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Quaternion-based IMU and stochastic error modeling for intelligent
vehicles

Thomas Brunner1, Jean-Philippe Lauffenburger2, Sébastien Changey1 and Michel Basset2

Abstract— This paper focuses on the development of an IMU
measurement simulator for navigation estimation algorithms
validation. Its aim is to generate the sensor measurements
thanks to an input trajectory described by the position and the
orientation. The proposed models are derived from an inverse
kinematic modeling of the sensors and an identification of
their stochastic errors. These latter are composed of the biases
instability, random walks and finally the sensors dynamics and
bandwidth. The error model parameters of a low cost MEMS-
IMU are determined using the Allan Variance method. In a
second step, a Matlab simulator is built gathering the aforemen-
tioned models. Thanks to their completeness, this simulation
tool is characterized by its wide range of application fields
and dynamics that can be described. Its aim is to determine,
from the time-dependent position and orientation data, the IMU
measurements (3D accelerations and angular rates) without
any object model. Finally, the simulator is validated using real
experiments performed with an instrumented test car in normal
driving as well as in obstacle avoidance situations.

I. INTRODUCTION

Dynamic location of a moving object is a predominant
research topic for intelligent and autonomous vehicles. In
general, GNSS (Global Navigation Satellite System) and
Inertial Measurement Units (IMUs) are combined to achieve
better precision and integrity. Unfortunately, in urban and
suburban areas, the satellite signals suffer from poor quality,
multipath or outages, leaving the location algorithms with
the inertial data only. In these non-optimal conditions, mul-
tiple solutions are investigated to perform accurate location:
3D map-aided location [1] to forecast the visibility of the
satellites, vision-only positioning [2] or SLAM-based meth-
ods [3]. Also, vehicle-to-infrastructure (V2I) or vehicle-to-
vehicle (V2V) communication using VANETs can provide
additional data for vehicle positioning [4].

Considering GPS/INS integrated positioning solutions, the
performance during GPS dysfunctions are closely related to
the drift and IMU sensor errors. When not modeled properly
or not correctly considered in the positioning algorithms,
these drifts can lead to strong position errors. This paper
focuses on the latter mentioned aspect. The retained approach
to improve location is the use of multiple low cost IMUs.
The final aim (out of the scope of this paper) is to develop
multiple IMU algorithms that can achieve good performance
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with low cost redundant sensors. With the rapid develop-
ment of the MEMS (Micro-Electro-Mechanical Systems)
technology, it is now possible to deploy multiple IMUs in a
vehicle. Exploiting redundancy and information contained in
the signal differences can extend the positioning performance
significantly [5]. Moreover, inertial data provides information
on the current states of the car: orientation, slip angle, etc.
Those variables are crucial for vehicle control applications.

In a first step, a precise modeling of the IMU sensors and
especially their errors is necessary. That is why, kinematic
models of the sensors and stochastic error models are de-
veloped. The typical imperfections modeled are the sensor
dynamics, constant and dynamic biases and white noises.
Their parameters are identified following the temporal Allan
Variance technique [6]. The kinematic modeling is derived
providing the sensors (rate gyroscopes and accelerometers)
outputs with respect to the given trajectory data (position
and orientation of the vehicle). In a second step, a Matlab
simulator gathering these models is developed. It is dedicated
to a wide range of application fields (including road and
air transportation systems as well as high dynamic flying
systems). Due to these objectives, it appears clearly that
an application-dependent system model generally used to
enhance the location precision cannot be considered here.
Moreover to be robust to these constraints, the quaternions
are selected to represent the object orientation. Indeed,
quaternions do not suffer from the angle singularities known
as the gimbal lock problem. The sensor data simulator has
already been validated with real measurements considering
low dynamics [7], [8]. In this paper, a validation is proposed
in the intelligent vehicles context using low and high dynam-
ics issued from real trials.

Considering the simulation of sensors, existing simulators
have different focus. For example, in [9], the focus is on
the error models for the skewed sensors, the measurements
are not determined from an input trajectory. In [10], a
simulator is built for different applications: to perform and
test calibration processes and to validate new mathematical
models involving IMUs. Finally, if quaternions have already
been used in GPS/INS navigation algorithms [11], their use
in sensor measurment simulations without system models is
still marginal. Unfortunately, the validation process does not
fit our application field.

The outline of the paper is as follows. Section II describes
the theoretical background. Section III is devoted to the
description of the sensor measurements and the inverse kine-
matic models needed to determine the sensor data. Section
IV refers to the error models identification. Results are shown
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Fig. 1. The inertial frame (I), the earth frame (E) and the local coordinate
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in section V. In this section, different test scenarios are
described and performed using an instrumented test car.
Section VI concludes the paper.

II. THEORETICAL BACKGROUND

A. Reference Frames

Reference frames and coordinate systems are widely used
in the navigation field ([12] and [13]) to express correctly all
the information. To help the reader to understand this paper,
a short description of each frame is given.
• The Inertial frame (I) is centered on the Earth. Its third

axis is directed to the North Pole. The others axes are
in the equator plan. This frame is not rotating with the
Earth, for this reason it is considered as the inertial
reference.

• The Earth frame (E) which is centered on the Earth, has
the same axes than the Inertial frame (I) at t = 0. Unlike
(I), (E) is following the Earth rotation with a constant
speed noted ωEI.

• The Local coordinate system (L) is located at the center
of gravity of the considered object. Its orientation is
tangent to the surface of the Earth and defined with its
position with respect to (E) by 2 angles: the latitude (λ )
and the longitude (l).

• The Body frame (B) is linked to the object orientation.
Its orientation with respect to (L) is given by the
classical Euler angles.

• The IMU frame (W), attached to the sensors, can
be misaligned with the body frame. Its position and
orientation depend on the hardware configuration of the
IMU with respect to the object.

The Inertial and Earth frames and the Local coordinate
system are illustrated in figure 1. For clarity reason, the body
and the work frames are not illustrated. Any axis of a frame
is named by the lowercase of the frame name and a subscript
giving its number such that the 3 vectors of the frame (E)
are e1, e2 and e3 (see figure 1).

B. Quaternions

There are multiple ways to represent the orientation of one
frame with respect to another. The most known is the Euler
angle system, but it suffers from gimbal lock. This problem
gives numerical issues for certain known orientations. To
avoid this limitation in the current work, quaternions [14]
are retained for the sensor measurement modeling. This sec-
tion gives the necessary background related to quaternions.
Readers willing to have details can refer to [15].

Introduced by Hamilton, quaternions are hypercomplexe
numbers with 4 components: a scalar q0 and one vector
qv composed by 3 imaginary numbers q1, q2 and q3. One
quaternion q can be expressed as

q =

{
q0
qv

}
, (1)

or
q = q0 +q1i+q2 j+q3k, (2)

with vectors i, j and k describing an orthogonal basis. A pure
quaternion is composed of a scalar part q0 equal to 0. To
avoid confusion between vectors and quaternions, brackets {
} are used instead of [ ].

The multiplication between 2 quaternions, written r = p⊗
q, is obtained by

r =
{

p0q0− pv ·qv
p0qv +q0 pv + pv∧qv

}
. (3)

Rotations with quaternions: The complex part of the
quaternion (qv) is equivalent to a vector. This is used to
represent rotations with quaternions: a rotation around an
axis d by an angle α can be represented by a unit quaternion
(its norm is equal to 1) [16]

q = cos
α

2︸ ︷︷ ︸
q0

+sin
α

2
d︸ ︷︷ ︸

qv

. (4)

The quaternion can express any 3-D rotation since any
combination of rotations can be resumed by one unique
rotation. The image x′ of a vector x by the rotation expressed
by q, can be obtained by the following equation

x′ = q⊗ x⊗ q̃, (5)

where q̃, the conjugate of q is defined as q̃ = q0− qv. In
equation 5, the vectors x and x′ are considered as pure
quaternions.

III. SENSORS MODELING

In this section, the error-less equations of the sensor
measurements are derived. The sensor outputs are defined
and expressed as a function of the object trajectory, input
of the simulator. An inverse kinematic model defines the
sensor outputs from the trajectory and orientation of the
vehicle as illustrated in figure 2. From a trajectory describing
the evolution of the spatial position [sBL]

L and the angular
position of the object with respect to a frame L (using
the quaternion

{
qBL
}L), the accelerations and the rotational

speeds of the IMU sensors in the frame W are defined.
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A. Rate Gyroscopes Modeling

The rate gyroscope output is the angular rate of the sensor
with respect to the inertial frame [14], expressed in the
sensors frame (W). To determine the rotational speed, the
evolution equation of the quaternion is used [15]{

q̇WI}I
=

1
2
{

qWI}I⊗
{

ω
WI}W

, (6)

with
{

qWI
}I the quaternion expressing the orientation of (W)

in (I),
{

q̇WI
}I its derivative with respect to time and

{
ωWI

}W

the pure quaternion formed from the rotational speed vector
of (W) with respect to (I). From (6), it is straightforward to
obtain the angular rate sensor output vector

{
ωWI

}W

{
ω

WI}W
= 2

{
q̃WI}I⊗

{
q̇WI}I

. (7)

B. Accelerometers Modeling

The output of an accelerometer is the specific force applied
on the sensor along its sensitive axis (in frame W). The
specific force is defined by the sum of all non-gravitational
forces applied on the object divided by the object mass. It is
then the absolute acceleration of the object (aI

W) minus the
gravitational field, such that

[ f ]W = [aI
W]W− [gf]

W. (8)

From [13], the gravitational field expression is

gf = g+ γe =−GM
sWE

‖sWE‖3 −ω
EI∧

(
ω

EI∧ sWE
)
, (9)

where sWE is the position of the sensors with respect to (E),
G is the gravitational constant and M is the mass of the Earth.

The objective is then to determine the expression of [ f ]W

from the evolution of the object position [sBL]
L which is

an input of the simulator. However, the sensors are not
positioned at the center of the object. Consequently, deriving
the position of the object will not lead to the acceleration of
the IMU but to the object one. After transforming the input
position [sBL]

L in frame (E), the total acceleration applied
on the IMU is given by1 [13]

aI
W =

I︷︸︸︷
aE

B +

II︷ ︸︸ ︷
dωBE

dt

∣∣∣∣
B
∧ sWB +ω

BE∧
(
ω

BE∧ sWB
)

+ω
EI∧

(
2
(
vE

B +ω
BE∧ sWB

)
+ω

EI∧ sWI

)
︸ ︷︷ ︸

III

,(10)

1For the sake of clarity, it’s assumed that all variables are expressed in
the same coordinate system, the brackets [ ]X are then forsaken.

where I represents the acceleration of the object with respect
to the Earth, II is the acceleration due to the position
difference between the IMU and the object center of gravity
and III is the acceleration involved by the Earth rotation
around its axis. Even if this latter part can be dismissed in
the context of intelligent vehicles, it is necessary to take it
into account in other kind of application fields. Finally, the
specific force can be obtained by subtracting (9) from (10).

IV. STOCHASTIC SENSOR ERROR MODELING

A. Model Description

Generally, stochastic error models are 5-term polynomials
as described in [17]. For the development of the current
application, the focus is made on 3 main terms: the bias
instability, the rate random walk and the angular random
walk. In addition, the sensor dynamics is also considered.

1) Sensor Dynamics and Bandwidth: One of the main
limitations of the sensor performance is its dynamic behavior.
To describe it, a first order transfer function is used to model
the bandwidth.

K(s) =
ωc

s+ωc
, (11)

with ωc a configuration parameter of the simulator defining
the cut-off pulsation at -3dB which can be read on the sensor
datasheet. It is a user-defined parameter in the simulator.

2) Bias Modeling: Modeling the bias implies the de-
scription of a more complex model than a simple constant.
Indeed, the bias has a time evolving part (bev) in addition
of the constant part (bcst). To model the bias evolution, two
processes are used, as suggested in [18]; a first order Gauss
Markov process (bgm) and a random walk (brw). The first is
used to represent a wide number of physical processes. It
is an autoregressive process with a correlation time Tc. The
parameters needed are the correlation time and the standard
deviation σgm of the noise. The random walk, in the other
hand, is the result of the integration of a white noise. Finally,
the evolving part of the bias is given by[

bgm
brw

]
k

=

[
(1− ∆t

Tc
) 0

0 1

][
bgm
brw

]
k−1

+

[
σgm

√
(1− exp(−2 ∆t

Tc
))

σrw
√

∆t

]
uk, (12)

bev =
[
1 1

][bgm
brw

]
k
, (13)

with uk a unitary white noise.
The last implemented process error is w, the error due

to the white noise. This noise is considered as zero-mean
and Gaussian. The last parameter to be specified is then its
standard deviation.

B. Stochastic Parameter Identification

To simulate a commercially available low-cost IMU, mul-
tiple experiments were conducted on a Xsens MTI MEMS-
IMU [19]. The Allan Variance has been employed as sug-
gested by [6] and [20] to identify the noise parameters. It is
a widely used time-domain technique allowing determining
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Fig. 3. Application of the Allan Variance on one accelerometer.

long-term noises. To perform this approach, the IMU has to
remain completely still during several hours. Figure 3 shows
a typical Allan Variance plot and its interpretation, applied
on real measurements. The values are extracted from the
measurements as explained in [20]. The hypothetical Allan
Variance sketches (the dotted lines) are the typical noise
components. The angular random walk slope illustrates the
effect of a white noise. The rate random walk slope is the
result of a random walk noise (cf. section IV-A) and the
correlation noise slope comes from the correlated part of
the measurements. As the variance is a function of the time
cluster size (τ), it is possible to interpret the influence of each
type of noise: the angular random walk noise is a problem in
short time but can be reduced by averaging the measurements
while the rate random walk noise is more affecting the
long term measurements. Table I shows the results of this
procedure for the Xsens MTI IMU [19] mounted in the test
car (see section V). It gathers all the needed data for the
simulation of the IMU imperfections modeling and sensor
data simulation. The results of the performed Allan Variance
are in correlation with the sensor datasheets.

V. RESULTS

In this section, different test scenarios with different
dynamics are employed to validate the stochastic sensor
modeling. These scenarios describe the evolution of a driv-
ing car. The first tests are standard vehicle dynamic tests
usually performed by car manufacturers to evaluate the car’s
dynamics under lateral solicitations. One test is conducted
under constant lateral acceleration (curve at constant longi-
tudinal velocity) whereas the second trial is a standard ISO
lane change maneuver (moose test). These trajectories are
performed with an instrumented Renault Scenic 1 of MIPS
laboratory. The last scenario is a longer trajectory with the
car driving normally around the university campus. This test
is done thanks to the Renault Scenic 3 shown in figure 4.

A. Lateral Dynamics Validation

1) High Grip Bend Maneuver: The first test is a high
grip bend maneuver. The car reaches a cruise speed of
50km/h, and performs a left turn with a constant curvature

Fig. 4. Test car for the normal driving part.
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Fig. 5. Trajectory of the vehicle during maneuver.

radius. The GPS measured trajectory is shown in figure 5
and used as the simulator input trajectory. The simulated
sensor measurements can be directly compared to the real
IMU measurements. The results on the accelerometers and
rate gyroscopes are illustrated in figure 6 and 7.

Figure 6 shows the accelerations measured by the embed-
ded IMU and its corresponding simulations. During the turn,
a constant acceleration of −2m/s2 can be observed on the
lateral axis. The first axis ( f1) shows the longitudinal accel-
eration due to the changes in the car speed. It can be seen
that the transitory and stationary parts of the accelerations
are well reproduced by the simulator.

In this trajectory, the car changes orientation only during
the constant curvature radius turn. This means the only
rotational speed observed is on the yaw axis, as it can be
seen in figure 7. As well as the accelerations, the simulation
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Fig. 6. Accelerometer measurements during the high grip bend test.



Accelerometers (unit = m/s2) Rate Gyroscopes (unit = ◦/s)
f 1 f 2 f 3 ω1 ω2 ω3

σwn (unit/
√

Hz) 1.0 ·10−3 1.2 ·10−3 1.3 ·10−3 4.3 ·10−2 4.5 ·10−2 5.2 ·10−2

σrw (unit ·
√

Hz) 5.4 ·10−6 6.3 ·10−6 6.2 ·10−6 1.1 ·10−3 2.2 ·10−4 1.9 ·10−4

σgm (unit) 7.4 ·10−4 7.9 ·10−4 3.4 ·10−4 8.0 ·10−2 1.2 ·10−2 1.5 ·10−2

τgm(s) 80 10 100 400 300 100

TABLE I
ALLAN VARIANCE ERROR IDENTIFICATION RESULTS OF THE LOW-COST XSENS MTI [19].
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Fig. 7. Rate gyroscope measurements during the high grip bend test.
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Fig. 8. Trajectory of the vehicle during the obstacle avoidance test.

reproduce correctly the rate gyroscopes measurements during
the transitory and the stationary parts of the trajectory.

2) Moose Test: This normalized test simulates the avoid-
ance of a Moose appearing suddenly on the road. Its tra-
jectory is shown in figure 8. For this test, the car speed
during the evasive maneuver was near 110 km/h. The results
on the accelerometer and rate gyroscope measurements are
illustrated respectively in figure 9 and 10.

The first plot in figure 9 describes the longitudinal acceler-
ation of the car. A first acaelration phase is done to reach the
desired speed of 110km/h. The avoidance maneuver begins at
t = 25s (see f2 plot representing the transversal solicitations).
At this time, a transverse acceleration can be observed on the
second axis. As the test was performed on a flat surface, the
vibrations shown on the last plot are due to the road imper-
fections. It can be seen that the estimated measurements from
the models are very close to the real sensor measurements. In
figure 10, the rate gyroscope measurements are plotted. The
angular rates are well reproduced, even the roll (ω1) and the
pitch (ω2) rates. This trajectory allows testing the simulator
with higher dynamics than the previous one.
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Fig. 9. Accelerometer measurements during the moose test.
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Fig. 10. Rate gyroscope measurements during the moose test.

B. Normal Driving

The last test correpsonds to a normal and longer path
around the university campus. This campus is approximately
800m long, 300m wide and has an altitude difference of
43m. The complete vehicle trajectory is 7-minutes long.
After driving around the university campus, multiple 8-shape
turns on the central path of the campus have been done. This
trajectory can be observed in figure 11. The acceleration data
are shown in figure 12. It can be observed that the simulated
accelerations fit well the shape of the measurements for the
longitudinal and transversal accelerations. Concerning the
vertical acceleration, the simulated data is very flat compared
to the corresponding measurement. This is mainly due to the
fact that the road quality is bad around the campus (especially
between 0s to 50s, and 350s to 380s) leading to numerous
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high frequency data on the vertical accelerometer but also
the longitudinal and lateral ones. Obviously, these elements
cannot be given by the simulator based on the GPS path.

VI. CONCLUSIONS

In this paper, an accurate kinematic model has been
developed to express IMU sensor (accelerometers and rate
gyroscopes) outputs for a given trajectory. The sensor mea-
surements are determined based on the position and ori-
entation of the object considered with respect to the local
frame. In addition, in order to provide highly realistic data,
stochastic error models of the sensors are added. They are
composed of biases, white noises and rate random walk
processes. The imperfection parameters have been identified
thanks to the Allan Variance technique. Finally, the band-
width of the sensors is modeled through a first order system
representing the sensor dynamics. A Matlab simulator has
been developed using this inverse sensor model. Thanks to
the modeling efforts, the simulator is valid for a wide range
of application fields from low to very high dynamics, short
and long range paths, etc. This tool is able to precisely
compute the measurements of an IMU for a given input
trajectory, described by the 3D position and orientation of the
considered object. A validation process has been conducted.
Real experiments have been performed with an instrumented

test car in different situations: normal driving and obstacle
avoidance scenarios.

Future investigations will be devoted to the extension of
the simulation tool in order to estimate the vehicle slip angle.
Finally, a real-time implementation of the IMU simulator
would allow performing fault detection and diagnosis on
IMU measurements.
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