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For abstract linear systems in Hilbert spaces we revisit the problems of exact controllability and complete stabilizability (stabilizability with an arbitrary decay rate), the latter property being related to exact null controllability. We consider also the case when the feedback is not bounded. We obtain a characterization of complete stabilizability for neutral type systems. Conditions of exact null controllability for neutral type systems are discussed. By duality, we obtain a result about continuous final observability. Illustrative examples are given.

Introduction

Consider the controlled neutral type system ż(t) = A -1 ż(t -1) + Lz t (•) + Bu(t),

where

Lz t (•) = 0 -1
[A 2 (θ) ż(t + θ) + A 3 (θ)z(t + θ)] dθ, with z(t) ∈ R n , u(t) ∈ R m , and the matrices A -1 , A 2 , A 3 and B are of appropriate dimensions. The elements of A 2 and A 3 take values in L 2 (-1, 0). System (1) may be represented in a Hilbert space by the equation ẋ(t) = Ax(t) + Bu(t),

where Bu = (Bu, 0) and A is the infinitesimal generator of a C 0 -semigroup e At given in the product space

M 2 (-1, 0; R n ) def = R n × L 2 (-1, 0; R n ),
1 noted shortly M 2 , and defined by

Ax(t) = Lz t (•) dzt(θ) dθ , x(t) = v(t) z t (•) ,
with the domain D(A) given by

D(A) = (v, ϕ) : ϕ(•) ∈ H 1 , v = ϕ(0) -A -1 ϕ(-1)
.

Our purpose is to analyze exact null controllability of delay systems of neutral type [START_REF] Curtain | Well-posedness, stabilizability, and admissibility for Pritchard-Salamon systems[END_REF], to show the relation with the complete stabilizability (exponential stabilizability with an arbitrary decay rate) of the system and, by duality, to give conditions of the exact final observability of such a system with an output y(t) = Cz(t) or y(t) = Cz(t -1), where y(t) takes values in R p .

The problem of exact controllability for systems of neutral type has been widely investigated. References and important results for system (1) can be found in the work of [START_REF] Rabah | The analysis of exact controllability of neutral-type systems by the moment problem approach[END_REF]. A simplification and improvement of some details of the proofs are given in [START_REF] Rabah | On exact controllability of neutral timedelay systems[END_REF]. The duality with exact (continuous) observability is analyzed in [START_REF] Rabah | Exact observability and controllability for linear neutral type systems[END_REF]. For the stabilizability problem, after the first important works [START_REF] Pandolfi | Stabilization of neutral functional differential equations[END_REF][START_REF] Daniel | On stabilization by state feedback for neutral differential equations[END_REF], there were many results on the stabilizability of delay systems (see, for example, [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF][START_REF] Michiels | Stability and stabilization of time-delay systems. An eigenvalue-based approach[END_REF] and references therein) but neutral type systems have been less investigated [START_REF] Pritchard | The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators[END_REF][START_REF] Salamon | Control and observation of neutral systems[END_REF]. In [START_REF] Hale | Strong stabilization of neutral functional differential equations[END_REF] the main scheme of stabilizing neutral type systems and the robustness, with respect to the delays, of the stabilizing feedback were analyzed. The problem of asymptotic nonexponential stabilizability, which appears only for neutral type systems, was treated in [START_REF] Rabah | On strong regular stabilizability for linear neutral type systems[END_REF][START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF], such problem occurs for some systems governed by partial differential equations (see for example [START_REF] Grigory | Controlling a non-homogeneous Timoshenko beam with the aid of the torque[END_REF]). This paper is organized as follows. In Section 2 we give results on the relation between exact null controllability and complete stabilizability for abstract systems in Hilbert spaces. In Section 3, we give necessary conditions of exact null controllability and we characterize complete stabilizability for neutral type systems. Then we formulate a conjecture on the equivalence between exact null controllability and complete stabilizability for neutral type systems. Section 4 is concerned with the dual notion of observability: final continuous observability.

Preliminary results

In this section we consider the abstract system

ẋ = Ax + Bu (2) 
where the linear operator A, with domain D(A), is the infinitesimal generator of a C 0 -semigroup e At in the Hilbert space X and B is a linear operator, which may be unbounded but admissible (see, for example, [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]), from the Hilbert space U to X.

Bounded input and feedback

Let us first suppose that the operator B is bounded. The solution of the system (2) with the initial condition x 0 and the control u(t) ∈ L loc 2 (R + ; U ) is given by

x(t) = e At x 0 + t 0 e A(t-τ ) Bu(τ )dτ.
The following notions are well known (see for example [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF]).

Definition 2.1 System (2) is said to be exactly controllable at time T if for all x 0 , x 1 ∈ X, there is a control u(t) ∈ L 2 (0, T ; U ) such that the corresponding solution of the system verifies x(T ) = x 1 . The system is said to be exactly null controllable if in the preceding definition x 1 = 0.

There are several results about exact (null) controllability. For example, it is well known that if B is compact, particularly if U is finite dimensional, then there is no exact controllability (first proved in [START_REF] Kuperman | On the question of controllability in infinitedimensional spaces[END_REF], see also [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF] and references therein). Another condition of exact controllability, in the case of the bounded operator B, is that for all t ≥ 0, the operator e At is onto (surjective) [START_REF] Louis | On exact controllability in Hilbert spaces[END_REF].

In what follows, we need the following criteria of exact (null) controllability [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF].

Theorem 2.2 System (2) is exactly null controllable at time T if and only if

∃δ > 0 : ∀x ∈ X, T 0 B * e A * t x 2 dt ≥ δ 2 e A * T x 2 .
For the condition of exact controllability, the operator e A * T must be replaced by the identity I in the right part of the inequality.

The characterization of exact null controllability is due to a result on range inclusion in Hilbert spaces [START_REF] Douglas | On majorization, factorization, and range inclusion of operators on Hilbert space[END_REF]. We also need some notions of stabilizability. 2) is said to be exponentially stabilizable if there is a linear bounded feedback operator F such that the semigroup e (A+BF )t is exponentially stable: there is a ω > 0 such that e (A+BF )t ≤ M ω e -ωt , M ω ≥ 1.

Definition 2.3 System (
(3

)
The system is said to be completely stabilizable (or stabilizable with an arbitrary decay rate) if for all ω > 0 there is a linear bounded feedback F ω such that (3) holds.

The relation between exact controllability and stabilizability is as follows: exact null controllability implies exponential stabilizability. If e At is a group, complete stabilizability implies exact controllability as shown in [START_REF] Zabczyk | Mathematical control theory: an introduction. Systems & Control: Foundations & Applications[END_REF]Theorem 3.4,p. 229]. Note that the original proof was obtained by [START_REF] Zabczyk | Remarks on the algebraic Riccati equation in Hilbert space[END_REF] which extends the result obtained by [START_REF] Megan | On the stabilizability and controllability of linear dissipative systems in Hilbert space[END_REF]. The same result was proved in [START_REF] Rabah | On Exact Controllability and Complete Stabilizability for Linear Systems in Hilbert Spaces[END_REF][START_REF] Zeng | On exact controllability and complete stabilizability for linear systems[END_REF] for the case of a semigroup e At provided that the operators e At are surjective for all t ≥ 0.

We were tempted to extend this latter result to exact null controllability, possibly under some additional conditions. However the situation is not so simple. We have the following implication, but the converse is not true. Theorem 2.4 If system (2) is exactly null controllable, then it is completely stabilizable by a bounded feedback F.

Proof. Suppose that the system is exactly null controllable at time T . Then

∀x 0 ∈ X, ∃u(•) ∈ L 2 (0, T ; U ) : x(T, x 0 , u(•)) = 0,
where x(t) = x(t, x 0 , u(•)) is the solution with the initial condition x 0 and the control u(t):

x(t, x 0 , u(•)) = e At x 0 + t 0 e A(t-τ ) Bu(τ )dτ.
Then for every x 0 ∈ X, there exists u(

•) ∈ L 2 (0, ∞; U ) such that +∞ 0 x(t) 2 + u(t) 2 dt < ∞.
This means that the system is exponentially stabilizable [START_REF] Zabczyk | Mathematical control theory: an introduction. Systems & Control: Foundations & Applications[END_REF]Th. 3.3,p. 227] :

∃F ω 0 ∈ L(U, X) : e (A+BFω 0 )t ≤ M ω 0 e -ω 0 t , ω 0 > 0.
On the other hand, the exact null controllability of system (2) is equivalent to the exact null controllability of the system ẋ = (A + ωI)x + Bu, ω > 0.

This means that for all ω > 0, for some µ ω > 0, there is

F ω ∈ L(U, X) such that e (A+BFω)t ≤ M µω e -(µω+ω)t ≤ M ω e -ωt .
In order to explain the fact that the converse is not true and that the situation is more complicated, we give examples of two systems without control, where the semigroups are exponentially stable with arbitrary decay rate, but where the states may or may not reach the null state in finite time. These examples can be found in [START_REF] Rhandi | Spectral theory for positive semigroups and applications[END_REF] in the spaces of continuous functions.

Example 1.

In the space L 2 (0, +∞), consider the semigroup

S(t)f (x) = e -t 2 2 -xt f (x + t), t ≥ 0, x ≥ 0.
It is not difficult to see that for this semigroup, for all ω > 0, there is a constant M ω ≥ 1 such that S(t) ≤ M ω e -ωt . We have also σ(S(t)) = {0} and then the spectrum of the infinitesimal generator is empty. On the other hand, there are initial conditions f such that S(t)f = 0 for any t ≥ 0.

Example 2.

In the space L 2 (0, 1), consider the semigroup

S(t)f (x) = f (x + t) 0 ≤ t + x ≤ 1, 0 t + x > 1.
It is not difficult to see that for this semigroup, for all ω > 0, there is a constant M ω ≥ 1 such that S(t) ≤ M ω e -ωt . We have also σ(S(t)) = {0} and then the spectrum of the infinitesimal generator is empty. But, for any initial function f ∈ L 2 (0, 1), we have S(t)f (x) = 0 for t > 2. This means that S(t) = 0, for all t > 2. Then, for any control operator B, the corresponding system is exactly null controllable at time T > 2 with the trivial control u = 0.

Unbounded input and feedback operators

For some control systems, the input operator B may not be bounded and it is very restrictive to assume that the feedback operator F is bounded. For a general theory on systems with unbounded control and observation we refer to the paper [START_REF] Salamon | Infinite dimensional linear systems with unbounded control and observation: a functional analytical approach[END_REF]. For the subclass of interest, which includes linear neutral type systems we refer to [START_REF] Pritchard | The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators[END_REF] and [START_REF] Curtain | Well-posedness, stabilizability, and admissibility for Pritchard-Salamon systems[END_REF][START_REF] Guo | Well-posedness and admissible stabilizability for Pritchard-Salamon systems[END_REF]).

As our final goal is to analyze exact null controllability and complete stabilizability for neutral type systems, we will now consider a wider context of systems with unbounded input and output operators. However, the situation is much more complicated, even if some extension may be considered.

Let X 1 be D(A) endowed with the graph norm noted x 1 and X -1 be the completion of the space X with respect to the resolvent norm

x -1 = (λI -A) -1 x X , λ ∈ ρ(A).
We have the following relation

X 1 ⊂ X ⊂ X -1 ,
with continuous dense injections.

Definition 2.5 Let B be a linear operator, bounded from the Hilbert space U to X. We say that B is an admissible input operator for the semigroup e At if there exists t 1 such that

t 1 0 e A(t 1 -τ ) Bu(τ )dτ ∈ X 1 ,
and for some β > 0

t 1 0 e A(t 1 -τ ) Bu(τ )dτ X 1 ≤ β u L 2 (0,t 1 ) .
Definition 2.6 Assume that operator F is a linear operator, bounded from X 1 to the Hilbert space Y . We say that it is an admissible output operator for the semigroup e At if there exists t 1 > 0 such that for some α > 0

Fe A(t 1 -τ ) x L 2 (0,t 1 ) ≤ α x X , x ∈ X 1 .
Admissibility for some t 1 implies admissibility for all t > 0 (see for example [START_REF] Curtain | Well-posedness, stabilizability, and admissibility for Pritchard-Salamon systems[END_REF]). From the general result on the perturbation of semigroup from the Pritchard-Salamon class, we can deduce the following Cauchy formula for the perturbed semigroup e (A+BF )t , for admissible input and output operators B and F:

e (A+BF )t x = e At x + t 0 e A(t-τ ) BFe (A+BF )τ xdτ, (4) 
for all x ∈ X 1 . Moreover e (A+BF )t extends to a C 0 -semigroup on X. This means that Definition 2.3 may be reformulated for an admissible input operator and admissible output feedback.

Theorem 2.7 If the system (2) with an admissible operator B is completely stabilizable by an admissible A-bounded feedbacks then it is completely stabilizable by a bounded linear feedback F.

Proof. In [1, Theorem 5.5] (see also [START_REF] Guo | Well-posedness and admissible stabilizability for Pritchard-Salamon systems[END_REF]), in a more general situation, it is shown that system (2) with an admissible operator B is exponentially stabilizable by admissible feedback (in X 1 and X) if and only if it is exponentially stabilizable by a bounded feedback. Hence, we can suppose without loss of generality, that in (4) the operator F is bounded: F ∈ L(X, U ). This means that complete stabilizability by admissible feedbacks holds if and only if there is complete stabilizability by bounded feedbacks.

From this and Theorem 2.4 we can expect to extend the result of Theorem 2.4 for the case of unbounded control and feedback. But, Theorem 2.4 is based on [START_REF] Zabczyk | Mathematical control theory: an introduction. Systems & Control: Foundations & Applications[END_REF]Th. 3.3,227] which needs [START_REF] Zabczyk | Mathematical control theory: an introduction. Systems & Control: Foundations & Applications[END_REF]Th. 4.3,240] based on the assumption of exact null controllability given by Definition 2.1. For the case of unbounded control and feedback, we refer to [START_REF] Pritchard | The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators[END_REF]Theorem 3.3,page 132]. The condition H4 used in this theorem is guaranteed by exact null controllability in X -1 (each initial state from X -1 may be moved to zero by an L 2 control).

Corollary 2.8 If system (2) with admissible operator B is exactly null controllable in X -1 , then it is completely stabilizable by an admissible feedback and then by a bounded feedback F.

A technical Lemma

In the next section we need the following lemma. Lemma 2.9 Let A be a (n × n)-matrix and B a (n × m)-matrix. The following statements are equivalent.

1. For all λ ∈ C, λ = 0, rank λI -A B = n.

The following equality holds

rank B AB • • • A n-1 B = rank B AB • • • A n-1 B A n ,
and this is equivalent to the inclusion:

Im A n ⊂ Im B AB • • • A n-1 B .
Proof. Conditions 1 and 2 of the lemma may be formulated as follows.

1. If there is x = 0 such that A * x = λx and B * x = 0, then λ = 0.

2. If x = 0 is such that B * A * i x = 0, i ∈ N, then A * n x = 0.
Suppose that 1 holds. Let N be the subspace

N = {x : B * A * i x = 0, i ∈ N}.
It is easy to see that N is A * -invariant and contained in Ker B * . The spectrum of the restriction of A * to N is {0} by Condition 1. This means that A * is nilpotent in N . As the dimension of N is k ≤ n, we obtain A * n x = 0 for all x ∈ N . This gives 2.

Let us show the equivalence of these conditions. Suppose now that 2 holds. Let x = 0 be such that A * x = λx and B * x = 0. This implies that B * A * i x = λ i B * x = 0, for all i ∈ N. From Condition 2, we obtain that 0 = A * n x = λ n x.

As x = 0, this implies λ = 0. This gives that statement 1 is verified.

3 The neutral type system: controllability and stabilizability

In this section we analyze exact null controllability and the complete stabilizability (exponential stabilizability with an arbitrary decay rate) of delay system of neutral type [START_REF] Curtain | Well-posedness, stabilizability, and admissibility for Pritchard-Salamon systems[END_REF] and investigate the relation between the two notions. By duality, we give conditions of the exact final observability of such system with outputs

y(t) = Cz(t) or y(t) = Cz(t -1),
where y(t) takes values in R p . The relation between exact controllability and exponential stabilizability for linear neutral type systems may be found in several papers (see, for example [START_REF] Salamon | Control and observation of neutral systems[END_REF][START_REF] Ito | A linear quadratic optimal control for neutral systems[END_REF][START_REF] Daniel | On stabilization by state feedback for neutral differential equations[END_REF][START_REF] Dusser | On exponential stabilizability of linear neutral systems[END_REF] and references therein).

For the analysis of stabilizability, we need the structure of the spectrum of the state operator A of system (1) and the condition of the growth of semigroup e At . Theorem 3.1 [START_REF] Rabah | Stability analysis of neutral type systems in Hilbert space[END_REF] Let ∆ A be the matrix:

∆ A (λ) = λI -λe -λ A -1 - 0 -1 λe λs A 2 (s) + e λs A 3 (s) ds.
The spectrum of A, noted σ(A), consists of eigenvalues only which are the roots of the equation det ∆ A (λ) = 0. The corresponding eigenvectors of A are of the form

v -e -λ A -1 v e λθ v , v ∈ Ker ∆ A (λ).
The spectrum of A contains a non empty set of point of the form

{ln |µ| + i(arg µ + 2πk) + O(1/k), k ∈ Z},
where µ is a non-zero eigenvalue of the matrix A -1 .

The spectrum is countable and the semigroup e At verifies the spectrum growth assumption (see, for example, [START_REF] Hale | Introduction to functional-differential equations[END_REF]): ∀ω > ω 0 = sup Re σ(A), ∃M ω : e At ≤ M ω e ωt . Definition 3.2 System (1) is exactly null controllable if for some T > 0 and for all

x 0 ∈ M 2 , there is a control u(•) ∈ L 2 (0, T ; R m ) such that e At x 0 + T 0 e A(T -τ ) Bu(τ )dτ = 0,
this corresponds to the concept of complete controllability given first by N. N. Krasovskiǐ for retarded systems.

Let R T be the linear operator defined by

R T u(•) = T 0 e A(T -τ ) Bu(τ )dτ, u(•) ∈ L 2 (0, T ; R m ).
The operator R T is bounded from L 2 (0, T ; R m ) to X. Moreover it takes values in D(A) and is bounded from L 2 (0, T ; R m ) to X 1 (see [START_REF] Ito | A linear quadratic optimal control for neutral systems[END_REF]Corollary 2.7] and [START_REF] Rabah | The analysis of exact controllability of neutral-type systems by the moment problem approach[END_REF] for our system).

The exact null controllability may be formulated by the inclusion

Im e AT ⊂ Im R T ,
where Im e AT and Im R T are images of the operators e AT and R T . From the well-known characterization of range inclusion in Hilbert spaces [START_REF] Douglas | On majorization, factorization, and range inclusion of operators on Hilbert space[END_REF] we can obtain the following proposition, which is an extension of Theorem 2.2.

Proposition 3.3 System (1) is exactly null controllable for some T > 0 if and only if there is a constant δ > 0 such that

T 0 B * e A * (T -τ ) x 2 R m dτ ≥ δ 2 e A * T x 2 M 2 , for all x ∈ M 2 .
We can now give the main result of this Section.

Theorem 3.4 If the system (1) is exactly null controllable, then the following two conditions hold

1. rank ∆ A (λ) B = n for all λ ∈ C, 2. rank µI -A -1 B = n for all µ ∈ C, µ = 0.
Proof. Suppose that system (1) is exactly null controllable. The necessity of condition 1 is trivial. Let us show that condition 2 is verified. We follow a method used in [START_REF] Metel | Criteria for the constructive identifiability and complete controllability of linear time-independent systems of neutral type[END_REF] (see also [START_REF] Khartovskiȋ | Complete controllability and controllability for linear autonomous systems of neutral type[END_REF]). Then, for some T , for all initial conditions, in particular for all ϕ ∈ H 1 (-1, 0; R n ), there is a control u(•) ∈ L 2 (0, T ; R), u(t) = 0 for t > T , such that z(t) = 0, t > T . We can suppose that T > n.

The function z(t) is absolutely continuous and then almost everywhere differentiable. Then we have ż(t) = A -1 ż(t -1) + Lz t + Bu(t).

Replacing ż(t -1) in this equation, we obtain

ż(t) = A -1 (A -1 ż(t -2) + Lz t-1 + Bu(t -1)) + Bu(t).
Without loss of generality one can suppose that the time t is such that the function u is well defined at these points. Repeating this procedure, we obtain

ż(t) = A N -1 ż(t -N )+ N -1 k=0 A k -1 (Lz t-k + Bu(t -k)) .
Putting t = N ≥ T , and using the continuity of z(t) we obtain

0 = A N -1 ( ż(+0) -ż(-0)) + N -1 k=0 A k -1 (Bu(N -k + 0) -Bu(N -k -0)) . (5) 
As z(t) for t > 0 is the solution of equation ( 1) we have ż(+0) = A -1 ż(-1) + Lz +0 (•) + Bu(+0).

Then, replacing this expression in [START_REF] Guo | Well-posedness and admissible stabilizability for Pritchard-Salamon systems[END_REF], and putting the initial condition z 0 (θ) = ϕ(θ), we obtain

A N -1 (A -1 φ(-1) + Lϕ(θ) -φ(-0)) + A N -1 Bu(+0)+ N -1 k=0 A k -1 (Bu(N -k + 0) -Bu(N -k -0)) = 0.
As φ(-0) ∈ R n may be chosen arbitrarily, we obtain

Im A N -1 ⊂ Im B A -1 B • • • A N -1 -1 B .
This may be written as

rank B A -1 B • • • A N -1 -1 B = rank B A -1 B • • • A N -1 -1 B A N -1 .
By the Cayley-Hamilton theorem, this gives

rank B A -1 B • • • A n-1 -1 B = rank B A -1 B • • • A n-1 -1 B A n -1 .
Now, using Lemma 2.9, we obtain Condition 2.

The necessary conditions of exact null controllability characterize in fact the complete stabilizability property.

Theorem 3.5 System (1) is completely stabilizable by a feedback law of the form

u(t) = F -1 ż(t -1) + F z t (•), (6) 
where

F z t (•) = 0 -1 [F 2 (θ) ż(t + θ) + F 3 (θ)z(t + θ)] dθ if and only if 1. rank ∆ A (λ) B = n for all λ ∈ C, 2. rank µI -A -1 B = n for all µ ∈ C, µ = 0.
Proof. We give a short and direct proof of the necessity even if it may be obtained from Corollary 5.1.3 of [START_REF] Salamon | Control and observation of neutral systems[END_REF]. If Condition 1 is not verified, then there is an eigenvalue λ 0 of the operator A which cannot be modified by the control operator B. This implies the lack of complete stabilizability.

If Condition 2 is not verified, then there is a nonzero eigenvalue µ 0 of the matrix A -1 which cannot be modified. Then the spectral set

{ln |µ 0 | + i(arg µ 0 + 2πk) + O(1/k), k ∈ Z} ⊂ σ(A),
which belongs to a vertical strip, cannot also be modified. This means that complete stabilizability is not possible.

Let us show now that the two conditions are sufficient for complete stabilizability feedback laws of the form [START_REF] Hale | Introduction to functional-differential equations[END_REF].

Suppose that Condition 2 is satisfied. Let us fix an arbitrary ω > 0. As all the non-zero poles of the matrix A -1 are controllable by Condition 2, then a matrix F -1 can be found such that the spectrum σ(A -1 + BF -1 ) verifies ∀µ ∈ σ(A -1 + BF -1 ), µ = 0, ln |µ| < -ω.

Consider now the neutral type system

ż(t) = (A -1 + BF -1 ) ż(t -1) + Lz t + Bu. ( 7 
)
Let A 1 be the generator of system [START_REF] Hale | Strong stabilization of neutral functional differential equations[END_REF]. From the structure of the spectrum of neutral type systems like (1), we have only a finite number of eigenvalues λ ∈ σ(A 1 ) such that Re λ ≥ -ω. Now, using Condition 1 of the theorem, a feedback u(t) = F 1 z t (•), where

F 1 z t (•) = 0 -1 [F 2 (θ) ż(t + θ) + F 3 (θ)z(t + θ)] dθ,
can be found (see for example [START_REF] Pandolfi | Stabilization of neutral functional differential equations[END_REF][START_REF] Pritchard | The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators[END_REF][START_REF] Rabah | On strong regular stabilizability for linear neutral type systems[END_REF][START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF]) such that all the eigenvalues λ of the system

ż(t) = (A -1 + BF -1 ) ż(t -1) + (L + BF 1 )z t verify Re λ < -ω. If we denote by F the global feedback u(t) = F -1 ż(t -1) + F 1 z t (•)),
then we obtain e (A+BF )t ≤ M e -ωt , M ≥ 1.

Since ω has been arbitrarily taken, this means that the system is completely stabilizable by a feedback of the form (6).

A similar result was obtained for modal controllability (assignment of characteristic quasipolynomial) for neutral system with multiple discrete delays in [START_REF] Metel | Criteria for modal controllability of linear systems of neutral type[END_REF].

In view of Corollary 2.8, Theorem 3.4 and Theorem 3.5, one can formulate the following natural conjecture. Conjecture. System (1) is exactly null controllable if the following two conditions hold

1. rank ∆ A (λ) B = n for all λ ∈ C, 2. rank µI -A -1 B = n for all µ ∈ C, µ = 0.
This means that exact null controllability is equivalent to complete stabilizability for neutral type systems.

It is well known that the Conjecture is verified for some class of neutral type systems with discrete delays [START_REF] Metel | Criteria for the constructive identifiability and complete controllability of linear time-independent systems of neutral type[END_REF][START_REF] Khartovskiȋ | Complete controllability and controllability for linear autonomous systems of neutral type[END_REF] and in the case of retarded systems [START_REF] Pandolfi | Null controllability of a class of functional-differential systems[END_REF]. It seems to us, that one can use the conditions of complete stabilizability to show the result of the conjecture. But at this moment, we have not a satisfactory formal proof.

Final exact observability

The dual notion of exact null controllability in Hilbert space is the notion of final continuous observability. Sometimes the term continuous is replaced (by analogy) by the term exact. In [START_REF] Rabah | Exact observability and controllability for linear neutral type systems[END_REF], the duality between exact controllability and exact observability was analyzed. In the present section we give the result for null exact controllability and the corresponding notion of observability.

We consider the finite dimensional observation

y(t) = Cx(t), (8) 
where C is a linear operator and y(t) ∈ R p is a finite dimensional output. There are several ways to design the output operator C [START_REF] Salamon | Neutral functional differential equations and semigroups of operators[END_REF][START_REF] Salamon | Control and observation of neutral systems[END_REF][START_REF] Metel | Criteria for the constructive identifiability and complete controllability of linear time-independent systems of neutral type[END_REF]. One of our goals in this paper is to investigate how to design a minimal output operator like

Cx(t) = Cz(t) or Cx(t) = Cz(t -1), (9) 
where C is a p × n matrix. More general outputs, for example with several and/or distributed delays are not considered here. We want to use some results on exact controllability in order to analyze, by duality, the exact observability property in the infinite dimensional setting like, for example, in [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF].

The operator C defined in ( 9) is linear but not bounded in M 2 . However, in both cases it is admissible in the following sense:

T 0 Ce At x 0 2 R p dt ≤ κ 2 x 0 2 M 2 , ∀x 0 ∈ D(A),
because e At x 0 ∈ D(A), t ≥ 0 (see for example [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

Definition 4.1 Let K be the output operator

K : M 2 -→ L 2 (0, T ; R p ), x 0 -→ Kx 0 = Ce At x 0 .
System (1) is said to be exactly finally observable or continuously finally observable [START_REF] Salamon | Control and observation of neutral systems[END_REF] if

Kx 0 2 L 2 = T 0 Ce At x 0 2 R p dt ≥ γ 2 e AT x 0 2 M 2 , (10) 
for some constant γ > 0, and for all x 0 ∈ D(A). We say that the system is exactly (or continuously) observable if in (4.1) in the second term of the inequality e AT x 0 is replaced by x 0 .

Exact observability means that one continuously determinates the initial state z 0 (•) from the observation on [0, T ], final exact observability that we can continuously determinate the final state z T (•).

The exact (final) observability depends essentially on the topology of the space. We can expect that, the given neutral type system is not exactly observable if we consider x 0 ∈ D(A), with the norm of the graph and no longer in the topology of M 2 . In fact, we obtain the final observability in the initial norm but we need some delay in the observation in the general case.

In order to use the duality between observability and controllability, we need the expression of the adjoint operator K * in the duality with respect to the pivot space M 2 in the embedding

X 1 ⊂ X = M 2 ⊂ X -1 ,
where X 1 = D(A) with the graph norm noted x 1 and X -1 the completion of the space M 2 with respect to the resolvent norm x -1 = (λI -A) -1 x M 2 . The duality relation is

Kx 0 , u(•) L 2 (0,T ;R p ) = x 0 , K * u(•) X 1 ,X d -1
, where X d -1 is constructed as X -1 with A * instead of A (see [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] for example): X d -1 is the completion of the space M 2 with the resolvent norm corresponding to the operator A * .

Exact null controllability is dual with exact final observability in the corresponding spaces and with the corresponding topologies. It is expected that the operator K * corresponds to a control operator for some adjoint system. However, the situation is not so simple, as it was pointed out in the paper [START_REF] Rabah | Exact observability and controllability for linear neutral type systems[END_REF], from which we take our main considerations on duality. Proposition 4.2 [START_REF] Rabah | On strong regular stabilizability for linear neutral type systems[END_REF][START_REF] Rabah | Exact observability and controllability for linear neutral type systems[END_REF] The adjoint operator A * is given by

A * w ψ(•) = (A * 2 (0)w + ψ(0) - d[ψ(θ)+A * 2 (θ)w] dθ + A * 3 (θ)w
, with the domain D(A * ) consisting of (w, ψ(•)) ∈ M 2 such that:

ψ(θ) + A * 2 (θ)w ∈ H 1 , A * -1 (A * 2 (0)w + ψ(0)) = ψ(-1) + A * 2 (-1)w.
Let x be a solution of the abstract equation

ẋ = A * x, x(t) = w(t) ψ t (θ) . (11) 
Then the function w(t) is the solution of the neutral type equation

ẇ(t + 1) = A * -1 ẇ(t)+ 0 -1 [A * 2 (τ ) ẇ(t + 1 + τ ) + A * 3 (τ )w(t + 1 + τ )] dτ. ( 12 
)
This means that the form of the adjoint system is not a simple transposition of the initial one [START_REF] Curtain | Well-posedness, stabilizability, and admissibility for Pritchard-Salamon systems[END_REF]. Let us now specify the relation between the solutions of the neutral type equation [START_REF] Megan | On the stabilizability and controllability of linear dissipative systems in Hilbert space[END_REF] related to the adjoint system [START_REF] Louis | On exact controllability in Hilbert spaces[END_REF] and the transposed neutral type equation

ż(t) = A * -1 ż(t -1)+ 0 -1 [A * 2 (τ ) ż(t + τ ), A * 3 (τ )z(t + τ )] dτ, (13) 
with initial z 0 (θ). Let A † be the infinitesimal generator of the semigroup corresponding to equation [START_REF] Metel | Criteria for modal controllability of linear systems of neutral type[END_REF].

Let us put w(t) ψ t (θ) = e A * t ξ 0 = e A * t w(0) ψ 0 (θ) , and the conditions of

v(t) z t (θ) = w(t + 1) -A * -1 w(t) w(t + 1 + θ) = e A † t v(0) z 0 (θ) ,
where z 0 (θ) = w(θ + 1) and v(0) = z 0 (0) -A -1 z 0 (-1). We can give the explicit relation between the initial conditions ξ 0 and x 0 :

ξ 0 = w(0) ψ 0 (θ) , x 0 = v(0) z 0 (θ) .
The formal relation between these vectors is

ξ 0 = w(0) ψ 0 (θ) = Φx 0 = Φ w(1) -A -1 w(0) w(θ + 1) ,
and we have the following result.

Theorem 4.3 [START_REF] Rabah | Exact observability and controllability for linear neutral type systems[END_REF] The operator Φ representing the relation between initial conditions x 0 and ξ 0 corresponding to neutral type systems ( 11) -( 12) and ( 13) is linear bounded and bounded invertible from X d 1 to M 2 , where X d 1 is D(A * ) with the graph norm.

Let us now consider the reachability operator of the transposed controlled system:

ẋ(t) = A † x(t) + C † u(t),
where C † = C * 0 . This operator is given by

R † T u(•) = T 0 e A † (T -τ ) C † u(τ )dτ.
The operator K may be written using R † T and the semigroup e A † of system (13) as follows (see [START_REF] Rabah | Exact observability and controllability for linear neutral type systems[END_REF]):

Kx 0 = R † * T Φx 0 if Cx(t) = Cz(t -1), R † * T e A † * Φx 0 if Cx(t) = Cz(t). (14) 
We can now formulate the main result of this section.

Theorem 4.4 System (1) with the output y = Cz(t -1) is exactly (continuously) finally observable if and only if system (13) is exactly null controllable. A necessary condition of exact final observability is given by two conditions:

1. Ker ∆ A (λ) C = {0} for all λ ∈ C, 2. Ker λI -A -1 C = {0} for all λ ∈ C, λ = 0.
Proof. According to relation [START_REF] Metel | Criteria for the constructive identifiability and complete controllability of linear time-independent systems of neutral type[END_REF] we have

Kx 0 L 2 = T 0 C * e A † * (T -τ ) Φx 0 2 dτ 1 2
.

As system (13) is exactly null controllable, we obtain

Kx 0 L 2 ≥ δ e A † * T Φx 0 , for all x 0 ∈ D(A). It is easy to see from [21] that e A † * T Φx 0 = Φe A † * (T -τ ) x 0 = e AT x 0 .
This gives Kx 0 L 2 ≥ δ e AT x 0 , which means that exact final observability holds.

For the case of the output y = Cz(t) we cannot say anything if det(A -1 ) = 0. If A -1 is not singular, then e At is a group and exact final observability coincides with exact observability [START_REF] Rabah | Exact observability and controllability for linear neutral type systems[END_REF].

Examples

To illustrate our results and hypothesis we give here 3 examples. The first one shows that for continuous observability a delay in the output is needed if the semigroup is not a group. The second one is taken from [START_REF] Metel | Criteria for the constructive identifiability and complete controllability of linear time-independent systems of neutral type[END_REF] and it is shown that in fact we have exact controllability (not only exact null controllability). The last example illustrates our Conjecture on equivalence between exact controllability and complete stabilizability. All examples are given in the form of a system with one discrete delay: ż(t) = A -1 z(t -1) + A 0 z(t) + A 1 z(t -1) + Bu(t).

Example 3.

System [START_REF] Michiels | Stability and stabilization of time-delay systems. An eigenvalue-based approach[END_REF] with

A 0 = 0 1 0 0 , A 1 = 0, A -1 = 0 1 0 0 , B = 0 1 .
It is easy to see that, for all λ ∈ C,

rank ∆ A (λ) B = λ -λe -λ -1 0 0 λ 1 = 2.
Moreover, for all λ ∈ C, rank λI -A -1 B = n, then the system is exactly controllable (not only to zero). The transposed system ż1 (t) = 0 ż2 (t) = ż1 (t -1) + z 1 (t) is continuously observable with the output y = z 2 (t -1) but not with y(t) = z 2 (t).

Example 4.

The following system was given for exact null controllability and continuous final observability in [START_REF] Metel | Criteria for the constructive identifiability and complete controllability of linear time-independent systems of neutral type[END_REF]:

A 0 = 0, A 1 = 0 1 0 0 , A -1 = 0 -1 0 1 .
In fact, for this system the initial condition is exactly observable by the output y = Cz(t -1), C = 1 0 , and the transposed system is exactly controllable because, for all λ ∈ C,

rank λI -A * -1 C * = rank λ 0 1 1 λ -1 0 = 2.
However, the initial system is not exactly observable by the output y = Cz(t) = z 1 (t), because the initial function z 0 (θ), θ ∈ [0, 1[ cannot be determined.

Example 5.

System [START_REF] Michiels | Stability and stabilization of time-delay systems. An eigenvalue-based approach[END_REF] with

A 0 = 0 0 1 0 , A 1 = 0, A -1 = 1 0 0 0 , B = 1 0 .
We have for all λ ∈ C,

rank ∆ A (λ) B = λ -λe -λ 0 1 -1 λ 0 = 2,
and for all complex λ = 0, rank λI -A -1 B = λ -1 0 1 0 λ 0 = 2.

The system is exactly null controllable by Lemma 2.9 and result in [START_REF] Metel | Criteria for the constructive identifiability and complete controllability of linear time-independent systems of neutral type[END_REF]. It is completely stabilizable by Theorem 6. Consider now the transposed system ż1 (t) = z 2 (t), ż2 (t) = ż2 (t -1).

This system is continuously finally observable by the feedback y = z 1 (t -1) by Theorem 4.4.

Conclusion

We gave some relations between exact null controllability and complete stabilizability of abstract systems in Hilbert spaces. A characterization of complete stabilizability has been given for a large class of linear neutral type systems. Necessary conditions of exact null controllability are given, which conjectured to be also sufficient for neutral type systems, even if they are not in the general case. This also enables the final continuous observability of such systems to be characterized. The following step is to prove the conjecture and to extend such results to the problem of detectability, which is dual with stabilizability.
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