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Abstract

We study a surprising phenomenon related to the representation of a cloud of data
points using polynomials. We start with the previously unnoticed empirical obser-
vation that, given a collection (a cloud) of data points, the sublevel sets of a certain
distinguished polynomial capture the shape of the cloud very accurately. This
distinguished polynomial is a sum-of-squares (SOS) derived in a simple manner
from the inverse of the empirical moment matrix. In fact, this SOS polynomial is
directly related to orthogonal polynomials and the Christoffel function. This allows
to generalize and interpret extremality properties of orthogonal polynomials and to
provide a mathematical rationale for the observed phenomenon. Among diverse
potential applications, we illustrate the relevance of our results on a network intru-
sion detection task for which we obtain performances similar to existing dedicated
methods reported in the literature.

1 Introduction

Capturing and summarizing the global shape of a cloud of points is at the heart of many data
processing applications such as novelty detection, outlier detection as well as related unsupervised
learning tasks such as clustering and density estimation. One of the main difficulties is to account
for potentially complicated shapes in multidimensional spaces, or equivalently to account for non
standard dependence relations between variables. Such relations become critical in applications, for
example in fraud detection where a fraudulent action may be the dishonest combination of several
actions, each of them being reasonable when considered on their own.

Accounting for complicated shapes is also related to computational geometry and nonlinear algebra
applications, for example integral computation [9] and reconstruction of sets from moments data
[4, 5, 10]. Some of these problems have connections and potential applications in machine learning.
The work presented in this paper brings together ideas from both disciplines, leading to a method
which allows to encode in a simple manner the global shape and spatial concentration of points within
a cloud.

We start with a surprising (and apparently unnoticed) empirical observation. Given a collection of
points, one may build up a distinguished sum-of-squares (SOS) polynomial whose coefficients (or
Gram matrix) is the inverse of the empirical moment matrix (see Section 3). Its degree depends on
how many moments are considered, a choice left to the user. Remarkably its sublevel sets capture
much of the global shape of the cloud as illustrated in Figure 3. This phenomenon is not incidental as
illustrated in many additional examples in Appendix A. To the best of our knowledge, this observation
has remained unnoticed and the purpose of this paper is to report this empirical finding to the machine
learning community and provide first elements toward a mathematical understanding as well as
potential machine learning applications.
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Figure 1: Left: 1000 points in R2 and the level sets of the corresponding inverse moment matrix SOS
polynomial Qµ,d (d = 4). The level set

(
p+d
d

)
, which corresponds to the average value of Qµ,d, is

represented in red. Right: 1040 points in R2 with size and color proportional to the value of inverse
moment matrix SOS polynomial Qµ,d (d = 8).

The proposed method is based on the computation of the coefficients of a very specific polynomial
which depends solely on the empirical moments associated with the data points. From a practical
perspective, this can be done via a single pass through the data, or even in an online fashion via
a sequence of efficient Woodbury updates. Furthermore the computational cost of evaluating the
polynomial does not depend on the number of data points which is a crucial difference with existing
nonparametric methods such as nearest neighbors or kernel based methods [1]. On the other hand,
this computation requires the inversion of a matrix whose size depends on the dimension of the
problem (see Section 3). Therefore, the proposed framework is suited for moderate dimensions and
potentially very large number of observations.

In Section 4 we first describe an affine invariance result which suggests that the distinguished SOS
polynomial captures very intrinsic properties of clouds of points. In a second step, we provide a
mathematical interpretation that supports our empirical findings based on connections with orthogonal
polynomials [3]. We propose a generalization of a well known extremality result for orthogonal
univariate polynomials on the real line (or the complex plane) [13, Theorem 3.1.2]. As a consequence,
the distinguished SOS polynomial of interest in this paper is understood as the unique optimal
solution of a convex optimization problem: minimizing an average value over a structured set of
positive polynomials. In addition, we revisit [13, Theorem 3.5.6] about the Christoffel function.
The mathematics behind provide a simple and intuitive explanation for the phenomenon that we
empirically observed.

Finally, in Section 5 we perform numerical experiments on KDD cup network intrusion dataset
[11]. Evaluation of the distinguished SOS polynomial provides a score that we use as a measure of
outlyingness to detect network intrusions (assuming that they correspond to outlier observations).
We refer the reader to [1] for a discussion of available methods for this task. For the sake of a
fair comparison we have reproduced the experiments performed in [14] for the same dataset. We
report results similar to (and sometimes better than) those described in [14] which suggests that the
method is comparable to other dedicated approaches for network intrusion detection, including robust
estimation and Mahalanobis distance [6, 8], mixture models [12] and recurrent neural networks [14].

2 Multivariate polynomials and moments

2.1 Notations

We fix the ambient dimension to be p throughout the text. For example, we will manipulate vectors
in Rp as well as p-variate polynomials with real coefficients. We denote by X a set of p variables
X1, . . . , Xp which we will use in mathematical expressions defining polynomials. We identify
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monomials from the canonical basis of p-variate polynomials with their exponents in Np: we associate
to α = (αi)i=1...p ∈ Np the monomial Xα := Xα1

1 Xα2
2 . . . X

αp
p which degree is deg(α) :=∑p

i=1 αi. We use the expressions <gl and ≤gl to denote the graded lexicographic order, a well
ordering over p-variate monomials. This amounts to, first, use the canonical order on the degree
and, second, break ties in monomials with the same degree using the lexicographic order with
X1 = a,X2 = b . . . For example, the monomials in two variables X1, X2, of degree less or equal to
3 listed in this order are given by: 1, X1, X2, X

2
1 , X1X2, X

2
2 , X

3
1 , X

2
1X2, X1X

2
2 , X

3
2 .

We denote by Npd, the set {α ∈ Np; deg(α) ≤ d} ordered by ≤gl. R[X] denotes the set of p-variate
polynomials: linear combinations of monomials with real coefficients. The degree of a polynomial is
the highest of the degrees of its monomials with nonzero coefficients1. We use the same notation,
deg(·), to denote the degree of a polynomial or of an element of Np. For d ∈ N, Rd[X] denotes
the set of p-variate polynomials of degree less or equal to d. We set s(d) =

(
p+d
d

)
, the number of

monomials of degree less or equal to d. We will denote by vd(X) the vector of monomials of degree
less or equal to d sorted by ≤gl. We let vd(X) := (Xα)α∈Npd

∈ Rd[X]s(d). With this notation,
we can write a polynomial P ∈ Rd[X] as follows P (X) = 〈p,vd(X)〉 for some real vector of
coefficients p = (pα)α∈Npd

∈ Rs(d) ordered using ≤gl. Given x = (xi)i=1...p ∈ Rp, P (x) denotes
the evaluation of P with the assignments X1 = x1, X2 = x2, . . . Xp = xp. Given a Borel probability
measure µ and α ∈ Np, yα(µ) denotes the moment α of µ: yα(µ) =

∫
Rp x

αdµ(x). Throughout the
paper, we will only consider measures of which all moments are finite.

2.2 Moment matrix

Given a Borel probability measure µ on Rp, the moment matrix of µ, Md(µ), is a matrix indexed by
monomials of degree at most d ordered by ≤gl. For α, β ∈ Npd, the corresponding entry in Md(µ)
is defined by Md(µ)α,β := yα+β(µ), the moment α+ β of µ. When p = 2, letting yα = yα(µ) for
α ∈ N2

4, we have

M2(µ) :

1 X1 X2 X2
1 X1X2 X2

2

1 1 y10 y01 y20 y11 y02
X1 y10 y20 y11 y30 y21 y12
X2 y01 y11 y02 y21 y12 y03
X2

1 y20 y30 y21 y40 y31 y22
X1X2 y11 y21 y12 y31 y22 y13
X2

2 y02 y12 y03 y22 y13 y04

.

Md(µ) is positive semidefinite for all d ∈ N. Indeed, for any p ∈ Rs(d), let P ∈ Rd[X] be the
polynomial with vector of coefficients p, we have pTMd(µ)p =

∫
Rp P

2(x)dµ(x) ≥ 0. Furthermore,
we have the identity Md(µ) =

∫
Rp vd(x)vd(x)T dµ(x) where the integral is understood elementwise.

2.3 Sum of squares (SOS)

We denote by Σ[X] ⊂ R[X] (resp. Σd[X] ⊂ Rd[X]), the set of polynomials (resp. polynomials of
degree at most d) which can be written as a sum of squares of polynomials. Let P ∈ R2m[X] for
some m ∈ N, then P belongs to Σ2m[X] if there exists a finite J ⊂ N and a family of polynomials
Pj ∈ Rm[X], j ∈ J , such that P =

∑
j∈J P

2
j . It is obvious that sum of squares polynomials are

always nonnegative. A further interesting property is that this class of polynomials is connected with
positive semidefiniteness. Indeed, P belongs to Σ2m[X] if and only if

∃Q ∈ Rs(m)×s(m), Q � 0, P (x) = vd(x)TQvd(x), ∀x ∈ Rp. (1)

As a consequence, every positive semidefinite matrix Q ∈ Rs(m)×s(m) defines a polynomial in
Σ2m[X] by using the representation in (1).

1For the null polynomial, we use the convention that its degree is 0 and it is ≤gl smaller than all other
monomials.

3



3 Empirical observations on the inverse moment matrix SOS polynomial

The inverse moment-matrix SOS polynomial is associated to a measure µ which satisfies the following.

Assumption 1 µ is a Borel probability measure on Rp with all its moments finite and Md(µ) is
positive definite for a given d ∈ N.

Definition 1 Let µ, d satisfy Assumption 1. We call the SOS polynomial Qµ,d ∈ Σ2d[X] defined by
the application:

x 7→ Qµ,d(x) := vd(x)TMd(µ)−1vd(x), x ∈ Rp, (2)

the inverse moment-matrix SOS polynomial of degree 2d associated to µ.

Actually, connection to orthogonal polynomials will show that the inverse function x 7→ Qµ,d(x)−1

is called the Christoffel function in the literature [13, 3] (see also Section 4).

In the remainder of this section, we focus on the situation when µ corresponds to an empirical
measure over n points in Rp which are fixed. So let x1, . . . ,xn ∈ Rp be a fixed set of points and let
µ := 1

n

∑n
i=1 δxi where δx corresponds to the Dirac measure at x. In such a case the polynomial

Qµ,d in (2) is determined only by the empirical moments up to degree 2d of our collection of points.
Note that we also require that Md(µ) � 0. In other words, the points x1, . . . ,xn do not belong to
an algebraic set defined by a polynomial of degree less or equal to d. We first describe empirical
properties of inverse moment matrix SOS polynomial in this context of empirical measures. A
mathematical intuition and further properties behind these observations are developped in Section 4.

3.1 Sublevel sets

The starting point of our investigations is the following phenomenon which to the best of our
knowledge has remained unnoticed in the literature. For the sake of clarity and simplicity we provide
an illustration in the plane. Consider the following experiment in R2 for a fixed d ∈ N: represent on
the same graphic, the cloud of points {xi}i=1...n and the sublevel sets of SOS polynomial Qµ,d in
R2 (equivalently, the superlevel sets of the Christoffel function). This is illustrated in the left panel
of Figure 3. The collection of points consists of 500 simulations of two different Gaussians and the
value of d is 4. The striking feature of this plot is that the level sets capture the global shape of the
cloud of points quite accurately. In particular, the level set {x : Qµ,d(x) ≤

(
p+d
d

)
} captures most of

the points. We could reproduce very similar observations on different shapes with various number of
points in R2 and degree d (see Appendix A).

3.2 Measuring outlyingness

An additional remark in a similar line is that Qµ,d tends to take higher values on points which are
isolated from other points. Indeed in the left panel of Figure 3, the value of the polynomial tends to
be smaller on the boundary of the cloud. This extends to situations where the collection of points
correspond to shape with a high density of points with a few additional outliers. We reproduce a
similar experiment on the right panel of Figure 3. In this example, 1000 points are sampled close to a
ring shape and 40 additional points are sampled uniformly on a larger square. We do not represent
the sublevel sets of Qµ,d here. Instead, the color and shape of the points are taken proportionally to
the value of Qµ,d, with d = 8.

First, the results confirm the observation of the previous paragraph, points that fall close to the ring
shape tend to be smaller and points on the boundary of the ring shape are larger. Second, there is a
clear increase in the size of the points that are relatively far away from the ring shape. This highlight
the fact that Qµ,d tends to take higher value in less populated areas of the space.

3.3 Relation to maximum likelihood estimation

If we fix d = 1, we recover the maximum likelihood estimation for the Gaussian, up to a constant
additive factor. To see this, set µ = 1

n

∑n
i=1 xi and S = 1

n

∑n
i=1 xix

T
i . With this notation, we have
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the following block representation of the moment matrix,

Md(µ) =

(
1 µT

µ S

)
Md(µ)−1 =

(
1 + µTV −1µ −µTV −1
−V −1µ V −1

)
,

where V = S − µµT is the empirical covariance matrix and the expression for the inverse is given by
Schur complement. In this case, we have Qµ,1(x) = 1 + (x− µ)TV −1(x− µ) for all x ∈ Rp. We
recognize the quadratic form that appears in the density function of the multivariate Gaussian with
parameters estimated by maximum likelihood. This suggests a connection between the inverse SOS
moment polynomial and maximum likelihood estimation. Unfortunately, this connection is difficult
to generalize for higher values of d and we do not pursue the idea of interpreting the empirical
observations of this section through the prism of maximum likelihood estimation and leave it for
further research. Instead, we propose an alternative view in Section 4.

3.4 Computational aspects

Recall that s(d) =
(
p+d
d

)
is the number of p-variate monomials of degree up to d. The computation

of Qµ,d requires O(ns(d)2) operations for the computation of the moment matrix and O(s(d)3)
operations for the matrix inversion. The evaluation of Qµ,d requires O(s(d)2) operations.

Estimating the coefficients of Qµ,d has a computational cost that depends only linearly in the number
of points n. The cost of evaluating Qµ,d is constant with respect to the number of points n. This is
an important contrast with kernel based or distance based methods (such as nearest neighbors and
one class SVM) for density estimation or outlier detection since they usually require at least O(n2)
operations for the evaluation of the model [1]. Moreover, this is well suited for online settings where
inverse moment matrix computation can be done using Woodbury updates.

The dependence in the dimension p is of the order of pd for a fixed d. Similarly, the dependence in d
is of the order of dp for a fixed dimension p and the joint dependence is exponential. This suggests
that the computation and evaluation of Qµ,d will mostly make sense for moderate dimensions and
degree d.

4 Invariances and interpretation through orthogonal polynomials

The purpose of this section is to provide a mathematical rationale that explains the empirical obser-
vations made in Section 3. All the proofs are postponed to Appendix B. We fix a Borel probability
measure µ on Rp which satisfies Assumption 1. Note that Md(µ) is always positive definite if µ
is not supported on the zero set of a polynomial of degree at most d. Under Assumption 1, Md(µ)
induces an inner product on Rs(d) and by extension on Rd[X] (see Section 2). This inner product is
denoted by 〈·, ·〉µ and satisfies for any polynomials P,Q ∈ Rd[X] with coefficients p,q ∈ Rs(d),

〈P,Q〉µ := 〈p,Md(µ)q〉Rs(d) =

∫
Rp
P (x)Q(x)dµ(x).

We will also use the canonical inner product over Rd[X] which we write 〈P,Q〉Rd[X] := 〈p,q〉Rs(d)
for any polynomials P,Q ∈ Rd[X] with coefficients p,q ∈ Rs(d). We will omit the subscripts for
this canonical inner product and use 〈·, ·〉 for both products.

4.1 Affine invariance

It is worth noticing that the mapping x 7→ Qµ,d(x) does not depend on the particular choice of vd(X)
as a basis of Rd[X], any other basis would lead to the same mapping. This leads to the result that
Qµ,d captures affine invariant properties of µ.

Lemma 1 Let µ satisfy Assumption 1 and A ∈ Rp×p, b ∈ Rp define an invertible affine mapping on
Rp,A : x→ Ax+b. Then, the push foward measure, defined by µ̃(S) = µ(A−1(S)) for all Borel sets
S ⊂ Rp, satisfies Assumption 1 (with the same d as µ) and for all x ∈ Rp, Qµ,d(x) = Qµ̃,d(Ax+ b).

Lemma 1 is probably better understood when µ = 1/n
∑n
i=1 δxi as in Section 3. In this case, we

have µ̃ = 1/n
∑n
i=1 δAxi+b and Lemma 1 asserts that the level sets of Qµ̃,d are simply the images of

those of Qµ,d under the affine transformation x 7→ Ax + b. This is illustrated in Appendix D.
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4.2 Connection with orthogonal polynomials

We define a classical [13, 3] family of orthonormal polynomials, {Pα}α∈Npd ordered according to ≤gl
which satisfies for all α ∈ Npd

〈Pα, Xβ〉 = 0 if α <gl β, 〈Pα, Pα〉µ = 1, 〈Pα, Xβ〉µ = 0 if β <gl α, 〈Pα, Xα〉µ > 0. (3)

It follows from (3) that 〈Pα, Pβ〉µ = 0 if α 6= β. Existence and uniqueness of such a family
is guaranteed by the Gram-Schmidt orthonormalization process following the ≤gl order on the
monomials, and by the positivity of the moment matrix, see for instance [3, Theorem 3.1.11].

Let Dd(µ) be the lower triangular matrix which rows are the coefficients of the polynomials Pα
defined in (3) ordered by ≤gl. It can be shown that Dd(µ) = Ld(µ)−T , where Ld(µ) is the Cholesky
factorization of Md(µ). Furthermore, there is a direct relation with the inverse moment matrix as
Md(µ)−1 = Dd(µ)TDd(µ) [7, Proof of Theorem 3.1]. This has the following consequence.

Lemma 2 Let µ satisfy Assumption 1, then Qµ,d =
∑
α∈Npd

P 2
α, where the family {Pα}α∈Npd is

defined by (3) and
∫
Rp Qµ,d(x)dµ(x) = s(d).

That is, Qµ,d is a very specific and distinguished SOS polynomial, the sum of squares of the
orthonormal basis elements {Pα}α∈Npd of Rd(X) (w.r.t. µ). Furthermore, the average value of Qµ,d
with respect to µ is s(d) which corresponds to the red level set in left panel of Figure 3.

4.3 A variational formulation for the inverse moment matrix SOS polynomial

In this section, we show that the family of polynomials {Pα}α∈Npd defined in (3) is the unique
solution (up to a multiplicative constant) of a convex optimization problem over polynomials. This
fact combined with Lemma 2 provides a mathematical rationale for the empirical observations
outlined in Section 3. Consider the following optimization problem.

min
Qα,θα,α∈Npd

1

2

∫
Rp

∑
α∈Npd

Qα(x)2dµ(x) (4)

s.t. qαα ≥ exp(θα), qαβ = 0, α, β ∈ Npd, α <gl β,
∑
α∈Npd

θα = 0,

where Qα(x) =
∑
β∈Npd

qαβx
β , α ∈ Npd. We first comment on problem (4). Let P =

∑
α∈Npd

Q2
α

be the SOS polynomial appearing in the objective function of (4). The constraints of problem (4)
restrict P to be in a certain set Sd ⊂ Σd[X]. With this notation, problem (4) is reformulated as
minP∈Sd

∫
Pdµ. Therefore problem (4) balances two antagonist targets, on one hand the minimiza-

tion of the average value of the SOS polynomial P with respect to µ, on the other hand the avoidance
of the trivial polynomial, enforced by the constraint that P ∈ Sd. The constraints on P are simple
and natural, they ensure that P is a sum of squares of polynomials {Qα}α∈Npd , where the leading
term of Qα (according to the ordering ≤gl) is qααxα with qαα > 0 (and hence does not vanish).
Inversely, using Cholesky factorization, for any SOS polynomial Q of degree 2d which coefficient
matrix (see equation (1)) is positive definite, there exists a > 0 such that aQ ∈ Sd. This suggests
that Sd is a quite general class of nonvanishing SOS polynomials. The following result, which gives
a relation between Qµ,d and solutions of (4), uses a generalization of [13, Theorem 3.1.2] to several
orthogonal polynomials of several variables.

Theorem 1 : Under Assumption 1, problem (4) is a convex optimization problem with a unique
optimal solution (Q∗α, θ

∗
α), which satisfies Q∗α =

√
λPα, α ∈ Npd, for some λ > 0. In particular,

the distinguished SOS polynomial Qµ,d =
∑
α∈Npd

P 2
α = 1

λ

∑
α∈Npd

(Q∗α)2, is (part of) the unique
optimal solution of (4).

Theorem 1 states that up to the scaling factor λ, the distinguished SOS polynomial Qµ,d is the
unique optimal solution of problem (4). A detailed proof is provided in the Appendix B and
we only sketch the main ideas here. First, it is remarkable that for each fixed α ∈ Npd (and
again up to a scaling factor) the polynomial Pα is the unique optimal solution of the problem:
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minQ

{ ∫
Q2dµ : Q ∈ Rd[X], Q(x) = xα +

∑
β<glα

qβ x
β
}

. This fact is well-known in the
univariate case [13, Theorem 3.1.2] and does not seem to have been exploited in the literature, at least
for purposes similar to ours. So intuitively, P 2

α should be as close to 0 as possible on the support of µ.
Problem (4) has similar properties and the constraint on the vector of weights θ enforces that, at an
optimal solution, the contribution

∫
(Q∗α)2 dµ to the overall sum in the criterion is the same for all α.

Using Lemma 2 yields (up to a multiplicative constant) the polynomial Qµ,d. Other constraints on θ
would yield different weighted sum of the squares P 2

α. This will be a subject of further investigations.

To sum up, Theorem 1 provides a rationale for our observations. Indeed when solving (4), intuitively,
Qµ,d should be as close to 0 as possible on average while remaining in a large class of nonvanishing
SOS polynomials.

4.4 Christoffel function and outlier detection

The following result from [3, Theorem 3.5.6] draws a direct connection between Qµ,d and the
Chritoffel function (the right hand side of (5)).

Theorem 2 ([3]) Let Assumption 1 hold and let x̄ ∈ Rp be fixed, arbitrary. Then

Qµ,d(x̄)−1 = min
P∈Rd[X]

{∫
Rp
P (x)2 dµ(x) : P (x̄) = 1

}
. (5)

Theorem 2 provides a mathematical rationale for the use of Qµ,d for outlier or novelty detection
purposes. Indeed, from Lemma 2 and equation (3), we have Qµ,d ≥ 1 on Rp. Furthermore, the
solution of the minimization problem in (5) satisfies P (x̄)2 = 1 and µ

({
x ∈ Rp : P (x)2 ≤ 1

})
≥

1 − Qµ,d(x̄)−1 (by Markov’s inequality). Hence, for high values of Qµ,d(x̄), the sublevel set{
x ∈ Rp : P (x)2 ≤ 1

}
contains most of the mass of µ while P (x̄)2 = 1. Again the result of

Theorem 2 does not seem to have been interpreted for purposes similar to ours.

5 Experiments on network intrusion datasets

In addition to having its own mathematical interest, Theorem 1 can be exploited for various purposes.
For instance, the sub-level sets of Qµ,d, and in particular {x ∈ Rp : Qµ,d(x) ≤

(
p+d
d

)
}, can be used

to encode a cloud of points in a simple and compact form. However in this section we focus on
another potential application in anomaly detection.

Empirical findings described in Section 3 suggest that the polynomial Qµ,d can be used to detect
outliers in a collection of real vectors by taking µ to be the corresponding empirical measure. This is
backed up by the results presented in Section 4. In this section we illustrate these properties on a
real world example. We choose the KDD cup 99 network intrusion dataset (available at [11]) which
consists of network connection data with labels describing whether they correspond to normal traffic
or network intrusions. We follow [15] and [14] and construct five datasets consisting of labeled
vectors in R3, the label indicating normal traffic or network attack. The content of these datasets is
summarized in the following table.

Dataset http smtp ftp-data ftp others
Number of examples 567498 95156 30464 4091 5858
Proportions of attacks 0.004 0.0003 0.023 0.077 0.016

The details on how these datasets are constructed are available in [15, 14] and are reproduced in
Appendix C. The main idea is to give to each datapoint an outlyingness score solely based on its
position in R3 and then compare outliers predicted by the score with the label indicating network
intrusion. The underlying assumption is that network intrusion corresponds to infrequent abnormal
behaviors and could thus be considered as outliers.

We reproduce the exact same experiment that was described in [14, Section 5.4] using the value of
the inverse moment matrix SOS polynomial from Definition 1 as an outlyingness score (with d = 3).
The authors of [14] have compared different types of methods for outlier detection in the same
experimental setting: methods based on robust estimation and Mahalanobis distance [6, 8], mixture
model based methods [12] and recurrent neural network based methods. These results are gathered
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Figure 2: Left: reproduction of the results described in [14] with the inverse moment SOS polynomial
value as an outlyingness score (d = 3). Right: Precision-recall curves for different values of d for the
dataset “others”.

in [14, Figure 7]. In the left panel of Figure 2 we represent the same performance measure for our
approach. We first compute the value of the inverse moment SOS polynomial for each datapoint
and use it as an outlyingness score. We then display the proportion of correctly identified outliers,
with score above a given threshold, as a function of the proportion of examples with score above the
threshold (for different values of the threshold). The main comments are as follows.

• The inverse moment matrix SOS polynomial does detect network intrusions with varying perfor-
mances on the five datasets.

• Except for the “ftp-data dataset”, the global shape of these curves are very similar to results reported
in [14, Figure 7] indicating that the proposed approach is comparable to other dedicated methods for
intrusion detection in these four datasets.

In a second experiment, we investigate the effect of changing the value of d in Qµ,d on the per-
formances in terms of outlier detection. We focus on the “others” dataset because it is the most
heterogeneous in term of data and outliers. We adopt a slightly different measure of performance
and use precision recall curves (see for example [2]) to measure performances in identifying net-
work intrusions (the higher the curve, the better). We call the area under such curves the AUPR.
The right panel of Figure 2 represents these results. First, the case d = 1, which corresponds to
vanilla Mahalanobis distance as outlined in Section 3.3, gives poor performances. Second, the global
performances rapidly increase with d and then decrease and stabilize.

This suggests that d can be used as a tuning parameter which controls the “complexity” of Qµ,d.
Indeed, 2d is the degree of the polynomial Qµ,d and it is expected that more complex models will
potentially identify more diverse classes of examples of points as outliers. In our case, this means
identifying regular traffic as outliers while it actually does not correspond to intrusions.

6 Conclusion and future work

We presented empirical findings with a mathematical intuition regarding the sublevel sets of the
inverse moment matrix SOS polynomial. This opens many potential subjects of investigations.

• Similarities with maximum likelihood.

• Statistics in the context of empirical processes.

• Relation between a density and its inverse moment matrix SOS polynomial. Assymptotics
when the degree increases.

• Connections with computational geometry and non Gaussian integrals.

• Computationally tractable extensions in higher dimensions.
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Figure 3: Empirical measure and level sets of Qµ,d for various values of d and various configurations
and numbers of points n. The level set

(
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d

)
, which corresponds to the average value of Qµ,d, is

represented in red.
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B Proofs

We use the same notation as in the main text. We recall that Assumption 1.

Assumption 1 µ is a Borel probability measure on Rp with all its moments finite and Md(µ) is
positive definite for a given d ∈ N.

Lemma 2 and Theorem 2 are taken from the literature and we provide a proof for completeness.

B.1 Proof of Lemma 1

First we show that the mapping x 7→ Qµ,d(x) does not depend on the choice of a specific basis of
Rd[X]. Then we will deduce the affine invariance property.

Lemma 3 Let wd(X) be an arbitrary basis of Rd[X] and let Rµ,d ∈ Rd[X] be derived in the same
way as Qµ,d (see Definition 1), with wd in place of vd. Then Qµ,d(x) = Rµ,d(x) for all x ∈ Rp.

Proof : Since wd is a basis of Rd[X], there exists an invertible matrix C ∈ Rs(d)×s(d) such that
wd(X) = Cvd(X). We reproduce the computation of Definition 1 with this new basis. We write
Nd(µ) the moment matrix computed with the polynomial basis wd. We have

Nd(µ) =

∫
Rp

wd(x)wd(x)T dµ(x)

=

∫
Rp
Cvd(x)vd(x)TCT dµ(x)

= C

∫
Rp

vd(x)vd(x)T dµ(x)CT

= CMd(µ)CT ,

which leads to Nd(µ)−1 = C−TMd(µ)−1C−1. Using Definition 1, for all x ∈ Rp, we have

Rµ,d(x) = wd(x)TNd(µ)−1wd(x)

= vd(x)TCTC−TMd(µ)−1C−1Cvd(x)

= vd(x)TMd(µ)−1vd(x)

= Qµ,d(x),

which concludes the proof. �

Lemma 1 Let µ satisfy Assumption 1 and A ∈ Rp×p, b ∈ Rp define an invertible affine mapping on
Rp,A : x→ Ax+b. Then, the push foward measure, defined by µ̃(S) = µ(A−1(S)) for all Borel sets
S ⊂ Rp, satisfies Assumption 1 (with the same d as µ) and for all x ∈ Rp, Qµ,d(x) = Qµ̃,d(Ax+ b).

Proof : Let us first computeMd(µ̃). For the push forward measure µ̃, it holds that for any µ integrable
function f : Rp → R, ∫

Rp
f(x)dµ̃(x) =

∫
Rp
f(Ax + b)dµ(x).

By considering polynomial f , we have that µ̃ has all its moments finite and satisfies Assumption 1
with the same d as µ. Furthermore, we have

Md(µ̃) =

∫
Rp

vd(x)vd(x)T dµ̃(x) =

∫
Rp

vd(Ax + b)vd(Ax + b)T dµ(x). (7)

We can deduce the following identity for all x ∈ Rp,

Qµ̃,d(Ax + b) = vd(Ax + b)TMd(µ̃)−1 vd(Ax + b). (8)

It remains to notice that mappings defined by wd(x) = vd(Ax + b) for all x ∈ Rp form a basis of
the polynomials of degree up to d on Rp (by invertibility of the affine mapping). Combining (7) and
(8), we see that x 7→ vd(Ax + b) simply corresponds to the use of a different basis of Rd[X]. The
result follows by applying Lemma 3 and the proof is complete. �
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B.2 Proof of Lemma 2

Recall that the orthogonal polynomials satisfy for all α ∈ Npd

〈Pα, Xβ〉 = 0 if α <gl β, 〈Pα, Pα〉µ = 1, 〈Pα, Xβ〉µ = 0 if β <gl α, 〈Pα, Xα〉µ > 0. (3)

Lemma 2 Let µ satisfy Assumption 1, then Qµ,d =
∑
α∈Npd

P 2
α, where the family {Pα}α∈Npd is

defined by (3) and
∫
Rp Qµ,d(x)dµ(x) = s(d).

Proof : Let Dd(µ) be the lower triangular matrix which rows are the coefficients of the polynomials
Pα defined in (3) ordered by ≤gl. From properties in (3), Dd(µ) is lower triangular with positive
coefficients on its diagonal and therefore invertible. We have Dd(µ)Md(µ)Dd(µ)T = I , the identity.
It follows that Md(µ) = Dd(µ)−1Dd(µ)−T and Md(µ)−1 = Dd(µ)TDd(µ). Plugging this in
definition 1 and using equation (1) leads to the desired identity. The average value result follows
because we manipulate an orthonormal basis of s(d) polymials, each of which has a square average
value (with respect to µ) equal to 1. �

B.3 Proof of Theorem 1

We recall the the optimization problem.

min
Qα,θα,α∈Npd

1

2

∫
Rp

∑
α∈Npd

Qα(x)2dµ(x) (4)

s.t. qαα ≥ exp(θα), α ∈ Npd,
qαβ = 0, α <gl β, α, β ∈ Npd,∑
α∈Npd

θα = 0.

where Qα(x) =
∑
β qαβx

β , α ∈ Npd. The statement of Theorem 1 goes as follows.

Theorem 1 : Problem (4) is a convex optimization problem with a unique optimal solution (Q∗α, θ
∗
α),

which satisfies Q∗α =
√
λPα, α ∈ Npd, for some λ > 0. In particular, the distinguished SOS

polynomial

Qµ,d =
∑
α∈Npd

P 2
α =

1

λ

∑
α∈Npd

(Q∗α)2,

is (part of) the unique optimal solution of (4).

Proof :

General remarks. Observe that (4) is a convex optimization problem as we have∫
Rp
∑
α∈Npd

Qα(x)2dµ(x) =
∑
α∈Npd

qTαMd(µ)qα, which is strictly convex in {qα}α∈Npd . The
proof is based on KKT optimality conditions for Problem (4). We first prove that any optimal solution
should be of the form Q∗α =

√
λPα, α ∈ Npd, for some λ > 0. Then we show that there exists

a solution of the KKT system which has this form and finally that this solution is unique. The
conclusion of Theorem 1 will then follow from Lemma 1. We begin with some notations that we will
use throughout the proof.

Notation. Let {eα}α∈Npd denote the canonical basis of Rs(d) indexed by α ∈ Npd according to ≤gl
order. The orthonormal polynomials {Pα}α∈Npd (with respect to µ) are uniquely defined. For each

α ∈ Npd, we write pα = (pαβ)β∈Npd
∈ Rs(d) the coefficients of the polynomial Pα. By construction

of Pα, for every α, β ∈ Npd, α <gl β, pαβ = 0 and pαα > 0.
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Optimality conditions Problem (4) is strictly feasible, we can choose any θ such that
∑
α θα = 0

and for every α ∈ Npd, set Qα := κPα for some sufficiently large κ > 0. Therefore the KKT
optimality conditions are necessary and sufficient for global optimality. We introduce Lagrange
multipliers for problem (4): λα ≥ 0 for each inequality constraint, λαβ ∈ R for each linear equality
constraint on polynomials with α <gl β and λ ∈ R for the last linear equality constraint on {θα}α∈Npd .
The KKT optimality conditions for problem (4) can be written as follows

λα ≥ 0, eTαq
∗
α ≥ exp(θ∗α), α ∈ Npd, (9)

eTβq
∗
α = 0, α, β ∈ Npd, α <gl β, (10)∑

α∈Npd

θ∗α = 0, (11)

Md(µ)q∗α = λαeα +
∑
α<glβ

λαβ eβ , α ∈ Npd, (12)

λα exp(θ∗α) = λαe
T
αq
∗
α = λ, α ∈ Npd, (13)

for optimal variables θ∗α, polynomials Q∗α with coefficients q∗α ∈ Rs(d), for each α ∈ Npd. We next
show that the part (Q∗α)α∈Npd of an optimal solution is necessarily a family of orthogonal polynomials.

Any optimal solution has the form Q∗α =
√
λPα, α ∈ Npd, for some λ > 0. Since KKT

conditions are necessary and sufficient for optimality, we only focus on them. For each α 6= 0
and β <gl α, multiplying (12) by eβ , we obtain

〈
Xβ , Q∗α

〉
µ

=

∫
xβQ∗α(x) dµ(x) = eTβ Md(µ)q∗α = λα e

T
β eα +

∑
α<glγ

λαγ e
T
β eγ = 0. (14)

Similarly, multiplying (12) by q∗α yields for all α ∈ Npd,

〈Q∗α, Q∗α〉µ =

∫
Q∗α(x)2 dµ(x) = (q∗α)T Md(µ)q∗α = λα (q∗α)Teα = λ, (15)

where we have used (13) for the last identity. In particular, with α = 0, Q∗0(x) = q∗00 (≥ exp(θ∗0))
for all x and so

λ =

∫
Q∗0(x)2 dµ(x) = (q∗00)2

∫
dµ ≥ exp(2θ∗0),

which shows that λ > 0. Next, combining (14), (15) and the condition (10), we immediately deduce

〈
Q∗β , Q

∗
α

〉
µ

=

∫
Q∗β(x)Q∗α(x) dµ(x) =

{
λ if α = β

0 otherwise.
(16)

Finally, for every α ∈ Npd, multiplying (12) by eα yields

〈Xα, Q∗α〉µ =

∫
xαQ∗α(x) dµ(x) = eTαMd(µ)q∗α = λα > 0, α ∈ Npd. (17)

The last inequality follows from (13). Indeed, suppose λα = 0 for some α ∈ Npd, this would yield
λ = 0. Since we have shown that λ > 0, it must also hold that λα > 0 for all α. Combining relations
(10), (14), (16) and (17), we have shown that the {Q∗α}α∈Npd form a family of orthogonal polynomials
with respect to µ. In addition, by the uniqueness of the orthonormal basis {Pα}α∈Npd , it follows from

(16) that Q∗α =
√
λPα for every α ∈ Npd.

There exists a solution of this form. Recall that, for each α ∈ Npd, pα = (pαβ)β∈Npd
∈ Rs(d) is

the vector of coefficients of the polynomial Pα which satisfies by construction pαα > 0 and pαβ = 0
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for all β ∈ Npd, α <gl β. We use the following assignment for the primal and dual variables.

λ =

 ∏
α∈Npd

pαα


−2
s(d)

> 0 (18)

λα =
√
λeTαMd(µ)pα =

√
λ

pαα
> 0, α ∈ Npd

λαβ =
√
λeTβMd(µ)pα, α, β ∈ Npd, α <gl β

q∗α =
√
λpα, θ∗α = log(

√
λpαα), α ∈ Npd.

Using orthonormality of the polynomials {Pα}α∈Npd , it can be check that the assignment (18) satisfies
KKT optimality conditions (9), (10), (11), (12) and (13). We have therefore constructed an optimal
solution of (4) with the desired form.

The optimal solution is unique. From what precedes any optimal solution of (4) is necessarily
such that Q∗α =

√
λPα, for every α ∈ Nn, for some λ > 0. In addition the optimal value of (4) is

s(d)λ. Suppose that there exists two different optimal solutions (Qα, θα)α∈Npd and (Q′α, θ
′
α)α∈Npd

with associated dual variables (λ, λα, λαβ)α,β∈Npd and (λ′, λ′α, λ
′
αβ)α,β∈Npd . Then necessarily λ = λ′,

Qα = Q′α =
√
λPα and λα, λ′α > 0 for all α ∈ Npd. But then from (13),

√
λpαα = exp(θα) =

exp(θ′α) and so θ′α = θα for every α ∈ Npd. Therefore the solution is unique and this concludes the
proof of Theorem 1. �

B.4 Proof of Theorem 2

Theorem 2 Let Assumption 1 hold and let x̄ ∈ Rp be fixed, arbitrary. Then

Qµ,d(x̄)−1 = min
P∈Rd[X]

{∫
P (x)2 dµ : P (x̄) = 1

}
. (7)

Proof :

Fix an arbitrary P ∈ Rd[X] and x̄ ∈ Rp. Assume that P (x̄) = 1. Letting for all α ∈ Npd,
aα = 〈P, Pα〉µ, by orthonormality, we have

P =
∑
α∈Npd

aαPα, (19)

〈P, P 〉µ =
∑
α∈Npd

a2α.

The assumption that P (x̄) = 1 can be used in conjonction with Cauchy-Schwartz inequality to obtain

1 = P (x̄) (20)

=
∑
α∈Npd

aαPα(x̄)

≤

∑
α∈Npd

a2α

∑
α∈Npd

Pα(x̄)2


= 〈P, P 〉µQµ,d(x̄),

where the last equality comes from the definition of 〈·, ·〉µ and Lemma 2. There is equality in
equation 20 if and only if aα = Pα(x̄)/Qµ,d(x̄) which always leads to P (x̄) = 1. This shows that
the infimum is attained and concludes the proof. �
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C Details about the preparation of the datasets

We reproduce the exact same manipulations as in the references. We downloaded the kddcup.data
from the following repository

https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/

This file contains 4898431 instances of network connections described by 42 features including the
type of connection (attack or normal). We filter the records by keeping only those for which the
variable logged in is positive. We kept the labels (type of connection) together with the four most
important features: service, duration, src_bytes, dst_bytes. We applied to the three last variables
(numerical) the function log(·+0.1)/10. We build four datasets with the four most frequent instances
of service and group all the remaining records in the dataset others to get our five datasets.

D Illustration of affine invariance

The following Figure illustrate the affine invariance property described in Lemma 1.
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Figure 4: Empirical measure and level sets of Qµ,d for three configurations of the same cloud of
points (d = 4). The cloud in the middle is rotation of the original one and the cloud on the right is the
same after centering and scaling. We observe that the level sets follow the same transformations.
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