
⋃
z∈S

⋃
τ∈[T ,T ]

eτAAd{z} =
⋃
z∈S

Φp({z}).
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Assumption 1(ii) : From the definition of reachable set, we have

Φp(λS) =
⋃

τ∈[T ,T ]

eτAAdλS = λ
⋃

τ∈[T ,T ]

eτAAdS = λΦp(S).

Assumption 1(iii) : Let S ⊆ Rn, then let z′ ∈ Φp(S), there exists z ∈ S
and τ ∈ [T , T ] such that z′ = eτAcAdz. Then,

‖z′‖ ≤ eT‖Ac‖‖Ad‖‖z‖.

Hence, if S is bounded, so is Φp(S).
Assumption 2 : Let z′ ∈ Φp(conv(S)), then there exist z ∈ conv(S) and

τ ∈ [T , T ] such that z′ = eτAcAdz. Since z ∈ conv(S), there exist x, y ∈ S
and λ ∈ [0, 1] such that z = λx+ (1− λ)y. Then, by linearity

z′ = λeτAcAdx+ (1− λ)eτAcAdy.

By remarking that eτAcAdx ∈ Φp(S) and eτAcAdy ∈ Φp(S), it follows that
z′ ∈ conv(Φp(S)). Thus, Φp(conv(S)) ⊆ conv(Φp(S)).

Assumption 3 : Let p, p′ ∈ P with p ≤ p′. Then, p = (T ,−T ) and

p′ = (T ′,−T ′) gives [T ′, T
′
] ⊆ [T , T ]. It follows that

Φp′(S) =
⋃

τ∈[T ′,T
′
]

eτAAdS ⊆
⋃

τ∈[T ,T ]

eτAAdS = Φp(S).

Assumption 4 : P = D ∩ C where D = [Tm, TM ] × [−TM ,−Tm] and
C = {(p1, p2) ∈ R2| p1 ≤ −p2}. Moreover, let p ∈ C and p′ ∈ R2 with p′ ≤ p,
then p′1 ≤ p1 ≤ −p2 ≤ −p′2 which implies that p′ ∈ C.

It follows from Propositions 2 and 3 that Problems 3 and 4 can be re-
duced to Problems 1 and 2. Therefore, in the following sections, we develop
algorithms to solve Problems 1 and 2.

3. Stability verification

This section proposes a framework to solve the stability verification prob-
lem. More precisely, it presents theoretical necessary and sufficient conditions
for stability of system (1). Then, an algorithm is proposed to solve Problem 1.
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3.1. Necessary and sufficient conditions for stability

The following result characterizes the stability of system (1) in terms of
the map Φ.

Theorem 4. Let S ∈ B0(Rn), under Assumption 1, the following statements
are equivalent:

(a) System (1) is GES;

(b) There exists (k, j, ρ) ∈ N+×N[0,k−1]× (0, 1) such that Φk(S) ⊆ ρΦj(S);

(c) There exists (k, ρ) ∈ N+ × (0, 1) such that Φk(S) ⊆ ρ
⋃k−1
j=0 Φj(S).

Proof. It is obvious that (b) =⇒ (c). Hence, it is sufficient to prove that
(a) =⇒ (b) and (c) =⇒ (a).

(a) =⇒ (b): We prove that there exists (k, ρ) ∈ N+ × [0, 1) such that
Φk(S) ⊆ ρS. This is a special case of (b) when j = 0. Since S ∈ B0(Rn), then
there exist c, c ∈ R+ such that cB ⊆ S ⊆ cB. Let (zk)k∈N be a trajectory
of (1) with z0 ∈ S, then ‖z0‖ ≤ c. Under item (i) of Assumption 1, for all
k ∈ N, Φk(S) represents all the possible values of zk. Since (1) is GES, then
there exist C ∈ R+ and ε ∈ (0, 1) such that ‖zk‖ ≤ Cεk‖z0‖ ≤ Cεkc. This
gives us for all k ∈ N,

Φk(S) ⊆ CcεkB ⊆ C
c

c
εkS.

For k sufficiently large, C c
c
εk < 1 and therefore (b) holds.

(c) =⇒ (a): Let ε = ρ
1
k ; since ρ ∈ (0, 1) then for all j ∈ N[0,k−1], ρ ≤ εk−j

and

Φk(S) ⊆ ρ
k−1⋃
j=0

Φj(S) ⊆
k−1⋃
j=0

εk−jΦj(S). (10)

Let S ′ =
⋃k−1
j=0 ε

−jΦj(S), then using items (i) and (ii) of Assumption 1:

Φ(S ′) = Φ

(
k−1⋃
j=0

ε−jΦj(S)

)
=

k−1⋃
j=0

Φ(ε−jΦj(S))

⊆
k−1⋃
j=0

ε−jΦj+1(S) =

(
k−2⋃
j=0

ε−jΦj+1(S)

)
∪ ε−k+1Φk(S).
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Making a change of index in the union and using (10) yield

Φ(S ′) ⊆

(
k−1⋃
j=1

ε−j+1Φj(S)

)
∪ ε−k+1

(
k−1⋃
j=0

εk−jΦj(S)

)

⊆ ε

(
k−1⋃
j=0

ε−jΦj(S)

)
= εS ′. (11)

Let us remark that S ⊆ S ′, then cB ⊆ S ′. In addition, since S is bounded,
from item (iii) of Assumption 1, S ′ is bounded and there exists c′ ∈ R+ such
that S ′ ⊆ c′B. Now consider a trajectory (zk)k∈N of (1), then z0 ∈ ‖z0‖B ⊆
‖z0‖
c
S ′. Items (i) and (ii) of Assumption 1 and (11) give for all k ∈ N

zk ∈ Φk

(
‖z(0)‖
c
S ′
)
⊆ ‖z(0)‖

c
εkS ′ ⊆ ‖z(0)‖

c
εkc′B.

In other words, it holds for all k ∈ N,

‖zk‖ ≤
c′

c
εk‖z0‖.

Since ε ∈ (0, 1) , system (1) is GES.

Theorem 4 shows the existence of a generally non-convex contracting set
S ′, with respect to the system (1) whenever the latter is GES. In addition,
when Assumption 2 holds, it is possible to show the existence of a convex
contracting set as well.

Corollary 5. Let S ∈ B0(Rn), under Assumptions 1 and 2, system (1) is
GES if and only if there exists (k, ε) ∈ N+ × (0, 1) such that Φ(Ŝ) ⊆ εŜ,

where Ŝ = conv
(⋃k−1

j=0 ε
−jΦj(S)

)
.

Proof. For sufficiency, we assume that there exists (k, ε) ∈ N+× (0, 1) such
that Φ(Ŝ) ⊆ εŜ. Following the same steps after (11) in the proof of Theorem
4, we conclude that (1) is GES. For necessity, we assume that (1) is GES.
Then, from the proof of Theorem 4, there exists (k, ε) ∈ N+ × (0, 1) such
that S ′ =

⋃k−1
j=0 ε

−jΦj(S) satisfies Φ(S ′) ⊆ εS ′. Let Ŝ = conv(S ′), then using
Assumption 2 we have:

Φ(Ŝ) = Φ (conv (S ′)) ⊆ conv (Φ (S ′)) ⊆ conv (εS ′) = εconv (S ′) = εŜ.
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Thus, with the addition of Assumption 2, the stable system (1) admits a
convex contracting set Ŝ. In that case, we can further prove that a charac-
terization of the stability of (1) can be given in terms of a convexified version
of the set valued-map Φ. Let us consider the set-valued map Φ̂ : 2Rn → 2Rn

given by
∀S ⊆ Rn, Φ̂(S) = conv(Φ(S)).

The images of Φ̂ are convex sets and for all S ⊆ Rn; Φ(S) ⊆ Φ̂(S). The
iterates of Φ̂ are defined similarly to those of Φ. Let us also define the
dynamical system associated to the set-valued map Φ̂:

zk+1 ∈ Φ̂({zk}), k ∈ N. (12)

Let us state some properties of the map Φ̂:

Lemma 6. Let Assumptions 1 and 2 hold. For all S, S ′ ⊆ Rn, λ ∈ R+
0 , the

following assertions hold:

(i) if S ⊆ S ′, then Φ̂(S) ⊆ Φ̂(S ′);

(ii) Φ̂(λS) ⊆ λΦ̂(S);

(iii) if S is bounded, then Φ̂(S) is a bounded;

(iv) Φ̂(conv(S)) = Φ̂(S).

Proof. Let us prove the different assertions.
(i) : From item (i) of Assumption 1, we have that S ⊆ S ′ implies Φ(S) ⊆

Φ(S ′). Therefore, conv(Φ(S)) ⊆ conv(Φ(S ′)).
(ii) : From item (ii) of Assumption 1, conv(Φ(λS)) ⊆ conv(λΦ(S)) =

λconv(Φ(S)).
(iii) : From item (iii) of Assumption 1, if S is bounded then Φ(S) and

thus conv(Φ(S)) are bounded.
(iv) : From the first item of the Lemma, S ⊆ conv(S) gives Φ̂(S) ⊆

Φ̂(conv(S)). Then, from Assumption 2,

Φ̂(conv(S)) = conv(Φ(conv(S)))

⊆ conv(conv(Φ(S))) = conv(Φ(S)) = Φ̂(S).
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The previous result shows that items (ii) and (iii) of Assumption 1 are
transferred from Φ to Φ̂. This is not the case of item (i) of Assumption 1,
where only a weaker property can be stated for Φ̂ (item (i) in the lemma). In
particular, for k ∈ N+, Φ̂k(S) generally contains values that are not reachable
by any trajectory (zk)k∈N of (12) with z0 ∈ S. On the other hand, Assump-
tion 2 gives a stronger property for Φ̂ than for the original map Φ (item (iv)
in the lemma).

We can now prove the following result which shows equivalence between
stability of systems (1) and (12) and gives a characterization in terms of the
set-valued map Φ̂.

Theorem 7. Let S ∈ B0(Rn), under Assumptions 1 and 2, the following
statements are equivalent:

(a) System (1) is GES;

(b) There exists (k, j, ρ) ∈ N+×N[0,k−1]× (0, 1) such that Φ̂k(S) ⊆ ρΦ̂j(S);

(c) There exists (k, ρ) ∈ N+×(0, 1) such that Φ̂k(S) ⊆ ρconv
(⋃k−1

j=0 Φ̂j(S)
)
;

(d) System (12) is GES.

Proof. Obviously (b) =⇒ (c). Moreover (d) =⇒ (a), since all trajectories
of (1) are also trajectories of (12). Hence, it is sufficient to prove that (a) =⇒
(b) and (c) =⇒ (d).

(a) =⇒ (b): We prove that there exists (k, ρ) ∈ N+× (0, 1) such that (b)
is true for j = 0. We have from Corollary 5 that there exist (i, ε) ∈ N+×(0, 1)

such that Φ(Ŝ) ⊆ εŜ, where Ŝ = conv
(⋃i−1

j=0 ε
−jΦj(S)

)
. Then,

Φ̂(Ŝ) = conv(Φ(Ŝ)) ⊆ conv(εŜ) = εŜ. (13)

Also S ∈ B0(Rn) implies, from item (iii) of Assumption 1 that Ŝ is bounded.
Then, there exists c ∈ R+ such that Ŝ ⊆ cS. Let us remark that S ⊆ Ŝ,
then, from (13) and items (i) and (ii) of Lemma 6, for all k ∈ N,

Φ̂k(S) ⊆ Φ̂k(Ŝ) ⊆ εkŜ ⊆ cεkS.

Since ε ∈ (0, 1), then for k sufficiently large it becomes true that cεk < 1
which allows us to conclude.
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(c) =⇒ (d): Let ε = ρ
1
k ; since ρ ∈ (0, 1) then for all j ∈ N[0,k−1], ρ ≤ εk−j

and

Φ̂k(S) ⊆ ρconv

(
k−1⋃
j=0

Φ̂j(S)

)
⊆ conv

(
k−1⋃
j=0

εk−jΦ̂j(S)

)
. (14)

Let Ŝ ′ = conv(
⋃k−1
j=0 ε

−jΦ̂j(S)), then by item (iv) of Lemma 6, items (i) and
(ii) of Assumption 1, we have

Φ̂(Ŝ ′) = Φ̂

(
k−1⋃
j=0

ε−jΦ̂j(S)

)
= conv

(
Φ

(
k−1⋃
j=0

ε−jΦ̂j(S)

))

⊆ conv

(
k−1⋃
j=0

ε−jΦ(Φ̂j(S))

)
⊆ conv

(
k−1⋃
j=0

ε−jΦ̂j+1(S)

)

⊆ conv

((
k−2⋃
j=0

ε−jΦ̂j+1(S)

)
∪ ε−k+1Φ̂k(S)

)
.

Making a change of index in the union and using (14) yield

Φ̂(Ŝ ′) ⊆ εconv

(
k−1⋃
j=0

ε−jΦ̂j(S)

)
= εŜ ′.

Let us remark that S ⊆ Ŝ ′, moreover, since S is bounded then from item
(iii) of Lemma 6, Ŝ ′ is bounded. It follows that there exist c′ ∈ R+, c′ ∈ R+

such that c′B ⊆ Ŝ ′ ⊆ c′B. Following the same steps after (11) of the proof of
Theorem 4, one concludes that (12) is GES.

Remark 1. The results in this section can be applied to stability analysis
of discrete-time switched linear systems of the form xk+1 = Aikxk where

ik ∈ N[1,N ], by defining the associated set-valued map Φ(S) =
⋃N
i=1AiS. In

particular, by Theorem 7, we can recover the result in [17, Proposition 1]
stating the equivalence between stability of the switched system and of the
difference inclusion xk+1 ∈ conv({A1, . . . , An})xk. Also, the stability char-
acterizations established in [3, Theorem 1 and Corollary 2] for discrete-time
switched linear systems can be obtained directly from Theorems 4 and 7,
respectively.

3.2. An algorithm for stability verification
In this section, we present an algorithm for verifying the stability of sys-

tem (1).
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3.2.1. A sufficient condition for stability

The maps Φ and Φ̂ involved in Theorems 4 and 7 can be impractical to
compute exactly. This is the case for instance with linear impulsive systems,
which involve the computation of the reachable set of a linear system on a
time interval. In that case, we may use an over-approximation Φ : 2Rn → 2Rn

,
which is easier to compute and satisfies the following assumption:

Assumption 5. For all S ⊆ Rn, the following assertions hold:

(i) Φ(S) ⊆ Φ(S);

(ii) if S is bounded then Φ(S) is bounded.

The iterates of Φ are defined similarly to those of Φ. We now derive
sufficient conditions for stability of system (1) based on Φ.

Corollary 8. Under Assumptions 1 and 5, if there exist S ∈ B0(Rn) and

(k, i, ρ) ∈ N+ × N[0,k−1] × (0, 1) such that Φ
k
(S) ⊆ ρΦ

i
(S), then system (1)

is GES.

Proof. Φ
k
(S) ⊆ ρΦ

i
(S) ⊆ ρ

⋃k−1
j=0 Φ

j
(S) ⊆

⋃k−1
j=0 ε

k−jΦ
j
(S) where ε = ρ

1
k .

Similar to the second part of the proof of Theorem 4, let S ′ =
⋃k−1
j=0 ε

−jΦ
j
(S).

Then, by items (i) and (ii) of Assumption 1, and item (i) of Assumption 5,
we have

Φ(S ′) = Φ

(
k−1⋃
j=0

ε−jΦ
j
(S)

)
⊆

k−1⋃
j=0

ε−jΦ(Φ
j
(S))

⊆
k−1⋃
j=0

ε−jΦ(Φ
j
(S)) =

k−1⋃
j=0

ε−jΦ
j+1

(S).

Then, following the same steps as in (11), we can show that Φ(S ′) ⊆ εS ′.
Following the same lines as in the proof of Theorem 4 after (11) and using
item (ii) of Assumption 5, one concludes that (1) is GES.

Let us remark that if the images of Φ are convex sets, then Φ(S) ⊆ Φ̂(S) ⊆
Φ(S). In such a case, in regards of Theorem 7, the only conservatism intro-
duced by Corollary 8 is due to the over-approximation of Φ̂(S).
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3.2.2. Algorithm

We propose a method to solve Problem 1 based on the sufficient condi-
tion given in Corollary 8. The stability verification algorithm consists of an
initialization step and a main loop. In the initialization step, we compute an
initial set S0 ∈ B0(Rn), which is then propagated in the main loop using the
map Φ to check the stability condition given by Corollary 8.

The choice of the initial set is important in order to try to minimize the
value of the integer k such that the stability condition given by Corollary 8
holds. One approach to choose this set for the particular case of linear
impulsive systems is given in Section 3.3.1. The function computing S0 is
denoted by init(Φ).

In the main loop, the initial set is propagated using the map Φ. The
stability condition given by Corollary 8 is checked after each iteration. If the
condition is verified then system (1) is proved GES and the algorithm returns
true. We impose a maximum number of iterations kmax. If that number of
iterations is reached then the algorithm fails to prove stability and returns
unknown. The overall method is then summarized by the Algorithm 1:

Algorithm 1. Stability verification

function is GES(Φ)
input: Φ
output: true if system (1) is proved GES, unknown otherwise
parameter: kmax ∈ N+

1: S0:=init(Φ); . compute initial set
2: for k = 1 to kmax do
3: Sk:=Φ(Sk−1); . set propagation
4: if ∃(i, ρ) ∈ N[0,k−1] × (0, 1) : Sk ⊆ ρSi then . stability check
5: return true;
6: end if
7: end for
8: return unknown;

The proposed approach above induces conservativeness due to the over-
approximation of the map Φ and to the limited number of iterations. Con-
sequently, it is possible that some stable systems (1) cannot be verified by
the algorithm. On the other hand, if the maps Φ or Φ̂ can be effectively
computed then these can replace Φ in Algorithm 1, and for any initial set S0
there exists a value for kmax ∈ N such that the algorithm returns true if and
only if system (1) is GES.
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3.3. Case of linear impulsive systems

In this section, we give the practical details regarding the implementation
of Algorithm 1 for the linear impulsive system (4-6).

We use sets given by polytopes of Rn, which can be defined as the intersec-
tion of a finite number of closed half-spaces, that is S = {x ∈ Rn : Hx ≤ b}
where H ∈ Rm×n, b ∈ Rm and the vector of inequalities is interpreted com-
ponentwise.

3.3.1. Initial set computation

In order to try to minimize the integer k such that the stability condition
given by Corollary 8 holds, we define the initial set as a symmetric polytope
S0 = {x ∈ Rn : H0x ≤ b0}, which is a common contracting set for L ∈ N+

linear discrete-time-invariant systems sampling the dynamics of the linear
impulsive system (4-6). More precisely, S0 satisfies for some ρ ∈ (0, 1):

∀j ∈ N[1,L], e
TjAcAdS0 ⊆ ρS0, where Tj = T +

(j − 1)(T − T )

L
. (15)

S0 can be computed using a backward iterative method in an analogous way
as done in [5] and [9].

3.3.2. Reachability analysis

We now need to define the set valued map Φ, satisfying Assumption 5
with Φ given for all S ⊆ Rn by

Φ(S) = RAc

[T ,T ]
(AdS) = RAc

[0,T−T ](e
TAcAdS).

For the computation Φ, we use efficient and accurate algorithms presented
in [14], for over-approximating the reachable set of a linear system. For that
purpose, let us introduce some notations. Given a real matrix A ∈ Rn×n, |A|
is the matrix whose elements are the absolute values of the elements of A.
For a set S ⊆ Rn, the interval hull of S is the smallest n-dimensional interval
containing the set S and is denoted by �(S). The symmetric interval hull of
S is the smallest symmetric (with respect to 0) n-dimensional interval con-
taining S and is denoted by �(S). Given S,S ′ ⊆ Rn, the Minkowski sum of
S and S ′ is S⊕S ′ = {x+x′ : x ∈ S, x′ ∈ S ′}. The Hausdorff distance between
S and S ′ is d(S,S ′) = max(supx∈S infx′∈S′ ‖x− x′‖, supx′∈S′ infx∈S ‖x− x′‖).
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Theorem 9. [14] For δ ∈ R+, A ∈ Rn×n and a set S ⊆ Rn, let

RA

[0,δ](S) =
N⋃
i=1

RA

[(i−1)h,ih](S) (16)

where N ∈ N+, h = δ/N is the time step, and RA

[(i−1)h,ih](S) is defined by the
recurrence equation:

RA

[0,h](S) = conv(S, ehA S) ⊕ 1/4 εh(S),

RA

[ih,(i+1)h](S) = ehA RA

[(i−1)h,ih](S), i ∈ N[1,N−1],

with

εh(S) = �(|A|−1(eh|A| − I) � (A(I − ehA)S))⊕
�(|A|−2(eh|A| − I − h|A|) � (A2ehAS)).

Then, RA
[0,δ](S) ⊆ RA

[0,δ](S). If S is bounded, d(RA
[0,δ](S),RA

[0,δ](S)) = O(h).

Let us remark that εh(S) in the previous theorem can be defined even if
|A| is not invertible (see [14, page 56]). From the previous result, it appears
that an over-approximation of Φ or Φ̂ can be given by

Φ(S) ⊆ RAc

[0,T−T ](e
TAcAdS), Φ̂(S) ⊆ conv

(
RAc

[0,T−T ](e
TAcAdS)

)
. (17)

These over-approximation is given by the union or convex hull ofN sets which
may be quite impractical for subsequent manipulations. For that reason, they
will be over-approximated by a single polytope.

Given a matrix H ∈ Rm×n, let Hi, i ∈ N[1,m] denote the row vectors of
H. For a set S ⊆ Rn, let us define the polytope ΓH(S) = {x ∈ Rn : Hx ≤ b}
where bi = supx∈S Hix, i ∈ N[1,m]. In other words, ΓH(S) is the smallest poly-
tope whose facets directions are given by H and containing S. Let us remark
that if S is bounded and if 0 is in the interior of conv({H1, . . . , Hm}), then
ΓH(S) is bounded. In addition, if S is convex, then it can be approximated
arbitrarily close by ΓH(S) by taking a sufficient number of facets directions
H1, . . . , Hm. The over-approximation of Φ and Φ̂ is then given as follows:

Corollary 10. Let the matrix H ∈ Rm×n, such that 0 is in the interior of
conv({H1, . . . , Hm}). Let Φ be given by

Φ(S) = ΓH

(
conv

(
RAc

[0,T−T ](e
TAcAdS)

))
, (18)
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where RAc

[0,T−T ](e
TAcAdS) is computed as in Theorem 9. Then, Φ satisfies

Assumption 5.

Proof. By (17) and (18), we have that for all S ⊆ Rn, Φ(S) ⊆ Φ(S). If S
is bounded, then conv

(
RAc

[0,T−T ](e
TAcAdS)

)
is bounded. Furthermore, since 0

is in the interior of conv({H1, . . . , Hm}), Φ(S) is bounded.

Φ(S) defined by (18) is a convex set. Then, it follows from Φ(S) ⊆ Φ(S)
that Φ̂(S) ⊆ Φ(S). Let us remark that the computation of Φ(S) is fairly
simple in practice using an implementation based on support functions [15].
Indeed, if S is a polytope, then using the properties of support functions, the
computation of Φ(S) reduces to solving a set of linear programs.

Remark 2. A normal issue arising after proposing an over-approximation Φ
is to know how far the sufficient condition proposed by Corollary 8 is from
being sufficient. In regards of Theorem 7, this is related to the distance
between Φ̂(S) and Φ(S). First of all, from Theorem 9, it appears that, by
choosing the time step h small enough, Φ(S) and Φ̂(S) can be approximated

arbitrarily close by RAc

[0,T−T ](e
TAcAdS) and conv

(
RAc

[0,T−T ](e
TAcAdS)

)
, respec-

tively. Then, conv
(
RAc

[0,T−T ](e
TAcAdS)

)
can be approximated arbitrarily close

by ΓH
(
conv(RAc

[0,T−T ](e
TAcAdS))

)
by considering a sufficient number of ap-

proximation directions Hi. Thus, it follows that, by choosing appropriately
the time step h and the matrix H, Φ̂(S) can be approximated arbitrarily
close by Φ(S).

4. Parameter synthesis

In this section, we propose an approach for solving the parameter syn-
thesis problem (Problem 2). We use the monotonicity properties stated in
Assumptions 3 and 4 to design an algorithm which synthesizes a set of pa-
rameters ensuring stability of the parameterized difference inclusion (3) by
adaptively sampling the parameter space.

4.1. An approximation result based on monotonicity

For p ∈ P , let us define the following property:

Stab(p) ≡ (3) is GES with parameter p.
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Solving Problem 2 is equivalent to compute (a subset of) the set Po defined
by

Po = {p ∈ P : Stab(p)}.

We further define the following set

Do = {p ∈ D : (p /∈ C) ∨ ((p ∈ C) ∧ Stab(p))} .

One can easily check that the following relation holds:

Po = C ∩ Do. (19)

Hence, from the previous equality, we can solve Problem 2 by computing
(a subset of) the set Do. Moreover, Do satisfies the following monotonicity
property:

Proposition 11. Under Assumptions 3 and 4, for all p, p′ ∈ D, the following
implications hold:

((p ≤ p′) ∧ (p ∈ Do)) =⇒ p′ ∈ Do.

((p ≤ p′) ∧ (p′ /∈ Do)) =⇒ p /∈ Do.

Proof. Let us assume p ≤ p′ and p ∈ Do. There are two cases:

1. Following Assumption 4, if p /∈ C, then p′ /∈ C and therefore p′ ∈ Do.

2. If p ∈ C and Stab(p), then either p′ /∈ C which implies p′ ∈ Do, or
p′ ∈ C. In the latter case Stab(p′) follows from Assumption 3, then
p′ ∈ Do.

This proves the first implication. For the second implication, it is sufficient
to check that

((p ≤ p′) ∧ (p ∈ Do)) =⇒ p′ ∈ Do
≡ ¬(p ≤ p′) ∨ (p /∈ Do) ∨ (p′ ∈ Do)
≡ ((p ≤ p′) ∧ (p′ /∈ Do)) =⇒ p /∈ Do.

The previous property is instrumental for computing a subset of Do since it
allows us to state the following theorem:
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Theorem 12. Let p1, . . . , pM1 ∈ Do, and p1, . . . , pM2 ∈ D \ Do and let

D =

M1⋃
j=1

{p ∈ D : pj ≤ p}, D = D \
M2⋃
j=1

{p ∈ D : p ≤ pj}.

Then, D ⊆ Do ⊆ D. Moreover, C∗ = C ∩ D is a solution to Problem 2 and
Co ⊆ C ∩ D.

Proof. D ⊆ Do ⊆ D is a direct consequence of Proposition 11. Then, from
(19), it follows that C∗ is a solution to Problem 2 and Co ⊆ C ∩ D.

4.2. An algorithm for parameter synthesis

Theorem 12 shows that it is possible to compute an under and over-
approximation of the set Do by sampling the parameter space D. In this sec-
tion, we use this property to design a parameter synthesis algorithm. Similar
algorithms have been used in [16, 22] for computing an approximation of the
Pareto front of a monotone multi-criteria optimization problem. Indeed, this
latter problem can be tackled by computing an under and over-approximation
of a set satisfying a monotonicity property similar to that of Proposition 11.

Algorithm 2 computes an under-approximation D and an over-approxi-
mation D of the set Do by sampling iteratively the parameter space D.

Lines 1 to 8 correspond to the initialization of these approximations by
testing the lower bound pm = (pm1 , . . . , p

m
d ) and the upper bound pM =

(pM1 , . . . , p
M
d ) of the set D. If pm ∈ Do, then by Theorem 12, C ∩ D is a

solution to Problem 2. Note that in that case, all timing-contract parameters
in C ∩D guarantee the stability of (1). If pm /∈ Do, then D \{pm} is an over-
approximation of Do. Similarly, if pM /∈ Do, then by Theorem 12, Do = ∅.
Note that in that case, no timing-contract parameters in C∩D can guarantee
the stability of (1). If pM ∈ Do, then {pM} is an under-approximation of Do.

Lines 9 to 14 describe the main loop of the parameter synthesis algorithm.
At any time of the execution, D ⊆ Do ⊆ D holds. We pick a sample p ∈ D\D
which is the unexplored parameter region lying in the over-approximation of
Do but not in its under-approximation. If p ∈ Do (or if p /∈ Do), then we
update the under-approximation D (or the over-approximation D) according
to Theorem 12. The algorithm stops when the Hausdorff distance between
the D and D becomes smaller than ε. Of course, the choice of the sample
p ∈ D \ D, at line 10, is crucial for the efficiency of the algorithm. In our
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implementation of the algorithm, we use the selection criteria proposed in [16]
which consists in choosing the sample that will produce the fastest decrease
of the Hausdorff distance d(D,D). In [22] an alternative selection criteria
based on multiscale grid exploration was proposed.

Algorithm 2. Timing contract synthesis

function TC Synth(Φp, D, C)
input: Φp, D, C
output: C∗ ⊆ C ∩ D such that for all p ∈ C∗, (3) is GES.
parameter: ε ∈ R+

1: if pm ∈ Do then
2: return C ∩ D;
3: else D := D \ {pm};
4: end if
5: if pM /∈ Do then
6: return ∅;
7: else D := {pM};
8: end if
9: while d(D,D) > ε do . main loop

10: Pick p ∈ D \ D; . select next sample
11: if p ∈ Do then D := D ∪ {p′ ∈ D : p ≤ p′};
12: else D := D \ {p′ ∈ D : p′ ≤ p};
13: end if
14: end while
15: C∗ := C ∩ D;
16: return C∗;

It is important to note that Algorithm 2 needs testing if the samples
p ∈ Do, which requires checking the condition Stab(p). In our implementa-
tion, this is done using Algorithm 1 since we assume furthermore that Φp

satisfies Assumptions 1 and 2. If it returns true, then we can consider that
Stab(p) holds. If it returns unknown, we treat the sample as if Stab(p) is
false. As a consequence, in practice it may be the case that D is not an
over-approximation of Do. However, it always holds that D ⊆ Do and there-
fore the set returned by Algorithm 2 is always a valid solution to Problem 2.
Note that the property Stab(p) need not be checked using Algorithm 1 but
one can use any of existing stability verification algorithm.
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5. Applications and Numerical Results

We implemented the algorithms presented in this paper in Matlab using
the Multi-Parametric Toolbox [12]. All reported experiments were realized
on a desktop with i7 4790 processor of frequency 3.6 GHz and a 8 GB RAM.

5.1. An academic example

Example 1. The following example is taken from [13] proposing an LMI-based
approach to verify stability of a linear impulsive system. Consider system
(4-6) with

Ac =

 0 −3 1
1.4 −2.6 0.6
8.4 −18.6 4.6

 , Ad =

 1 0 0
0 1 0
0 0 0

 (20)

As noted in [13], the matrix
∏

i∈N[1,5]
(eTiAcAd) has eigenvalues outside the

unit circle for T1 = 0.515 and Ti = 0.1, for i ∈ N[2,5]. As a result, we can
consider that if T = 0.1, the value 0.515 is an upper bound for admissible
values of T . For T = 0.1, stability could be proven up to T = 0.3 following the
LMI approach in [13], and up to T = 0.375 following the set based approach
in [9]. Results obtained using Algorithm 1 with several parameter setups are
reported in Table 2. In this example, parameter setups B and D lead to less
conservative results than the mentioned approaches since stability is verified
at least up to T = 0.5. Moreover, with parameter setup D, the verified value
T = 0.514 is tight, since it is very close to the known upper-bound 0.515.

Table 2: Results of Algorithm 1 on system (20) for several values of parameters L (number
of subsystems chosen to find the initial set S0) and kmax (maximum number of iterations
of Algorithm 1) with N = 100 (number steps used in reachability analysis): for T = 0.1,
maximum value of T for which stability could be proved; TCPU is the computation time in
seconds; i, k are the index values for which the stability condition Sk ⊆ int(Si) is verified;
m is such that H = H0 ∈ Rm×3 in computing (15) and (18).

Parameter setup T TCPU(s) i k m
A (L = 1, kmax = 1) 0.11 0.2 0 1 32
B (L = 1, kmax = 100) 0.5 0.4 3 7 32
C (L = 2, kmax = 1) 0.5 1.1 0 1 30
D (L = 2, kmax = 100) 0.514 2.0 27 32 26
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Figure 1: Polytopes S0 and S1 computed by Algorithm 1 using parameter setup C for
system (20) with T = 0.1 and T = 0.5; S1 is strictly included in S0.

Figure 1 shows the polytopes S0 and S1 computed by Algorithm 1 using
parameter setup C for T = 0.1 and T = 0.5. The inclusion of S1 in S0 proves
the stability of the linear impulsive system.

We now consider the timing contract synthesis problem for system (20).
We used Algorithm 2 with parameters ε = 0.01, Tm = Tm = 10−4 and TM =

Figure 2: Timing contract synthesis for system (20): region T ∗ of timing contract param-
eters, for which stability is guaranteed.
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TM = 0.59. Stability for sampled values of the timing contract parameter
space was verified using Algorithm 1 were L = 2, kmax = 30 and the number
of steps used in reachability analysis was N = 100. Figure 2 shows the region
T ∗ of timing contract parameters, for which GUES is guaranteed. The total
number of parameter samples was 179 with a computation time of about 67
seconds.

5.2. Sampled-data systems

We consider the problem of verifying stability of aperiodic sampled-data
control systems. These systems are given under the form:

ż(t) = Az(t) +Bu(t), ∀t ∈ R+

u(t) = Kz(tk), ∀t ∈ (tk, tk+1], k ∈ N (21)

where tk+1− tk is a variable sampling interval bounded in [T , T ], z(t) ∈ Rn is
the state of the system, u(t) ∈ Rm is the control input computed aperiodically
at instants tk, and K ∈ Rm×n is the feedback gain. This problem can be
rewritten in the form (4-6), with:

Ac =

(
A B
0 0

)
, Ad =

(
In 0
K 0

)
, x(t) =

(
z(t)
u(tk)

)
(22)

with In as the n × n identity matrix, and with the same timing contract
parameters T and T .

Example 2. This sampled data system is taken from [7], which compares re-
sults of LMI or SOS based approaches for stability analysis of linear impulsive
systems. Consider the state space plant model given by (21) with

A =

(
0 1
0 −0.1

)
, B =

(
0

0.1

)
, K =

(
−3.75 −11.5

)
. (23)

After rewriting the problem in the form of (4-6) with matrices defined as
in (22), we set T = 10−5. For this system, we can check numerically that the
matrix eτAcAd is Schur for τ ∈ [0, 1.7294] and has eigenvalues outside the unit
circle for larger values of τ . Thus, we know that 1.7294 is an upper bound for
the maximal value of T guaranteeing stability. Table 3 reports the maximum
value of T , for which stability could be verified by our approach and other
existing methods, as reported in [7]. The results obtained by our approach
are similar to the least conservative result reported in [7], which was obtained
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by the method presented in [21]. More precisely, stability could be proven
up to T = 1.7294 using Algorithm 1 with parameters L = 2, kmax = 1 and
N = 1011. This shows the tightness of our approach since we know that the
system becomes unstable for T > 1.7294 Note that a matrix H = H0 ∈ R10×3

is used in (18) and the computation time was 0.1207 seconds.

Example 3. The second sampled-data control system is also taken from [7],
with:

A =

(
0 1
−2 0.1

)
, B =

(
0
1

)
K =

(
1 0

)
. (24)

We set T = 0.4. Note that the system becomes unstable for T = 1.889
since the matrix

∏
i∈N[1,2]

(eTiAcAd) has eigenvalues outside the unit circle for

T1 = 0.4 and T2 = 1.889. Results obtained by our approach and by several
others are also reported in Table 3. Our approach has better results than
the existing ones since it was able to verify stability for the system up to
T = 1.888, instead of T = 1.828 for the method presented in [21]. Again,
our approach appears to be quite tight since the maximal value of T for
which stability was verified is very close to the known upper bound 1.889.
Algorithm 1 was used with parameters L = 2, kmax = 30 and the number of
time steps used for the over-approximation of the reachable set is N = 100.
The stability condition Sk ⊆ int(Si) was verified for k = 14 and i = 12. Also,
a matrix H = H0 ∈ R18×3 is used in (18) and the computation time was
0.824 seconds.

Table 3: Maximum value of T for which stability of systems (23) and (24) could be proved
by our approach and several existing methods, as reported in [7].

System (23) System (24)

T T T T
[7] 10−5 1.7279 0.4 1.827
[11] 10−5 0.869 − −
[19] 10−5 1.113 − −
[10] 10−5 1.695 − −
[18] 10−5 1.695 − −
[20] 10−5 1.723 0.4 1.251
[21] 10−5 1.7294 0.4 1.828

Algorithm 1 10−5 1.72941 0.4 1.888
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Figure 3: Timing contract synthesis for System (24) in the (T , T ) domain.

We now consider the timing contract synthesis problem for the sampled-
data system given by matrices (24). We used Algorithm 2 with parameters
ε = 0.01, Tm = Tm = 0.2101 and TM = TM = 2.0201. Parameters of
Algorithm 1 for stability verification were L = 2, kmax = 30 and N = 100.
Figure 3 shows the region T ∗ of timing contract parameters (T , T ), for which
GUES is guaranteed. The total number of parameter samples was 83 with a
computation time of about 77 seconds.

Example 4. We consider the state space plant model of a batch reactor [8],
with a static feedback, given by (21) with

A =

(
1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

)
, B =

(
0 0

5.679 0
1.136 −3.146
1.136 0

)
, (25)

and one of the two feedback gains

K1 =
(
0.13 0.02 0.07 −0.18
1.21 0.28 0.48 −0.06

)
, K2 =

(
0.41 −0.45 0.38 −0.59
1.65 −0.2 0.91 −0.59

)
.

We rewrite the problem in the form of a 6-dimensional impulsive system
(4-6). Then, we apply Algorithm 1 to check stability of the impulsive sys-
tem. We compare our results to those obtained using the NCS toolbox [4] in
Table 4. After setting T = 0.01, we report the maximal value of T for which
stability has been verified. Note that we conducted an extra experiment la-
belled ”(exp1)” to compare the results in terms of CPU time after fixing the
same values of T in Algorithm 1 and the NCS toolbox.
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Table 4: Results of Algorithm 1 for system (25) with feedback gains K1 and K2.

T T TCPU(s)

K1 NCS toolbox 0.01 0.75 22.8
Algorithm 1(exp1) 0.01 0.75 9.2
Algorithm 1(exp2) 0.01 0.80 23.0

K2 Algorithm 1 0.01 0.582 10.8
NCS toolbox(exp1) 0.01 0.582 18.1
NCS toolbox(exp2) 0.01 0.583 19.1

The NCS toolbox uses three different approximation methods to embed
the timing uncertainty (Jordan Normal Form (JNF), Cayley Hamilton, and
Gridding and Norm Bounding (GNB)), so the experiments are conducted
as follows: we search for the maximum value of T that guarantees stability
by running experiments using the three approximation methods. Then we
report the computation time for the experiment in which we obtained this
maximum value. In case the maximum bound could be obtained by more
than one experiment, we report the CPU time corresponding to the fastest
in terms of computation. Stability for system (25) with the feedback gains
K1 and K2 is guaranteed using the GNB approximation with 65 gridpoints.
Parameter setups used by Algorithm 1 are summarized by Table 5. It is
clear, for the systems at hand, that our method is competitive with the
NCS toolbox in terms of CPU time and tightness, since Algorithm 1 yields
better results for system (25) with the feedback gain K1 and has quite similar
results for the same system with controller K2. Notice that in this example
the dimension of the problem increased where matrices H = H0 ∈ R88×6

and H = H0 ∈ R80×6 were used in computing (18) for the former and latter
results respectively. For gain K2, we could not obtain a better value for T
since the Matlab implementation of Algorithm 1 ran into numerical problems
when increasing the parameters L or kmax or N .

Table 5: Parameter setup for Algorithm 1 for system (25) with feedback gains K1 and K2.

L N kmax

K1 Algorithm 1(exp1) 3 200 100
Algorithm 1(exp2) 5 100 100

K2 Algorithm 1 4 100 100
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6. Conclusion

In this work, we proposed a new approach to stability analysis of linear
impulsive systems using reachability analysis. We have also shown that the
stability verification algorithm can be combined with adaptive sampling of
the parameter space for synthesizing timing contracts. The effectiveness of
our approach has been shown on several examples, where it has been com-
pared with previously existing techniques. Applications to aperiodic sampled
data control systems have been shown. For this class of systems, the timing
contract synthesis is of particular interest since it can be used by control and
software engineers to derive requirements that must be met by the real-time
implementation of a control law. As future work, it would be interesting to
handle the problem of controller synthesis given a timing contract, and to
co-synthesize the controller and the timing contract parameters.
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