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In this paper we show that the Dunkl intertwining operator has a compact support which is invariant by the associated Coxeter-Weyl group. This property enables us to determine explicitely the support of the volume mean value operator, a fundamental tool for the study of harmonic functions relative to the Dunkl-Laplacian operator.

Introduction and statement of the results

Let R be a (finite) root system in R d with associated Coxeter-Weyl group W (see [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF] or [START_REF] Kane | Reflection Groups and Invariant Theory[END_REF] for details on root systems) and for ξ ∈ R d , let D ξ be the Dunkl operator defined by

D ξ f (x) = ∂ ξ f (x) + ∑ α∈R + k(α) ⟨α, ξ⟩ f (x) -f (σ α x) ⟨α, x⟩ , f ∈ C 1 (R d ),
where R + is a subsystem of positive roots, σ α is the reflection directed by the root α ∈ R + , k is a nonnegative multiplicity function (defined on R) and ∂ ξ f is the usual ξ-directional derivative of f . These operators, introduced by C. F. Dunkl in the nineties (see [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF]), are related to partial derivatives by means of an intertwining operator V k (see [START_REF] Dunkl | Hankel transforms associated to finite reflection groups[END_REF] or [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF]) as follows

∀ ξ ∈ R d , D ξ V k = V k ∂ ξ . (1.1)
We know that V k is a topological isomorphism from the space C ∞ (R d ) (carrying its usual Fréchet topology) onto itself satisfying (1.1) and V k (1) = 1 (see [START_REF] Trimèche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF]) and V k commutes with the W -action (see [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]) i.e.

∀ f ∈ C ∞ (R d ), ∀ g ∈ W, g -1 .V k (g.f ) = V k (f ), (1.2) 
where g.f (x) = f (g -1 x).

A fundamental fact due to M. Rösler (see [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF] or [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]) is that for every x ∈ R d , there exists a unique compactly supported probability measure µ k

x on R d with

supp µ k x ⊂ C(x) := co{gx, g ∈ W } (1.3)
(the convex hull of the orbit of x under the group W ) such that

∀ f ∈ C ∞ (R d ), V k (f )(x) = ∫ R d f (y)dµ k x (y). (1.4)
Note that the property (1.3) has been proved in [START_REF] De Jeu | The Dunkl transform[END_REF]. Throughout this paper, the notation k > 0 means that k(α) > 0 for all α ∈ R.

Concerning the measure µ k x (which we call Rösler's measure at point x), the first result of our paper is the following

Theorem A. For every x ∈ R d , we have 1) x ∈ supp µ k x , 2) If k > 0, the support of µ k x is a W -invariant set, 3) If k > 0 then W.x (the W -orbit of x) is contained in supp µ k x .
A question strongly related to the support of Rösler's measures concerns the Dunklmean value operator introduced by the authors in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] in the study of harmonic functions for the Dunkl-Laplacian operator ∆ k = ∑ d i=1 D 2 i where D i = D e i with (e i ) 1≤i≤d an orthonormal basis of R d . Precisely for x ∈ R d and r > 0, the mean value of a continuous function f at (x, r) is defined by

M r B (f )(x) := 1 m k (B(0, r)) ∫ R d f (y)h k (r, x, y)ω k (y)dy,
where y → h k (r, x, y) is a compactly supported measurable function (see Section 2) given by

h k (r, x, y) := ∫ R d 1 [0,r] ( √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩)dµ k y (z), (1.5)
m k is the measure dm k (x) := ω k (x)dx and ω k is the weight function

ω k (x) := ∏ α∈R + ⟨α, x⟩ 2k(α) . (1.6)
In particular we have shown that a

C 2 (R d )-function u is ∆ k -harmonic in R d if and only if for all (x, r) ∈ R d ×R + , u(x) = M r B (u)(x)
. For a further thorough study of ∆ k -harmonicity on a general W -invariant open set, it would be crucial to get information on the support of the mean value operators. We already know that the measures

dη k x,r = 1 m k (B(0, r)) h k (r, x, y)ω k (y)dy (x ∈ R d , r > 0), (1.7) 
are probability measures with compact support equal to supp h k (r, x, .) and satisfying the following inclusion ( [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]):

supp h k (r, x, . ) ⊂ B W (x, r) := ∪ g∈W B(gx, r), (1.8) 
where B(x, r) denotes the usual closed ball of radius r centered at x. In fact, the second main result of this paper, intimately related to Theorem A, is a precise description of the support of h k (r, x, .). It states that Theorem B: Let x ∈ R d and r > 0.

1)

We have B(x, r) ⊂ supp h k (r, x, .).

2)

If k > 0, then we have supp h k (r, x, .) = B W (x, r) := ∪ g∈W B(g.x, r).
We will call B W (x, r) the closed Dunkl ball centered at x and with radius r > 0 associated to the Coxeter-Weyl group W .

The harmonic kernel and the mean value operator

In this section we recall some results of [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF].

Let (r, x, y) → h k (r, x, y) be the harmonic kernel defined by (1.5). We note that in the classical case (i.e. k = 0), we have µ k y = δ y and h 0 (r, x, y) = 1 [0,r] (∥x -y∥) = 1 B(x,r) (y). The harmonic kernel satisfies the following properties (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]):

1. For all r > 0 and x, y ∈ R d , 0 ≤ h k (r, x, y) ≤ 1.

2. For all fixed x, y ∈ R d , the function r -→ h k (r, x, y) is right-continuous and non decreasing on ]0, +∞[.

3. Let r > 0 and x ∈ R d . For any sequence (φ ε ) ⊂ D(R d ) of radial functions such that for every ε > 0, 0 ≤ φ ε ≤ 1, φ ε = 1 on B(0, r) and ∀ y ∈ R d , lim ε→0 φ ε (y) = 1 B(0,r) (y),
we have

∀ y ∈ R d , h k (r, x, y) = lim ε→0 ∫ R d φ ε ( √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩)dµ k y (z),
where φ ε is the profile function of

φ ε i.e. φ ε (x) = φ ε (∥x∥).
4. For all r > 0, x, y ∈ R d and g ∈ W , we have

h k (r, x, y) = h k (r, y, x) and h k (r, gx, y) = h k (r, x, g -1 y). (2.1)
5. For all r > 0 and x ∈ R d , we have

∥h k (r, x, .)∥ k,1 := ∫ R d h k (r, x, y)ω k (y)dy = m k (B(0, r)) = d k r d+2γ d + 2γ , ( 2.2) 
where d k is the constant

d k := ∫ S d-1 ω k (ξ)dσ(ξ) = c k 2 d/2+γ-1 Γ(d/2+γ) .
Here dσ(ξ) is the surface measure of the unit sphere S d-1 of R d and c k is the Macdonald-Mehta constant (see [START_REF] Opdam | Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group[END_REF], [START_REF] Etingof | A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups[END_REF]) given by

c k := ∫ R d e -∥x∥ 2 2 ω k (x)dx. 6. Let r > 0 and x ∈ R d . Then the function h k (r, x, .) is upper semi-continuous on R d .
7. The harmonic kernel satisfies the following geometric inequality: if ∥a -b∥ ≤ 2r with r > 0, then

∀ ξ ∈ R d , h k (r, a, ξ) ≤ h k (4r, b, ξ)
(see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF], Lemma 4.1). Note that in the classical case (i.e. k = 0), this inequality says that if ∥a -b∥ ≤ 2r, then B(a, r) ⊂ B(b, 4r).

8. Let x ∈ R d . Then the family of probability measures dη k x,r (y) defined by (1.7) is an approximation of the Dirac measure δ x as r -→ 0. That is

∀ α > 0, lim r→0 ∫ ∥x-y∥>α dη k x,r (y) = 0
and if f is a locally bounded measurable function on a W -invariant open neighborhood of x and if f is continuous at x, then (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF], Proposition 3.2):

lim r→0 ∫ R d f (y)dη k x,r (y) = lim r→0 M r B (f )(x) = f (x). (2.3)

Proof of the results

For convenience we group together the first points of Theorem A and Theorem B in the following Proposition.

Proposition 3.1 Let x ∈ R d . Then i) for every r > 0, x ∈ supp h k (r, x, .), ii) x ∈ supp µ k x ,
iii) for every r > 0, B(x, r) ⊂ supp h k (r, x, .).

Proof: i) Suppose that there exists r > 0 such that x / ∈ supp h k (r, x, .). Then we can find ε > 0 such that h k (r, x, y) = 0, for all y ∈ B(x, ε). Let f be a nonnegative continuous functions on R d such that supp f ⊂ B(x, ε) and f = 1 on B(x, ε/2). Since t → h k (t, x, y) is increasing on ]0, +∞[, we deduce that

∀ t ∈]0, r], 0 ≤ M t B (f )(x) ≤ 1 m k [B(0, t)] ∫ R d f (y)h k (r, x, y)ω k (y)dy = 0.
Hence, we obtain M t B (f )(x) = 0, for all t ∈]0, r]. Letting t → 0 and using the relation (2.3), we get a contradiction.

ii) Let x ∈ R d be fixed. At first, we claim that

∀ r > 0, ∀ y ∈ R d , h k (r, x, y) ≤ µ k x [B(y, r)]. (3.1)
Indeed, from the inclusion supp µ k x ⊂ B(0, ∥x∥), we see that

∀ y ∈ R d , ∀ z ∈ supp µ k x , ∥y -z∥ 2 ≤ ∥y∥ 2 + ∥x∥ 2 -2 ⟨y, z⟩ .
This implies for any y ∈ R d and r > 0 that

∀ z ∈ supp µ k x , 1 [0,r] ( √ ∥y∥ 2 + ∥x∥ 2 -2 ⟨y, z⟩ ) ≤ 1 [0,r] (∥y -z∥) = 1 B(y,r) (z).
If we integrate the two terms of the previous inequality with respect to the measure µ k x , we obtain h k (r, y, x) ≤ µ k x ( B(y, r)

) and then (3.1) follows from (2.1). Now, if x / ∈ supp µ k x , there exists ϵ > 0 such that µ k x ( B(x, ϵ) ) = 0. Thus, we have µ k x ( B(y, ϵ/2) ) = 0 whenever y ∈ B(x, ϵ/2). Using (3.1), we deduce that h k (ϵ/2, x, .) = 0 on B(x, ϵ/2), a contradiction with the result of i).

iii) Let y ∈ R d such that ∥x -y∥ < r. As lim z→y (∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩) = ∥x -y∥ 2 , there exists η > 0 such that √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ≤ r for every z ∈ B(y, η).

Therefore, by using the fact that y ∈ supp µ k y we obtain

h k (r, x, y) ≥ µ k y [B(y, η)] > 0. Remark 3.1 For α ∈ R, let H α := {x ∈ R d , ⟨x, α⟩ = 0}
be the hyperplane directed by α. Note that in [START_REF] Rösler | Short-time estimates for heat kernels associated with root systems[END_REF] (Corollary 3.6) and under the condition x / ∈ ∪ α∈R H α , Rösler has proved that x ∈ supp µ k x by using the asymptotic behavior of the Dunkl kernel E k (x, y) which is defined by

E k (x, y) := V k ( e ⟨.,y⟩ ) (x) = ∫ R d e ⟨z,y⟩ dµ k x (z).
We turn now to the second statement of Theorem A that we recall below: Theorem 3.1 Let x ∈ R d and assume that k > 0. Then the set supp µ k x is W -invariant.

Proof: In order to simplify the formulas, we will assume here that the root system R is normalized i.e. ∥α∥ 2 = 2 for all α ∈ R. In particular, for reflections we have σ α x = x -⟨α, x⟩ α. We will prove that if y ∈ supp µ k x , then σ α y ∈ supp µ k x for every α ∈ R. Let then y ∈ supp µ k x and suppose that there is a root α ∈ R such that σ α y / ∈ supp µ k x . Write y ′ := σ α y to simplify notations. There is a ball B(y

′ , ϵ) (ϵ > 0) such that for all f ∈ C ∞ (R d ) with compact support included in B(y ′ , ϵ), we have ∫ R d f (z)µ x (dz) = V k f (x) = 0. Let us denote by C ∞ y ′ ,ϵ (resp. C y ′ ,ϵ ) the set of all functions f ∈ C ∞ (R d ) (resp. f ∈ C(R d )) with compact support in B(y ′ , ϵ). For all ξ ∈ R d and all f ∈ C ∞ y ′ ,ϵ , we also have ∂ ξ f ∈ C ∞ y ′ ,ϵ . By the intertwining relation (1.1) we obtain ∀ ξ ∈ R d , ∀ f ∈ C ∞ y ′ ,ϵ , D ξ V k f (x) = 0. Suppose f ∈ C ∞ y ′ ,ϵ and f ≥ 0 and let g := V k f . We have g ≥ 0 on R d (because V k preserves positivity) and ∀ ξ ∈ R d , D ξ g(x) = ∂ ξ g(x) + ∑ α∈R + k(α)⟨α, ξ⟩ g(x) -g(σ α x) ⟨x, α⟩ = 0. (3.2)
But as g(x) = 0, x is a minimum of g so ∂ ξ g(x) = 0 and relation (3.2) implies

∀ ξ ∈ R d , ∑ α∈R + k(α)⟨α, ξ⟩ g(x) -g(σ α x) ⟨x, α⟩ = 0. (3.3) Now, consider the set R x := {α ∈ R + ; x ∈ H α }.
There are two possible locations for x:

• First case: Suppose that R x = ∅ i.e x / ∈ ∪ α∈R H α (i.e. for all root α ∈ R, ⟨x, α⟩ ̸ = 0). Applying (3.3) with ξ = x and using the fact that g(x) = 0, we get

∑ α∈R + k(α)g(σ α x) = 0.
As g ≥ 0 and k > 0, we obtain that g(σ

α x) = V k f (σ α x) = 0 for all α ∈ R + and all f ∈ C ∞ y ′ ,ϵ
and f ≥ 0. By uniform approximation, we deduce that for all f ∈ C y ′ ,ϵ and f ≥ 0, we also have V k f (σ α x) = 0. Finally for every f ∈ C y ′ ,ϵ , by decomposing f = f + -f -with f + = max(f, 0) and f -= -min(f, 0) and using the linearity and W -equivariance of V k (relation (1.2)), we obtain that

∀ f ∈ C y ′ ,ϵ , ∀ α ∈ R + , V k f (σ α x) = V k (σ α .f )(x) = 0, where σ α .f is the function z → f (σ α z). As it is easy to see that σ α .C y ′ ,ϵ = C σαy ′ ,ϵ , we deduce that ∀ α ∈ R + , ∀f ∈ C σαy ′ ,ϵ , V k f (x) = 0.
But this implies in particular that V k f (x) = 0 for all f ∈ C y,ϵ in contradiction with the hypothesis y ∈ supp µ k x . The result of the theorem follows in the first case. • Second case: Suppose that R x ̸ = ∅. For every β ∈ R x , clearly we have x = σ β x. Therefore, since g(x) = 0, we get g(σ β x) = 0, for all β ∈ R x . But, as x is a minimum of g, we have

∀ β ∈ R x , g(x) -g(σ β x) ⟨x, β⟩ = ∫ 1 0 ∂ β g(x -t ⟨x, β⟩ β)dt = ∂ β g(x) = 0.
Hence, the relation

(3.3) with ξ = x implies ∑ α∈R + \Rx k(α)g(σ α x) = 0.
Consequently, we obtain g(σ α x) = 0 for all α ∈ R. The end of the proof of the first case applies and gives also the result in this case. This completes the proof of the theorem.

From the W -invariance property of the support of µ k x and the fact that x ∈ supp µ k x , we obtain immediately the last assertion of Theorem A: Proof: Let g ∈ W and y ∈ R d such that ∥gx -y∥ < r. We will proceed as in the proof of Proposition 3.1, iii). We have lim

z→g -1 y √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ = ∥x -g -1 y∥.
Hence, there exists η > 0 such that for all z ∈ B(g -1 y, η), √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ≤ r and thus h k (r, x, y) ≥ µ k y [B(g -1 y, η)]. But, from the fact that g -1 y ∈ supp µ k y we deduce that y ∈ supp h k (r, x, .). This completes the proof. Remark 3.2 When k ≥ 0, we will say that a root α ∈ R is active if k(α) > 0. Let us denote by R A = {α ∈ R; k(α) > 0} the set of active roots and F the vector subspace of R d generated by {α, α ∈ R A }. Then we can generalize the results of Theorems A and B in the following form a) The set R A is a root system. Indeed, using the fact that k is W -invariant, we can see that for every α 

, β ∈ R A , k ( σ α β ) = k(β) > 0. Thus ∀ α ∈ R A , R A ∩ Rα = {±α} and σ α (R A ) = R A . b) Let W A be
= ξ ′ + ξ ′′ ∈ F + F ⊥ = R d (where F ⊥ is the orthogonal complement of F in R d ). • Let x ∈ R d . Rösler's measure µ k
x is of the form (see [START_REF] Rösler | Asymptotic analysis for the Dunkl kernel[END_REF])

µ k x = µ k A x ′ ⊗ δ x ′′ , ( 3.5 
)

where µ k A x ′ is Rösler's measure associated to (R A , k A ) and δ x ′′ is the Dirac measure at x ′′ . We have supp µ k x = x ′′ + supp µ k A x ′ . From (1.3), the support of µ k A x ′ is contained in the convex hull of W A .x ′ (the W A -orbit of x ′
). Furthermore, by Theorem A, it is invariant under the action of the group W A and contains the whole orbite W A .x ′ .

• Let x ∈ R d and r > 0. According to (1.5) 

and (3.5) the harmonic kernel is given by

h k (r, x, y) = ∫ R d 1 [0,r] ( √ ∥x ′′ -y ′′ ∥ 2 + ∥x ′ ∥ 2 + ∥y ′ ∥ 2 -2 ⟨x ′ , z ′ ⟩ ) dµ k A y ′ (z ′ ), y ∈ R d .
The support of h k (r, x, .) takes the following form supp h k (r, x, .) = x ′′ + B W A (x ′ , r) = x ′′ + ∪ g∈W A B(gx ′ , r) = ∪ g∈W A B(gx, r).

Example 3.1 Let (e 1 , e 2 ) be the canonical basis of R 2 . Then, the set R := {±e 1 , ±e 2 } is a root system in R 2 , its Coxeter-Weyl group is Z 2 2 and the multiplicity function can be identified to a pair k = (k 1 , k 2 ), with k i = k(e i ) ≥ 0, i = 1, 2. Take x = (x 1 , x 2 ) ∈ R 2 with x 1 , x 2 > 0. In this case, according to [START_REF] Xu | Orthogonal polynomials for a family of product weight functions on the spheres[END_REF], Rösler's measure is given by µ k x = µ k 1 x 1 ⊗ µ k 2 x 2 , where µ k i x i = δ x i if k i = 0 and

⟨µ k i x i , f ⟩ = Γ(k i + 1/2) √ πΓ(k i ) ∫ 1 -1 f (tx i )(1 -t) k i -1 (1 + t) k i dt.
if k i > 0 (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF]).

• If k = (0, 0), µ k x = δ x and h k (r, x, y) = 1 B(x,r) (y).

• If k = (k 1 , 0) with k 1 > 0, then supp µ k
x is the line segment between x and σ e 1 x = (-x 1 , x 2 ) and supp h k (r, x, .) = B(x, r) ∪ B(σ e 1 x, r). 

Corollary 3 . 1 Corollary 3 . 2

 3132 Let x ∈ R d and assume that k > 0 . Then, for all g ∈ W , gx ∈ supp µ k x . Now, we can turn to the proof of the second statement of Theorem B. Let x ∈ R d and r > 0. If k > 0, then supp h k (r, x, .) = B W (x, r) := ∪ g∈W B(gx, r).(3.4)

  the Coxeter-Weyl group associated to the root system R A . Then the restriction k A of k to R A is clearly invariant under the W A -action. In other words, it is a multiplicity function.

c) For any ξ ∈ R d , we will use the notation ξ

•

  If k 1 , k 2 > 0, the support of µ k x is the convex hull of Z 2 2 .x and the closed Dunkl ball is given by

	B Z 2 2 (x, r) = supp h k (r, x, .) = B	(	(x 1 , x 2 ), r	)	∪B	(	(-x 1 , x 2 ), r	)	∪B	(	(x 1 , -x 2 ), r	)	∪B	(	(-x 1 , -x 2 ), r	)	.