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Abstract 

Blood vessel images can provide considerable information of many diseases, which are 

widely used by ophthalmologists for disease diagnosis and surgical planning. In this paper, we 

propose a novel method for the blood Vessel Enhancement via Multi-dictionary and Sparse 

Coding (VE-MSC). In the proposed method, two dictionaries are utilized to gain the vascular 

structures and details, including the Representation Dictionary (RD) generated from the original 

vascular images and the Enhancement Dictionary (ED) extracted from the corresponding label 

images. The sparse coding technology is utilized to represent the original target vessel image 

with RD. After that, the enhanced target vessel image can be reconstructed using the obtained 

sparse coefficients and ED. The proposed method has been evaluated for the retinal vessel 

enhancement on the DRIVE and STARE databases. Experimental results indicate that the 

proposed method can not only effectively improve the image contrast but also enhance the 

retinal vascular structures and details.  
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1. Introduction  

The human body contains different types of blood vessels, which constitute a network of 

arteries and veins. The visualization of these blood vessels is important for disease diagnosis 

and improving the planning and navigation in interventional procedures [1-4]. For instance, 

retinal vessel images are widely used by ophthalmologists for the disease diagnosis such as 

diabetes, hypertension, cardiovascular disease and stroke. In case of changes in vessel caliber, 

branching angle or vessel tortuosity are results of hypertension [5]. The onset of 

neovascularization is a sign of diabetic retinopathy, and a complication of diabetes which leads 

to the cause of blindness [6]. However, due to the imperfect imaging condition, the quality of 

blood vessel images is usually poor, making it hard to recognize the vascular structure clearly. 

An effective way to overcome these issues is to use the image enhancement technology. The 

main purpose of blood vessel enhancement is to highlight the vascular structures and details 

[7-9]. In this paper, we propose a novel method for the blood Vessel Enhancement via 

Multi-dictionary and Sparse Coding (VE-MSC). The DRIVE1 and STARE2 databases are used 

to evaluate the proposed method. Experimental results demonstrate that the image contrast is 

effectively improved and the retinal vessel structures and details are well enhanced. A 

comparison with state-of-the-art methods has also been carried out in the retinal vessel 

enhancement. 



 

 

The rest of the paper is organized as follows. In Section 2, the related works about blood 

vessel enhancement are briefly reviewed. The proposed method VE-MSC and its application on 

r e t i n a l 

1. http://www.isi.uu.nl/Research/Databases/DRIVE/ 

2. http://www.ces.clemson.edu/~ahoover/stare/ 

vessel enhancement are presented in Section 3. In Section 4, the performance of retinal vessel 

enhancement is assessed by experiments on the DRIVE and STARE databases. Finally, a 

conclusion is given in Section 5. 

2. Related works 

According to different emphasis on the prior knowledge, blood vessel enhancement methods 

can be categorized into three groups: histogram based, transformation based and filter based.  

(1) Histogram-based method [10-14] utilizes the prior information of blood vessel to equal 

the histogram distribution. For instance, histogram equalization (HE) [15] and contrast limited 

adaptive histogram equalization (CLAHE) [16] are two basic methods used for the retinal vessel 

enhancement. However, some retinal vessel details are lost during the equalization. Kuldeep et 

al. [17] proposed a contrast enhancement method based on the sub-image histogram 

equalization for low exposure gray scale image. The histogram was clipped using a threshold 

value as an average number of gray level occurrences to control the enhancement rate, but it 

was only used for the low exposure gray scale image. 

(2) Transformation-based method transfers the image to other space [18-21], where the blood 

vessel can be enhanced. Miao et al. [22] proposed a retinal vessel enhancement algorithm based 



 

 

on multi-scale top-hat transformation and histogram fitting stretching. However, part of the 

vascular structures were changed through the transformation and histogram stretching. In 

addition, some parameters utilized in the method were sensitive to the initialization. Li et al. [23] 

applied the fractional Fourier transformation to the image enhancement. However, it also 

suffered the blood vessel details lost problem during the selection of image features. 

(3) Filter-based method utilizes a filter or multiple filters [24-27] to enhance the blood vessel. 

Fraz et al. [28] proposed a retinal vessel enhancement method based on decision trees and 

Gabor filter, while it also had the vascular details lost problem. To overcome these weaknesses, 

a medical image enhancement method using morphology-based homo-morphic filtering 

technique was developed by Oh et al. [29]. However, the contrast of the blood vessel was low, 

and the vascular details lost problem was also existed.  

The vascular details enhanced by these classical reported methods in literatures are hardly to 

be completely reserved, and the contrast of the enhanced vascular image is not high enough. To 

solve these problems, a novel blood vessel enhancement method using multi-dictionary and 

sparse coding is proposed in this paper. To the best of our knowledge, this is the first time to 

achieve the blood vessel enhancement via multi-dictionary and sparse coding. In order to gain 

the blood vascular structures and details, two corresponding dictionaries are generated. One is 

the representation dictionary (RD) generated from the blood vessel images, the other one is the 

enhancement dictionary (ED) extracted from the corresponding label images. The patches in RD 

and ED are selected through the information of the label images to optimize the multi-dictionary. 

Then the input target image is represented by RD to get the sparse coefficients via a sparse 



 

 

coding process. Finally, the enhanced blood vessel image is obtained from the solved sparse 

coefficients and ED. The effect of dictionary patch size and dictionary patch selection are 

analyzed in the experiments. 

3. Vessel Enhancement via Multi-dictionary and Sparse Coding 
(VE-MSC) 

3.1. RD and ED generation 

Dictionary based methods have been studied in medical image processing [30-33], which 

differs in how they form the overcomplete dictionary. For instance, Chen et al. [34] proposed a 

Low-Dose CT (LDCT) image processing method based on artifact suppressed dictionary 

learning, where an overcomplete global dictionary was included. Li et al. [35] used the 

group-sparse representation with dictionary learning for medical image denoising and fusion, and 

the dictionary utilized was also overcomplete. In the proposed method, both the generated RD 

and ED are overcomplete, which are then used for enhancing the blood vascular structures and 

details. 

Each patch in RD has the unique and corresponding patch in ED, and they have the same 

location in the respective dictionary. RD is generated from the original blood vessel images, ED 

is extracted from the corresponding label images with value 0 or 1. Let f  be a 2D gray image 

in a blood vessel image database. The image size of f  is M M , and its sequence number in 

the blood vessel image database is k . Then a pixel with the location ( , )x y  in f  can be 

remarked as ( , , )f x y k . Let lf  be the corresponding label image of f , which is the blood 

vessel segmentation result delineated manually by an expert. Then the corresponding label value 



 

 

of ( , , )f x y k  in the label image lf  is denoted as ( , , )lf x y k . A patch in RD ( RDp ) and its 

corresponding patch in ED ( EDp ) are defined as: 

RD

=

ED

=

: ( , , ), , 1,...

: ( , , ), , 1,...

h

l
h

h

l l
h

p f s s k h h h if f t

p f s s k h h h if f t
,               (1) 

where { ,2 ,3 ,..., }s d d d md , {1,2,..., }k L , h  is the patch size, d  is a step value used 

to gain different patches, m  is the integer part of /M d , L  is the amount of blood vessel 

images in the database, and t  is a patch selection threshold value used to optimize the 

dictionaries. Fig .1 shows some patches in the RD and ED with 4, 10h t . The red boxes in 

Fig .1 marked  

 
Fig. 1. Patches in the RD and ED, 4, 10h t . (a) RD, the patches are extracted from the DRIVE 

training set, only use the green channel, (b) ED, the patches are extracted from the corresponding retinal 
vessel segmentation results (label images from the first expert). 

the corresponding patches, they have the same location in the respective dictionary. Most patches 

in the dictionaries contain blood vessels due to the patch selection in Eq. (1). The impact of 



 

 

background is mostly eliminated through the ED, and the blood vascular structures and details 

can be mostly reserved by the two dictionaries.  

3.2. Sparse coding and blood vessel enhancement 

The multi-dictionary (RD and ED) is generated from Eq. (1), in order to describe the 

dictionaries clearly, let RD
ip  be the -thi  patch in RD, RD RD RD RD

1 2[ , ,... ]np p p , then ED 

ED ED ED
1 2[ , ,... ]np p p . Let of  be the original blood vessel image to be enhanced (a 2D gray 

image), and 
0f

p  is a patch extracted from 0f . To get the sparse coefficients used in the blood 

vessel enhancement processing, 
0f

p  is represented as: 

0

RD RD RD
1 1 2 2 ...f n np p p p .                        (2) 

Since the representation in Eq. (2) is sparse, most of the coefficient i  will be zero, let 

1 2[ , ,... ]n , and the  satisfy the restricted isometry property (RIP) [36, 37]. Then the 

sparse solution can be obtained by solving the following equation [38]: 

0

2

0 2
ˆ subject to RDfmin p .                    (3) 

where the  is an error target for the sparse solution ( 1510  in our method), 0 -norml  

denotes the number of nonzero coefficients, and is the sparse constraint of this equation. Since 

2n hh2 , the Eq. (3) doesn’t have a unique solution. However, when the solution of Eq. (3) is 

sparse enough, it can be solved efficiently by many sparse coding methods [39-41]. In the 

proposed method, an efficient Batch Orthogonal Matching Pursuit (Batch-OMP) method [42] is 

used for obtaining the sparse coding coefficients  in Eq. (3). Then we reconstruct the enhanced 

patch 
ef

p  according to the corresponding relationship from RD to ED: 



 

 

ED ED ED
1 1 2 2 ...

ef n np p p p ,                       (4) 

where ef  is the enhanced blood vessel image made up of patches 
ef

p , and the sparse coding 

coefficients  in Eq. (4) is the same as in Eq. (3). As the values in ED are binary, the gray value 

of ef  is usually small. Then we rescale ef  to [0,255]  by the following equation: 

min

min 255
max( )

e e
er

e e

f ff
f f

,                          (5) 

where min
ef  is the minimum in ef , max( )  is an operator to find the maximum, and erf  is the 

final enhanced image.  

The algorithm steps of the proposed VE-MSC are given as follows: 

1)  Gain RD and ED  

     a) Initial the , , ,d h t L  in Eq. (1) and  in Eq. (3); 

     b) Extract the corresponding patch RDp  and EDp  using Eq. (1); 

2)  Represent the target image 0f  with RD (Eq. (2)); 

3)  Solve the sparse coding coefficients  with Batch-OMP (Eq. (3)); 

4)  Construct the enhanced patch 
ef

p  using  and ED (Eq. (4)); 

5)  Get the enhanced image erf  through a gray rescaling (Eq. (5)). 

A detailed flow chart of the proposed method is shown in section 3.3 (application on retinal 

vessel enhancement). In general, the blood vessel image to be enhanced is not in the database 

used for the generation of RD and ED, but they are the same type of blood vessel images. For 

instance, we use the DRIVE to gain the dictionaries and the STARE to be the target image 0f  

in the application of retinal vessel enhancement.  



 

 

3.3. Retinal vessel enhancement via VE-MSC 

Fig. 2 shows a normal retinal vessel image and a background diabetic retinopathy retinal 

vessel  

a 

 

b 

 

Fig. 2. Retinal vessel image. (a) Normal retinal vessel image in the STARE database, image index is 
162, (b) Retinopathy retinal vessel image in the STARE database, image index is 1. 

image. It can be observed that the retinal vascular structures and details are not clearly enough, 

therefore the proposed VE-MSC is utilized to overcome these issues. Hereinafter, only the green 

channel of the original color image is used as it offers the best vessel-background contrast [4, 9, 

22]. Fig. 3 presents a flow chart of the retinal vessel enhancement method via VE-MSC. In 

order to enhance the image contrast and the retinal vascular structures and details, patches 

extracted  



 

 

 
Fig. 3. Flow chart of the retinal vessel enhancement method via VE-MSC, 4, 10h t (only use the 

green channel of the original RGB retinal image in the Gray image database). 

from retinal vessel image database and label image database. The extracted patches ( RDp  and 

EDp ) have the same location ( , , )x y k  in the gray image database and label image database. The 

patches in RD have gray values, and the corresponding patches in ED have binary values. During 

the dictionary building process, most of the retinal vascular structures and details are obtained 

through a patch selection, which is introduced in Eq. (1). Then a representation to the target 

image of  is utilized to solve the sparse coefficients . After getting the dictionaries (in Eq. (1)) 

and sparse coefficients (in Eq. (3)), we use the ED and sparse coefficients to obtain the enhanced 

retinal vessel image with Eq. (4). Finally, the enhanced retinal vessel image is rescaled by Eq. 

(5). 



 

 

4. Experiments and results  

To evaluate the performance of the proposed method, a series of experiments are performed on 

the DRIVE and STARE databases. The DRIVE database consists of 40 color retinal images, 

which were captured by Canon CR5 nonmydriatic 3 Charge-Coupled-Device (CCD) cameras at 

45º field of view (FOV). Among them, the first 20 images are served as the testing set (image 

index No.1-20) and the rest constitute the training set (image index No.21-40), the size of each 

retinal image is 565 584  pixels. The STARE database contains 20 color retinal images (image 

index No.1-20, only use the images with hand labels) with the size of 700 605  pixels, which 

were captured by a TopCon TRV-50 fundus camera at 35º FOV.  

In order to evaluate the enhancement quality quantificationally, two metrics [29] are used:  

(1) C  represents the contrast between the retinal vessels and the background (retinal regions 

except the vessels), which is defined as: 

Y GC
Y G

,                              (6) 

where Y  is the average gray values of the retinal vessels, G  is the average gray values of the 

background. 

(2) CII  represents the contrast rate between enhanced image ( enC ) and the original image ( orC ), 

which is defined as: 

en

or

C
CII

C
.                              (7) 

The larger the value of C  is, the more obvious the difference between the retinal vessels and 

the background is. It should be mentioned that black background pixels outside the pupil are not 

calculated in our method. In the experiment, the proposed approach was compared with HE [15], 

CLAHE [16], methods in [22, 28, 29]. Meanwhile, the effects of dictionary patch size ( h ) and 



 

 

patch selection ( t ) were also provided.  

4.1. Effect of dictionary patch size ( h ) 

The effect of using different patch size is analyzed in this section. Fig. 4 shows the C  values 

of DRIVE testing set with different patch sizes. In order to optimize the dictionaries (RD and ED), 

we set the parameter t {5, 10, 14, 18, 25, 36}, respectively. It can be observed that the best 

overall performance on the image contrast is achieved when the patch size is set to 12×12. The 

patch size 9×9 has the worst overall performance on the image contrast in Fig. 4. This is because 

 

Fig. 4. Values of C with different patch sizes (DRIVE testing set) 

of the dictionary patch size is related to the retinal vascular local geometry, and it leads to an 

imperfect enhancement performance when the patch size isn’t suitable for the retinal vascular 

width. However, the influence of the retinal vascular local geometry can be reduced to a minimum 

due to the dictionary patch selection and sparse coding. 



 

 

4.2. Effect of dictionary patch selection ( t )  

Besides the above experiments, the effect of dictionary patch selection ( t ) was also provided. 

Fig. 5 shows the C  values of DRIVE testing set with different patch selection threshold values 

( 5,10,14,18, 25t ), and the patch size is 8 8. It can be noticed that the average value of C is 

 

Fig. 5. Values of C with different patch selection threshold values t  (DRIVE testing set) 

decreased and the mean gray value of the enhanced retinal image is increased with the increase 

of t . The reason of these phenomena is the patches selection during the dictionary building. 

When the t  is increased, the extracted patches from Eq. (1) contain more retinal vessel pixels, 

so the average value of the ED is increased. Then the average gray value of the enhanced retinal 

vessel image is also increased, leading to a low contrast between the background and retinal 

vessel region. 

4.3. Enhancement results  

All the RD and ED used in the retinal vessel enhancement of two databases (DRIVE and 



 

 

STARE) were extracted from DRIVE database. We utilized the DRIVE testing set (image index 

No.1-20) and STARE as the evaluating data. Fig. 6 and Fig. 7 present some retinal vessel 

enhancement results by using different methods. It can be seen that the retinal vascular structures 

enhanced by the proposed method are clear and complete in Fig. 6, and the small retinal vessels 

are also enhanced efficiently. The C  and CII  in Fig. 7 are the corresponding values of Fig. 6. 

Obviously, the proposed method has the largest C  and CII  values. 

a b c d e f g 

       

       

       
DRIVE testing set, column (a) represents the green channel of the original retinal image 

       

       

       

 

 

 

 

 

 



 

 

STARE database, column (a) represents the green channel of the original retinal image 
Fig. 6. Enhanced results with HE [15], CLAHE [16], methods in [28, 29, 22] and proposed method, column (b) to (g) respectively. 

 
a b 

    

c d 

    

Fig. 7. Comparisons of C  and CII  values with different methods in Fig. 6, the image index is corresponding. (a) C  values of 
image index No. 5, 10, 15, in DRIVE testing set, (b) C  values of image index No. 1, 3, 5, in STARE database, (c) CII  values of 
image index No. 5, 10, 15, in DRIVE testing set, (d) CII  values of image index No. 1, 3, 5, in STARE database. 

A comparison of CII  values with other enhancement methods in DRIVE testing set (image 

index No.1- 20) and STARE database (image index No.1- 20) is depicted in Fig. 8. It can be 

observed that the proposed method has the best performance. For the DRIVE testing data (Fig. 8 

           a 



 

 

 

           b 

 

Fig. 8. Values of CII  with different methods. (a) DRIVE testing set, (b) STARE database. 

(a)), the maximum difference value of CII  between the proposed method and method in [22] is 

4.7937 (image No.13), and the mean difference value of CII  is 2.0842. For the STARE (Fig. 

8(b)), the maximum difference value is 3.2480 (image No.4), and the mean difference value of 

CII  is 0.9124. 



 

 

Compared with HE [15], CLAHE [16], method in [22, 28, 29], the enhanced retinal vessels 

by the proposed method VE-MSC are much easier to recognize. Based on the above results, it 

can be concluded that the proposed method has a much better enhancement performance on 

image contrast, retinal vascular structures, and retinal vascular details. The superiority of our 

method is mainly contributed to the adoption of multi-dictionary and sparse coding. 

5. Conclusion  

A novel vessel enhancement method (VE-MSC) via multi-dictionary (RD and ED) and sparse 

coding has been proposed in this paper. We evaluated the proposed method for the retinal vessel 

enhancement on the DRIVE and STARE databases. Experimental results show that the VE-MSC 

not only can effectively improve the image contrast but also enhance the retinal vascular 

structures and details. In the proposed method, two corresponding overcomplete dictionaries (RD 

and ED) are developed via a patch selection. The RD is utilized to gain the sparse coefficients ( ), 

then the enhanced blood vessel image is reconstructed by  and ED. The patch size ( h ) and 

patch selection threshold value ( t ) both affect the enhancement performance of the blood vessel 

image. Further work includes: (i) improving the enhancement performance with a larger database; 

(ii) applying on 3D blood vessel enhancement problems; (iii) extending to other image 

enhancement problems. 
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