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Abstract 

Background:   The treatment of Plasmodium vivax infections requires the use of primaquine, which can lead to 
severe haemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. However, most of the Latin 
American countries, which are still endemic for vivax malaria, lack information on the distribution of G6PD deficiency 
(G6PDd). No survey has been performed so far in French Guiana. Herein, 80 individuals of the French Guianan Noir 
Marron population were scrutinized for red cell surface antigens of six blood group systems (ABO, Rh, Kell, Kidd, Duffy 
and MNS) and G6PD genetic polymorphisms. First, the sub-Saharan origin of the red cell phenotypes was assessed in 
relation with the literature. Then, given that the main sub-Saharan G6PDd variants are expected to be encountered, 
only the G6PD sequences of exons 4, 5, 6 and 9 were screened. This work aims at appraising the G6PD gene variation 
in this population, and thus, contributing to the G6PD piecemeal information in Latin America.

Results:  Ninety-seven percent (97 %) of the red cells are Fy(a− b−), either D+ C− E− c+ e+ or D+ C+ E− c+ e+ 
and 44 % exhibited the Fya−/Jkb−/S− combined phenotype. Noteworthy is the detection of the G6PD(Val68Met) 
variant characterized by c.202G > A transition, G6PD(Asn126Asp) variant characterized by c.376A>G transition and 
G6PD(Asp181Val) variant characterized by c.542A>T transversion of the G6PD gene in 22.5 % of the sample, character-
istic of the A−(202), A and Santamaria G6PDd variants, respectively.

Conclusions:  French Guianan Noir Marron population represents a pool of Rh-D antigen positive, Duffy-negative and 
G6PD-deficient erythrocytes, the latter accounting for one in every eight persons. The present study provides the first 
community-based estimation of the frequency of G6PDd polymorphisms in French Guiana. These results contribute 
to the G6PD genetic background information puzzle in Latin America.

Keywords:  Red cell blood group systems, Glucose-6-phosphate dehydrogenase deficiency, French Guiana, Noir 
Marron community, Plasmodium vivax, Primaquine
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Background
Glucose-6-phosphate dehydrogenase deficiency (G6PDd), 
an X-linked, hereditary and recessive genetic trait, is the 
most common genetic enzymopathy in humans. Glu-
cose-6-phosphate dehydrogenase (G6PD) is an enzyme 
catalyzing the first reaction in the pentose phosphate 

pathway, providing reducing power to all cells in the form 
of NADPH (nicotinamide adenine dinucleotide phos-
phate). In red cells, defense against oxidative damage 
relies only on NADPH generated by G6PD activity [1]. 
More than 200 variants and 186 substitutions in the G6PD 
gene have been described [2, 3]. Though mostly asymp-
tomatic, G6PDd may cause red cell membrane damage, 
haemoglobin crystals, haemolytic anaemia, neonatal jaun-
dice, or haemoglobinuria in cases of induced oxidative 
stress from nutrition and drugs. Importantly, primaquine 
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is a major anti-malarial treatment. Individuals who have 
inherited the G6PDd phenotype can exhibit sensitivity 
to primaquine, which leads to symptoms that range from 
moderate to lethal depending on the deficiency class [4, 
5], and as such are designated primaquine-sensitive. 
Clinical relapse due the release of liver hypnozoites is the 
major characteristic of Plasmodium vivax and amino-
8-quinoline-based primaquine and tafenoquine remain 
the only effective drugs against this parasitic form to 
date [1, 6]. The concordance of the geographical distribu-
tion of G6PDd variants with lower levels of parasitaemia 
and reduced risk of infection led to the hypothesis that 
this enzymatic feature is selectively advantageous in past 
and present malarial endemic areas [7–10]. Though the 
exact mechanisms remain elusive, G6PDd would favour 
early phagocytosis of parasitized red blood cells at a stage 
where the parasite has not yet multiplied [11].

Recently, reviews mapped the state-of-the-art of the 
G6PD variation evidenced at the enzymatic and molec-
ular levels [12–14]. G6PDd seems restricted to Africa, 
Southern Europe, Asia, and Pacific islands and virtually 
absent in the Native American populations of the Amer-
icas [12, 15]. In Latin America, though drug-induced 
haemolysis represents most of the acute anaemia, only 
minimal data is available to accurately address the G6PD 
geographical distribution among non-urban populations 
[13]. Most Latin American countries are endemic areas 
for malarial parasites and transmission vectors [16]. 
Even if Mexico, Haiti, and Costa Rica would have elimi-
nated malaria, other countries are still in control phase 
and require the use of primaquine knowing the risk of 
haemolysis that may result in G6PD-deficient persons. 
In Latin America but French Guiana, primaquine is 
prescribed for every patient infected with P. vivax with-
out looking for G6PDd or ethnicity assignment [17]. 
In French Guiana, P. vivax has become the dominant 
malaria species with more than 60  % of attacks with a 
substantial increase of cases since mid-2001, mostly 
observed in children [18], Amerindian populations [19], 
gold panners, French armed forces [20], Hmong [21], 
and to a lesser extent, in the Noir Marron community 
[22]. Most of the malaria transmission occurs along the 
two frontier rivers. Along the middle Maroni River—
western border with Suriname—Plasmodium falciparum 
malaria incidence remains higher than P. vivax, particu-
larly in the Noir Marron territory. In contrast, P. vivax is 
more frequent in the upper reaches of the Maroni River 
where it infests the Wayana and Emerillon Amerindian 
populations [22]. Plasmodium vivax is also preponder-
ant along the eastern border with Brazil, Oyapock River, 
and in the eastern inland areas. Though part of former 
anthropological studies [23–25], G6PD genetic variation 

in French Guiana in relation with malaria risk has never 
been carried out so far [22]. This lack of information 
prevents implementation of efficient programmes for the 
control or elimination of P. vivax malaria in Latin Amer-
ica [13].

The present study aims to partially tackle this issue with 
original data from a well-defined population from French 
Guiana assumed to carry sub-Saharan genetic polymor-
phisms. For this aim, the Noir Marron community which 
has arisen from the merger of slaves who escaped from 
Dutch plantations [26], was investigated. First, validation 
of the sub-Saharan origin of the red cells was allowed by 
the frequencies of antigen phenotypes of six membrane 
genetic systems linked with a sub-Saharan ancestry. At 
the same time, knowledge of these main red cell antigen 
frequencies would be crucial for blood product require-
ments and minimum stock levels to ensure blood trans-
fusion compatible with recipient blood characteristics. 
Then the main sub-Saharan G6PDd variants indexed in 
[2] and assumed to be encountered were screened by 
molecular biology.

Methods
Sample collection
Study protocol, sample collection and de-identification 
were approved by the Comité de Protection des Per-
sonnes (C.P.P.) Sud-Ouest et Outre-Mer I, file no 1-11-
39, ID-RCB no 2011-A00996-35. After approval of the 
informed consent, venous blood samples were collected 
in EDTA tubes from 80 Aluku, Ndjuka, Saramaka and 
Paramaka living in Papaichton, Loka, Boniville and Mari-
pasoula, along the Maroni River. Along with sampling, 
data relative to sex, age, state of health, place of residence 
and population memberships have been recorded.

Surface antigen typing
Red cell antigens of the ABO, Rh, Kell, Kidd, Duffy, and 
MNS blood group systems were investigated. Due to the 
presence of natural ABO antibodies and strong immuno-
genicity of the Rh-D antigen, the ABO–D phenotype was 
typed first, followed by a second level of identification 
of the Rh–Kell antigenic profiles, ending with extended 
Duffy, Kidd and Ss (MNS) phenotypes.

Typing was carried out with Diagast (Loos, France) 
reagents anti-A (Clone 9113D10), -B (Clone 9621A8), 
-AB (Clones 9113D10  +  152D12), -D (Clones P3  × 
61  +  P3  ×  21223B10  +  P3  ×  290  +  P3  ×  35), -Fya, 
-S, and -s; Eurobio (France) reagents anti-C (Clones 
MS273), -c (Clone MS35), -E (Clones MS12 +  MS260), 
-e (MS62 +  MS69) and -K (Clone AEK4), and Bio-Rad 
(Marnes-la-Coquette, France) reagents anti-Fyb, -Jka, 
and -Jkb.
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DNA extraction
Genomic DNA was extracted from 200  µl of whole 
blood using a Blood DNA mini kit (QIAamp, Qiagen, 
Courtaboeuf, France) according to the manufacturer’s 
instructions.

Primer design
In order to confirm the sub-Saharan origin of the sam-
ples, the red cell antigen phenotypes were confronted 
with the frequencies encountered in sub-Saharan popu-
lations [12, 15]. Previous surveys revealed Central and 
West Africa as the putative origins of the Noir Marron, 
as well as no admixture in this population [26, 27]. This 
assumption allowed the expectation in the samples of the 
main sub-Saharan G6PDd variants that would have been 
brought during Atlantic Slave Trade [2]. Hence, G6PD 
exons 4, 5, 6 and 9 coding for the main sub-Saharan 
G6PDd variants were sequenced. Protocol is also appro-
priate for main variants encountered in South East Asia 
[28], the geographical origin of another French Guianan 
population with plausible G6PDd, the Hmong [29]. Prim-
ers are listed in Table 1 and were designed according to 
works of [30, 31], the Primer3 [32] and OligoPerfect™ 
Designer (Life Technologies, Carlsbad, CA, USA) tools.

PCR amplification
Exons were independently amplified from 50  ng of 
genomic DNA in a reaction mix containing 1 X buffer, 
1.5  M of magnesium ions, 0.05  mM of each dNTP, 
0.16  μM of each primer and 1 unity (U) of Taq poly-
merase (Invitrogen™, Cergy Pontoise, France). Ampli-
fications were carried out in a 96-Well Veriti® (Applied 
Biosystem®, Courtaboeuf, France) or DNAEngine Peltier 
thermal cyclers (Bio-RAD, Marnes-la-Coquette, France). 
Temperature profile was 96 °C for 5 min (min.), followed 
by 30 cycles of 96 °C for 1 min., 60 °C for 1 min., 72 °C for 
1 min., and a final extension step of 7 min. at 72 °C. PCR 
products were controlled through electrophoresis on 2 % 
agarose gels stained with ethidium bromide.

PCR purification and sequence reaction
Five µl of PCR products were purified in an enzymatic 
mix of 1  U of Thermosensitive Alkaline Phosphatase 

combined with 10 U of Exonuclease 1 (Euromedex). Puri-
fication steps were 15 min. at 37 °C ending with 15 min. 
at 85  °C in a Veriti™ 96-Well thermal cycler (Applied 
Biosystems).

After purification, forward fragments of exons 4, 5 and 
6, and reverse strand of exon 9 were sequenced using 
primers listed in Table  1 and the BigDye™ terminator 
Cycle Sequencing Ready Reaction v1.1 (Applied Biosys-
tem®, Courtaboeuf, France) following manufacturer’s 
protocol. After a Sephadex™ gel filtration, strands were 
segregated by capillary electrophoresis in a ABI PRISM 
3130 genetic analyzer (Applied Biosystem®, Courta-
boeuf, France) using POP-4® polymer and 36-cm length 
capillary.

Sequence alignment and allele estimation
Sequences were aligned to the G6PD reference sequence 
(accession number X55448.1) using CodonCode Aligner 
3.5.3 (CodonCode Corporation, www.codoncode.com) 
and BioEdit 7.2.5 [33] following caution highlighted in 
[34] for exons 4 and 5. In order to assess heteroplasmy, 
the signature of heterozygous individuals, both forward 
and reverse DNA strand was sequenced and electro-
phoregrams proofread. G6PD allele frequencies were cal-
culated by direct counting.

Ethics approval and consent to participate
Study protocol, sample collection and de-identification 
were approved by the Comité de Protection des Person-
nes (C.P.P.) Sud-Ouest et Outre-Mer I, file no 1-11-39, 
ID-RCB no 2011-A00996-35. The veinous blood sam-
ples were collected after approval of the informed con-
sent of the 80 individuals Aluku, Ndjuka, Saramaka and 
Paramaka.

Results
Table  2 presents the occurrence of red cell phenotypes. 
Fifty-nine samples were O type and all were D+ but one. 
The most frequent Rh phenotype was D+ C− E− c+ e+ 
(49 cases out of 80) followed by D+ C+ E− c+ e+ (19 
cases). The only D− phenotype was D− C− E− c+ e+. 
All samples carried the Cellano phenotype (K− k+) of the 
Kell system, 90 % the Jka antigen and all samples but one 

Table 1  Primer sequences used in the present study

Primers in italic were used in the sequence reaction

G6PD exon Forward Reverse References Amplicon size (bp)

4 5′-CTGCCCGCACTGGTTACA-3′ 5′-AGGAGAGGAGGAGAGCATCC-3′ [2] 259

5 5′-CTGTCTGTGTGTCTGTCTGTC-3′ 5′-GAGGGCAACGGCAAGCCTT-3′ [2] 272

6 5′-GTCTGAATGATGCAGCTGTGA-3′ 5′-CCAGGTGAGGCTCCTGAGTA-3′ [30], Present study 296

9 5′-TCTCCCTTGGCTTTCTCTCA-3′ 5′-GTGCGTGAGTGTCTCAGTGG-3′ Present study 295

http://www.codoncode.com
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(98.8 %) were positive for the s antigen. As far as Duffy is 
concerned, 98.1 % were Fy(a− b−) and three Duffy posi-
tive individuals were found. Taken together, the Fya−/
Jkb−/S− red cells account for 44 % of the sample.

Table  3 presents the observed G6PD genotypes and 
Table  4 the inferred G6PD allele frequencies. Non-
mutated sequences represent 77.5  % of the sample 
studied. Variants account for 22.5  % of the chromo-
somes sequenced. The most frequent G6PDd variants 
are A and A−(202) (10.9  %). One case of Santamaria 
(G6PD(A376G) transition, G6PD(Asp181Val) variant 
characterized by c.542A>T transversion) has been 
detected. Full enzymatic-deficient individuals which 
include males and homozygous females, represent 
12.5  % of our sample. Neither the G6PD(Ser188Phe) 
Mediterranean variant characterized by c.563C>T tran-
sition nor the G6PD(Leu323Pro) Betica variant char-
acterized by c.968T>C transition was detected. None 
of the three Duffy-positive samples were carrier of a 
G6PDd variant.

Discussion
The worldwide geographical distribution of membrane, 
haemoglobin and enzymatic red cell phenotypes is 
closely associated with P. falciparum and P. vivax [6, 8, 

9, 12, 22, 35, 36]. In the New World, Latin America is 
endemic to P. vivax and P. falciparum and seven mos-
quito vector species have been identified [16, 37]. While 
all Native American populations may lack G6PDd, the 
other Latin American populations may possess G6PD 
mutations due to their non-Amerindian ancestry. This is 
especially the case of the Afro-descendant populations of 
the Amazonian basin whose sub-Saharan ancestry could 
reach 100 % [38–40].

Appraisal of parasitic loads, vector density and genetic 
background of the host is crucial to measure the level of 
transmission and the proportion of primaquine-sensitive 
individuals in malarial endemic areas. Although anti-
malarial cure is unsafe taken with G6PDd, workers have 
recently pointed out the paucity of detailed information 
in Latin America [13]. In addition, no survey has been 
carried out so far in French Guiana [22], a level-4 G6PDd 
risk area [41]. In order to supply with G6PD information 
in Latin America, herein is presented the first commu-
nity-based estimation of the frequency of G6PDd poly-
morphims in French Guiana.

Notable is the prevalence of the D+ C− E− c+ e+, 
Fy(a− b−), and the combined Fya−/Jkb−/S− (44  %) 
phenotypes. These are usually encountered in western 
sub-Saharan populations where frequencies reach 30  % 
for Fya−/Jkb−/S−, 70  % for D+ C− E− c+ e+, and 

Table 2  Phenotype distribution for  six red cell blood 
group systems in the sample under study

System Phenotype N

ABO A 6

AB 4

B 10

O 59

Rh D+ C+ E− c+ e+ 19

D+ C+ E+ c+ e+ 2

D+ C− E+ c+ e− 1

D+ C− E+ c+ e+ 7

D+ C− E− c− e+ 1

D+ C− E− c+ e+ 49

D− C− E− c+ e+ 1

Kell K− k+ 80

K+ k− 0

Kidd Jk(a+ b−) 46

Jk(a+ b+) 26

Jk(a− b+) 8

Duffy Fy(a+ b−) 2

Fy(a− b+) 1

Fy(a− b−) 77

(MNS) Ss S+ s− 1

S+ s+ 10

S− s+ 69

Table 3  Number of  G6PD genotypes in  the Noir Marron 
sampled for this study

Male Female

Genotype Hemizygous Heterozygous Homozygous

B 15 – –

B/B – – 38

A/B – 4 –

A 6 – –

A/A – – 2

A−(202) 1 – –

A−(202)/B – 11 –

A−(202)/A – 1 –

A−(202)/A−(202) – – 1

Santamaria/B 1

Table 4  G6PD allele frequency in the sample under study

cDNA nucleotide  
substitution

Variant name Class Allele  
frequency

– B 0.775

c. 376A>G A IV 0.109

c. 202G>A, c. 376A>G A−(202) III 0.109

c. 376A>G, c. 542A>T Santamaria II 0.007
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up to 100 % for Fy(a− b−) [42, 43]. The present survey 
also revealed occurrence of G6PD A and A−(202) vari-
ants and one case of Santamaria; a variant fortuitously 
found in this study given its frequency worldwide [44–
46]. Founder effect, the mechanism by which a popula-
tion rose from a small number of founders and thus of 
alleles, would have thus concentrated sub-Saharan red 
cell genetic components including membrane antigen 
and G6PD genetic polymorphisms in the Suriname and 
Guianese Noir Marron [26].

Fy(a− b−) individuals are putatively insensitive to P. 
vivax infestation, so unconcerned by primaquine treat-
ment. Nevertheless, several cases of Fy(a− b−) individu-
als infested by P. vivax have been reported in Malagasy, 
Africa, and more importantly in Brazil [47–50], making 
Duffy-negative individuals the novel panel of individuals 
suitable for primaquine treatment. Hence, estimation of 
G6PDd may be extended to a priori unconcerned popula-
tions such as the ones encountered in Latin America with 
West African genetic ancestry.

Capture of the human red cell genetic variation pro-
vides crucial information for transfusion safety. Trans-
fusion risks are firstly embodied by the ABO-Rh-Kell 
phenotype variation, further by Duffy, Kidd and Ss phe-
notype depending on the patient, pathology and risk of 
alloimmunization. The present sample showed high val-
ues of O type, Rh-D antigen positive and Duffy-negative 
cases (alternatively said, positive for anti-FY antibodies). 
In addition, it has been reported that G6PDd reduces the 
efficacy of exchange transfusion in neonates and children 
recipients [51] with hyperkalaemia from the haemolysis 
of transfused blood cells and hyperbilirubinaemia due 
to the inefficient discard of the bilirubin excess by the 
immature liver, leading in one rare case to dark urine 
and acute intravascular haemolysis [52]. In patients with 
sickle cell disease who need repeated transfusions, donor 
blood G6PDd may also induce haemolysis [51]. Hence, 
studies recommended a routine screening for G6PDd 
for these at-risk patients [52], which may be discussed in 
countries where the prevalence of this deficiency is high 
like in Mediterranean basin and African ancestry popula-
tions. Describing the polymorphism of G6PDd may help 
to choose which populations have to be screened and 
what kind of polymorphism have to be detected. To date, 
in the context where French Guianans could represent 
a panel of G6PD-deficient donors, the small incidence 
of the Santamaria variant is not of primary importance 
given that blood donation is blocked by viral seropreva-
lence [53–56].

Enzymatic variation could usually be identified by non-
molecular methods [57, 58]. Herein, the main sub-Saha-
ran G6PD variants in a population from French Guiana 
were investigated through the direct screening of four 

G6PD exon sequences. French Guiana is also inhabited 
by western European populations in urban centres and 
a SouthEast asian community—the Hmong—in Cacao 
and Javouhey [29] for which level of G6PDd remains 
unknown. Besides exons 4 and 5, the PCR also tar-
geted exons 6 and 9 where the Mediterranean, Mahidol, 
Rehevot and Viangchan substitutions occur [28]. Thus, 
the protocol performed may be practicable to the other 
communities of the area.

Conclusions
Due to the scarcity of the community-based studies led 
so far, screening of level and nature of G6PDd is a main 
challenge in Latin America. The present study aimed to 
fill the blank with original data from a sub-Saharan popu-
lation living on the border of Suriname and French Gui-
ana. The sub-Saharan origin of the studied red cells was 
confirmed from six blood group systems. Three G6PD 
polymorphisms (G6PD(Val68Met) variant characterized 
by c.202G>A transition, G6PD(Asn126Asp) variant char-
acterized by c.376A>G transition, and G6PD(Asp181Val) 
variant characterized by c.542A>T transversion) defin-
ing three G6PDd variants (A−(202), A and Santamaria) 
were detected in 22.5 % of the sample. The present survey 
pointed out that French Guianan Noir Marrons represent 
a reservoir of Rh-D antigen positive, Duffy-negative and 
primaquine-sensitive phenotypes, the latter accounting 
for one in every eight persons.
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