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Support properties of the intertwining and the mean value

operators in Dunkl’s analysis

Léonard GALLARDO∗ and Chaabane REJEB†

Abstract

In this paper we show that the Dunkl intertwining operator has a compact support
which is invariant by the associated Coxeter-Weyl group. This property enables us to
determine explicitely the support of the volume mean value operator, a fundamental
tool for the study of harmonic functions relative to the Dunkl-Laplacian operator.

MSC (2010) primary: 31B05, 33C52, 47B39; secondary: 43A32, 51F15.

Key words: Dunkl-Laplacian operator, Dunkl’s intertwining operator, Generalized volume mean
value operator and harmonic kernel, Rösler’s measure, Dunkl harmonic functions.

1 Introduction and statement of the results

Let R be a (finite) root system in Rd with associated Coxeter-Weyl group W (see [7]
or [9] for details on root systems) and for ξ ∈ Rd, let Dξ be the Dunkl operator defined by

Dξf(x) = ∂ξf(x) +
∑
α∈R+

k(α) ⟨α, ξ⟩ f(x)− f(σαx)

⟨α, x⟩
, f ∈ C1(Rd),

where R+ is a subsystem of positive roots, σα is the reflection directed by the root α ∈ R+,
k is a nonnegative multiplicity function (defined on R) and ∂ξf is the usual ξ-directional
derivative of f .
These operators, introduced by C. F. Dunkl in the nineties (see [1]), are related to partial
derivatives by means of an intertwining operator Vk (see [3] or [4]) as follows

∀ ξ ∈ Rd, DξVk = Vk∂ξ. (1.1)
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We know that Vk is a topological isomorphism from the space C∞(Rd) (carrying its usual
Fréchet topology) onto itself satisfying (1.1) and Vk(1) = 1 (see [15]) and Vk commutes
with the W -action (see [14]) i.e.

∀ f ∈ C∞(Rd), ∀ g ∈ W, g−1.Vk(g.f) = Vk(f), (1.2)

where g.f(x) = f(g−1x).

A fundamental fact due to M. Rösler (see [11] or [14]) is that for every x ∈ Rd, there
exists a unique compactly supported probability measure µk

x on Rd with

supp µk
x ⊂ C(x) := co{gx, g ∈ W} (1.3)

(the convex hull of the orbit of x under the group W ) such that

∀ f ∈ C∞(Rd), Vk(f)(x) =

∫
Rd

f(y)dµk
x(y). (1.4)

Note that the property (1.3) has been proved in [8].
Throughout this paper, the notation k > 0 means that k(α) > 0 for all α ∈ R.

Concerning the measure µk
x (which we call Rösler’s measure at point x), the first result

of our paper is the following

Theorem A. For every x ∈ Rd, we have
1) x ∈ supp µk

x,

2) If k > 0, the support of µk
x is a W -invariant set,

3) If k > 0 then W.x (the W -orbit of x) is contained in supp µk
x.

A question strongly related to the support of Rösler’s measures concerns the Dunkl-
mean value operator introduced by the authors in [6] in the study of harmonic functions
for the Dunkl-Laplacian operator ∆k =

∑d
i=1D

2
i where Di = Dei with (ei)1≤i≤d an

orthonormal basis of Rd. Precisely for x ∈ Rd and r > 0, the mean value of a continuous
function f at (x, r) is defined by

M r
B(f)(x) :=

1

mk(B(0, r))

∫
Rd

f(y)hk(r, x, y)ωk(y)dy,

where y 7→ hk(r, x, y) is a compactly supported measurable function (see Section 2) given
by

hk(r, x, y) :=

∫
Rd

1[0,r](
√

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩)dµk
y(z), (1.5)

mk is the measure dmk(x) := ωk(x)dx and ωk is the weight function

ωk(x) :=
∏

α∈R+

∣∣ ⟨α, x⟩ ∣∣2k(α). (1.6)
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In particular we have shown that a C2(Rd)-function u is ∆k-harmonic in Rd if and only if
for all (x, r) ∈ Rd×R+, u(x) = M r

B(u)(x). For a further thorough study of ∆k-harmonicity
on a general W -invariant open set, it would be crucial to get information on the support
of the mean value operators. We already know that the measures

dηkx,r =
1

mk(B(0, r))
hk(r, x, y)ωk(y)dy (x ∈ Rd, r > 0), (1.7)

are probability measures with compact support equal to supp hk(r, x, .) and satisfying the
following inclusion ([6]):

supp hk(r, x, . ) ⊂ BW (x, r) := ∪g∈WB(gx, r), (1.8)

where B(x, r) denotes the usual closed ball of radius r centered at x.
In fact, the second main result of this paper, intimately related to Theorem A, is a

precise description of the support of hk(r, x, .). It states that

Theorem B: Let x ∈ Rd and r > 0.

1) We have B(x, r) ⊂ supp hk(r, x, .).

2) If k > 0, then we have

supp hk(r, x, .) = BW (x, r) := ∪g∈WB(g.x, r).

We will call BW (x, r) the closed Dunkl ball centered at x and with radius r > 0 associated
to the Coxeter-Weyl group W .

2 The harmonic kernel and the mean value operator

In this section we recall some results of [6].

Let (r, x, y) 7→ hk(r, x, y) be the harmonic kernel defined by (1.5). We note that in the
classical case (i.e. k = 0), we have µk

y = δy and h0(r, x, y) = 1[0,r](∥x− y∥) = 1B(x,r)(y).
The harmonic kernel satisfies the following properties (see [6]):

1. For all r > 0 and x, y ∈ Rd, 0 ≤ hk(r, x, y) ≤ 1.

2. For all fixed x, y ∈ Rd, the function r 7−→ hk(r, x, y) is right-continuous and non
decreasing on ]0,+∞[.

3. Let r > 0 and x ∈ Rd. For any sequence (φε) ⊂ D(Rd) of radial functions such that
for every ε > 0,

0 ≤ φε ≤ 1, φε = 1 on B(0, r) and ∀ y ∈ Rd, lim
ε→0

φε(y) = 1B(0,r)(y),

we have

∀ y ∈ Rd, hk(r, x, y) = lim
ε→0

∫
Rd

φ̃ε(
√

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩)dµk
y(z),

where φ̃ε is the profile function of φε i.e. φε(x) = φ̃ε(∥x∥).
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4. For all r > 0, x, y ∈ Rd and g ∈ W , we have

hk(r, x, y) = hk(r, y, x) and hk(r, gx, y) = hk(r, x, g
−1y). (2.1)

5. For all r > 0 and x ∈ Rd, we have

∥hk(r, x, .)∥k,1 :=
∫
Rd

hk(r, x, y)ωk(y)dy = mk(B(0, r)) =
dkr

d+2γ

d+ 2γ
, (2.2)

where dk is the constant

dk :=
∫
Sd−1 ωk(ξ)dσ(ξ) =

ck
2d/2+γ−1Γ(d/2+γ)

.

Here dσ(ξ) is the surface measure of the unit sphere Sd−1 of Rd and ck is the
Macdonald-Mehta constant (see [10], [5]) given by

ck :=

∫
Rd

e−
∥x∥2

2 ωk(x)dx.

6. Let r > 0 and x ∈ Rd. Then the function hk(r, x, .) is upper semi-continuous on Rd.

7. The harmonic kernel satisfies the following geometric inequality: if ∥a−b∥ ≤ 2r with
r > 0, then

∀ ξ ∈ Rd, hk(r, a, ξ) ≤ hk(4r, b, ξ)

(see [6], Lemma 4.1). Note that in the classical case (i.e. k = 0), this inequality says
that if ∥a− b∥ ≤ 2r, then B(a, r) ⊂ B(b, 4r).

8. Let x ∈ Rd. Then the family of probability measures dηkx,r(y) defined by (1.7) is an
approximation of the Dirac measure δx as r −→ 0. That is

∀ α > 0, lim
r→0

∫
∥x−y∥>α

dηkx,r(y) = 0

and if f is a locally bounded measurable function on a W -invariant open neighbor-
hood of x and if f is continuous at x, then (see [6], Proposition 3.2):

lim
r→0

∫
Rd

f(y)dηkx,r(y) = lim
r→0

M r
B(f)(x) = f(x). (2.3)

3 Proof of the results

For convenience we group together the first points of Theorem A and Theorem B in the
following Proposition.

Proposition 3.1 Let x ∈ Rd. Then

i) for every r > 0, x ∈ supp hk(r, x, .),
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ii) x ∈ supp µk
x,

iii) for every r > 0, B(x, r) ⊂ supp hk(r, x, .).

Proof: i) Suppose that there exists r > 0 such that x /∈ supp hk(r, x, .). Then we can find
ε > 0 such that hk(r, x, y) = 0, for all y ∈ B(x, ε). Let f be a nonnegative continuous
functions on Rd such that supp f ⊂ B(x, ε) and f = 1 on B(x, ε/2).
Since t 7→ hk(t, x, y) is increasing on ]0,+∞[, we deduce that

∀ t ∈]0, r], 0 ≤ M t
B(f)(x) ≤

1

mk[B(0, t)]

∫
Rd

f(y)hk(r, x, y)ωk(y)dy = 0.

Hence, we obtain M t
B(f)(x) = 0, for all t ∈]0, r]. Letting t → 0 and using the relation

(2.3), we get a contradiction.

ii) Let x ∈ Rd be fixed. At first, we claim that

∀ r > 0, ∀ y ∈ Rd, hk(r, x, y) ≤ µk
x[B(y, r)]. (3.1)

Indeed, from the inclusion supp µk
x ⊂ B(0, ∥x∥), we see that

∀ y ∈ Rd, ∀ z ∈ supp µk
x, ∥y − z∥2 ≤ ∥y∥2 + ∥x∥2 − 2 ⟨y, z⟩ .

This implies for any y ∈ Rd and r > 0 that

∀ z ∈ supp µk
x, 1[0,r]

(√
∥y∥2 + ∥x∥2 − 2 ⟨y, z⟩

)
≤ 1[0,r](∥y − z∥) = 1B(y,r)(z).

If we integrate the two terms of the previous inequality with respect to the measure µk
x,

we obtain hk(r, y, x) ≤ µk
x

(
B(y, r)

)
and then (3.1) follows from (2.1).

Now, if x /∈ supp µk
x, there exists ϵ > 0 such that µk

x

(
B(x, ϵ)

)
= 0. Thus, we have

µk
x

(
B(y, ϵ/2)

)
= 0 whenever y ∈ B(x, ϵ/2). Using (3.1), we deduce that hk(ϵ/2, x, .) = 0

on B(x, ϵ/2), a contradiction with the result of i).

iii) Let y ∈ Rd such that ∥x− y∥ < r. As limz→y(∥x∥2+ ∥y∥2− 2 ⟨x, z⟩) = ∥x− y∥2, there
exists η > 0 such that√

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩ ≤ r for every z ∈ B(y, η).

Therefore, by using the fact that y ∈ supp µk
y we obtain hk(r, x, y) ≥ µk

y [B(y, η)] > 0. �

Remark 3.1 For α ∈ R, let

Hα := {x ∈ Rd, ⟨x, α⟩ = 0}

be the hyperplane directed by α. Note that in [12] (Corollary 3.6) and under the condition
x /∈ ∪α∈RHα, Rösler has proved that x ∈ supp µk

x by using the asymptotic behavior of the
Dunkl kernel Ek(x, y) which is defined by

Ek(x, y) := Vk

(
e⟨.,y⟩

)
(x) =

∫
Rd

e⟨z,y⟩dµk
x(z).
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We turn now to the second statement of Theorem A that we recall below:

Theorem 3.1 Let x ∈ Rd and assume that k > 0. Then the set supp µk
x is W -invariant.

Proof: In order to simplify the formulas, we will assume here that the root system R is
normalized i.e. ∥α∥2 = 2 for all α ∈ R. In particular, for reflections we have σαx =
x− ⟨α, x⟩α.
We will prove that if y ∈ supp µk

x, then σαy ∈ supp µk
x for every α ∈ R. Let then

y ∈ supp µk
x and suppose that there is a root α ∈ R such that σαy /∈ supp µk

x. Write
y′ := σαy to simplify notations. There is a ball B(y′, ϵ) (ϵ > 0) such that for all f ∈ C∞(Rd)
with compact support included in B(y′, ϵ), we have∫

Rd f(z)µx(dz) = Vkf(x) = 0.

Let us denote by C∞
y′,ϵ (resp. Cy′,ϵ) the set of all functions f ∈ C∞(Rd) (resp. f ∈ C(Rd))

with compact support in B(y′, ϵ). For all ξ ∈ Rd and all f ∈ C∞
y′,ϵ, we also have ∂ξf ∈ C∞

y′,ϵ.
By the intertwining relation (1.1) we obtain

∀ ξ ∈ Rd, ∀ f ∈ C∞
y′,ϵ, DξVkf(x) = 0.

Suppose f ∈ C∞
y′,ϵ and f ≥ 0 and let g := Vkf . We have g ≥ 0 on Rd (because Vk preserves

positivity) and

∀ ξ ∈ Rd, Dξg(x) = ∂ξg(x) +
∑
α∈R+

k(α)⟨α, ξ⟩g(x)− g(σαx)

⟨x, α⟩
= 0. (3.2)

But as g(x) = 0, x is a minimum of g so ∂ξg(x) = 0 and relation (3.2) implies

∀ ξ ∈ Rd,
∑
α∈R+

k(α)⟨α, ξ⟩g(x)− g(σαx)

⟨x, α⟩
= 0. (3.3)

Now, consider the set
Rx := {α ∈ R+; x ∈ Hα}.

There are two possible locations for x:
• First case: Suppose that Rx = ∅ i.e x /∈ ∪α∈RHα (i.e. for all root α ∈ R, ⟨x, α⟩ ̸= 0).
Applying (3.3) with ξ = x and using the fact that g(x) = 0, we get∑

α∈R+
k(α)g(σαx) = 0.

As g ≥ 0 and k > 0, we obtain that g(σαx) = Vkf(σαx) = 0 for all α ∈ R+ and all f ∈ C∞
y′,ϵ

and f ≥ 0. By uniform approximation, we deduce that for all f ∈ Cy′,ϵ and f ≥ 0, we
also have Vkf(σαx) = 0. Finally for every f ∈ Cy′,ϵ, by decomposing f = f+ − f− with
f+ = max(f, 0) and f− = −min(f, 0) and using the linearity and W -equivariance of Vk

(relation (1.2)), we obtain that

∀ f ∈ Cy′,ϵ, ∀ α ∈ R+, Vkf(σαx) = Vk(σα.f)(x) = 0,
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where σα.f is the function z 7→ f(σαz). As it is easy to see that σα.Cy′,ϵ = Cσαy′,ϵ, we
deduce that

∀ α ∈ R+, ∀f ∈ Cσαy′,ϵ, Vkf(x) = 0.

But this implies in particular that Vkf(x) = 0 for all f ∈ Cy,ϵ in contradiction with the
hypothesis y ∈ supp µk

x. The result of the theorem follows in the first case.

• Second case: Suppose that Rx ̸= ∅. For every β ∈ Rx, clearly we have x = σβx.
Therefore, since g(x) = 0, we get g(σβx) = 0, for all β ∈ Rx. But, as x is a minimum of
g, we have

∀ β ∈ Rx,
g(x)− g(σβx)

⟨x, β⟩
=

∫ 1

0
∂βg(x− t ⟨x, β⟩β)dt = ∂βg(x) = 0.

Hence, the relation (3.3) with ξ = x implies∑
α∈R+\Rx

k(α)g(σαx) = 0.

Consequently, we obtain g(σαx) = 0 for all α ∈ R. The end of the proof of the first case
applies and gives also the result in this case. This completes the proof of the theorem. �

From the W -invariance property of the support of µk
x and the fact that x ∈ supp µk

x,
we obtain immediately the last assertion of Theorem A:

Corollary 3.1 Let x ∈ Rd and assume that k > 0 . Then, for all g ∈ W , gx ∈ supp µk
x.

Now, we can turn to the proof of the second statement of Theorem B.

Corollary 3.2 Let x ∈ Rd and r > 0. If k > 0, then

supp hk(r, x, .) = BW (x, r) := ∪g∈WB(gx, r). (3.4)

Proof: Let g ∈ W and y ∈ Rd such that ∥gx− y∥ < r. We will proceed as in the proof of
Proposition 3.1, iii). We have

lim
z→g−1y

√
∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩ = ∥x− g−1y∥.

Hence, there exists η > 0 such that for all z ∈ B(g−1y, η),
√

∥x∥2 + ∥y∥2 − 2 ⟨x, z⟩ ≤ r
and thus hk(r, x, y) ≥ µk

y [B(g−1y, η)].

But, from the fact that g−1y ∈ supp µk
y we deduce that y ∈ supp hk(r, x, .).

This completes the proof. �

Remark 3.2 When k ≥ 0, we will say that a root α ∈ R is active if k(α) > 0. Let us
denote by RA = {α ∈ R; k(α) > 0} the set of active roots and F the vector subspace of
Rd generated by {α, α ∈ RA}. Then we can generalize the results of Theorems A and B
in the following form
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a) The set RA is a root system. Indeed, using the fact that k is W -invariant, we can see
that for every α, β ∈ RA, k

(
σαβ

)
= k(β) > 0. Thus

∀ α ∈ RA, RA ∩ Rα = {±α} and σα(RA) = RA.

b) Let WA be the Coxeter-Weyl group associated to the root system RA. Then the re-
striction kA of k to RA is clearly invariant under the WA-action. In other words, it is a
multiplicity function.

c) For any ξ ∈ Rd, we will use the notation ξ = ξ′ + ξ′′ ∈ F + F⊥ = Rd (where F⊥ is the
orthogonal complement of F in Rd).
• Let x ∈ Rd. Rösler’s measure µk

x is of the form (see [13])

µk
x = µkA

x′ ⊗ δx′′ , (3.5)

where µkA
x′ is Rösler’s measure associated to (RA, kA) and δx′′ is the Dirac measure at x′′.

We have
supp µk

x = x′′ + supp µkA
x′ .

From (1.3), the support of µkA
x′ is contained in the convex hull of WA.x

′ (the WA-orbit of
x′). Furthermore, by Theorem A, it is invariant under the action of the group WA and
contains the whole orbite WA.x

′.

• Let x ∈ Rd and r > 0. According to (1.5) and (3.5) the harmonic kernel is given by

hk(r, x, y) =

∫
Rd

1[0,r]

(√
∥x′′ − y′′∥2 + ∥x′∥2 + ∥y′∥2 − 2 ⟨x′, z′⟩

)
dµkA

y′ (z
′), y ∈ Rd.

The support of hk(r, x, .) takes the following form

supp hk(r, x, .) = x′′ +BWA(x′, r) = x′′ + ∪g∈WA
B(gx′, r) = ∪g∈WA

B(gx, r).

Example 3.1 Let (e1, e2) be the canonical basis of R2. Then, the set R := {±e1,±e2}
is a root system in R2, its Coxeter-Weyl group is Z2

2 and the multiplicity function can be
identified to a pair k = (k1, k2), with ki = k(ei) ≥ 0, i = 1, 2. Take x = (x1, x2) ∈ R2 with
x1, x2 > 0. In this case, according to [16], Rösler’s measure is given by µk

x = µk1
x1

⊗ µk2
x2
,

where µki
xi

= δxi if ki = 0 and

⟨µki
xi
, f⟩ = Γ(ki + 1/2)√

πΓ(ki)

∫ 1

−1
f(txi)(1− t)ki−1(1 + t)kidt.

if ki > 0 (see [2]).

• If k = (0, 0), µk
x = δx and hk(r, x, y) = 1B(x,r)(y).

• If k = (k1, 0) with k1 > 0, then supp µk
x is the line segment between x and σe1x =

(−x1, x2) and
supp hk(r, x, .) = B(x, r) ∪B(σe1x, r).

• If k1, k2 > 0, the support of µk
x is the convex hull of Z2

2.x and the closed Dunkl ball is
given by

BZ2
2(x, r) = supp hk(r, x, .) = B

(
(x1, x2), r

)
∪B

(
(−x1, x2), r

)
∪B

(
(x1,−x2), r

)
∪B

(
(−x1,−x2), r

)
.
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