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A distorted black hole radiates gravitational waves in order to settle down in a smoother geometry.
During that relaxation phase, a characteristic damped ringing is generated. It can be theoretically
constructed from both the black hole quasinormal frequencies (which govern its oscillating behavior and its
decay) and the associated excitation factors (which determine intrinsically its amplitude) by carefully
taking into account the source of the distortion. In the framework of massive gravity, the excitation factors
of the Schwarzschild black hole have an unexpected strong resonant behavior which, theoretically, could
lead to giant and slowly decaying ringings. If massive gravity is relevant to physics, one can hope to
observe these extraordinary ringings by using the next generations of gravitational wave detectors. Indeed,
they could be generated by supermassive black holes if the graviton mass is not too small. In fact, by
focusing on the odd-parity l ¼ 1 mode of the Fierz-Pauli field, we shall show here that such ringings are
neutralized in waveforms due to (i) the excitation of the quasibound states of the black hole and (ii) the
evanescent nature of the particular partial modes which could excite the concerned quasinormal modes.
Despite this, with observational consequences in mind, it is interesting to note that the waveform amplitude
is nevertheless rather pronounced and slowly decaying (this effect is now due to the long-lived quasibound
states). It is worth noting also that, for very low values of the graviton mass (corresponding to the weak
instability regime for the black hole), the waveform is now very clean and dominated by an ordinary ringing
which could be used as a signature of massive gravity.

DOI: 10.1103/PhysRevD.93.124027

I. INTRODUCTION

In a recent article [1] (see also the preliminary note [2]),
we have discussed a new and unexpected effect in black
hole (BH) physics: for massive bosonic fields in the
Schwarzschild spacetime, the excitation factors of the
quasinormal modes (QNMs) have a strong resonant behav-
ior around critical values of the mass parameter leading to
giant ringings which are, in addition, slowly decaying due
to the long-lived character of the QNMs.We have described
and analyzed this effect numerically and confirmed it
analytically by semiclassical considerations based on the
properties of the unstable circular geodesics on which a
massive particle can orbit the BH. We have also focused on
this effect for the massive spin-2 field. Here, we refer to
Refs. [3,4] for recent reviews on massive gravity, to
Refs. [5,6] for reviews on BH solutions in massive gravity,
and to Refs. [4,6–11] for articles dealing with gravitational
radiation from BHs and BH perturbations in the context of
massive gravity.
In our previous works [1,2], we have considered the

Fierz-Pauli theory in the Schwarzschild spacetime [8]
which can be obtained by linearization of the ghost-free

bimetric theory of Hassan, Schmidt-May, and von Strauss
discussed in Ref. [12] and which is inspired by the
fundamental work of de Rham, Gabadadze, and Tolley
[13,14]. For this spin-2 field, we have considered more
particularly the odd-parity (l ¼ 1, n ¼ 0) QNM. (Note that
it is natural to think that similar results can be obtained for
all the other QNMs—see also Ref. [1].) We have then
shown that the resonant behavior of the associated
excitation factor occurs in a large domain around a critical
value ~α0 ≈ 0.90 of the dimensionless mass parameter ~α ¼
2Mμ=mP

2 (here M, μ and mP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
denote, respec-

tively, the mass of the BH, the rest mass of the graviton, and
the Planck mass) where the QNM is weakly damped. It is
necessary to recall that the Schwarzschild BH interacting
with a massive spin-2 field is, in general, unstable [7,8]
(see, however, Ref. [9]). In the context of the massive
spin-2 field theory we consider, this instability is due to the
behavior of the (spherically symmetric) propagating l ¼ 0

mode [8]. It is, however, important to note that
(i) It is a “low-mass” instability which disappears above

a threshold value ~αt ≈ 0.86 of the reduced mass
parameter ~α and that the critical value around which
the quasinormal resonant behavior occurs lies in the
stability domain, i.e., ~α0 > ~αt.

(ii) Even if a part of the ~α domain where the quasinormal
resonant behavior occurs lies outside the stability
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domain (i.e., below ~αt), one can nevertheless con-
sider the corresponding values of the reduced mass
parameter; indeed, for graviton mass of the order
of the Hubble scale, the instability timescale is of
order of the Hubble time and the BH instability is
harmless.

As a consequence, the slowly decaying giant ringings
predicted in the context of massive gravity seem physically
relevant (they could be generated by supermassive BHs—
see also the final remark in the conclusion of Ref. [2]) and
could lead to fascinating observational consequences which
could be highlighted by the next generations of gravita-
tional wave detectors.
In the present article, by assuming that the BH pertur-

bation is generated by an initial value problem with
Gaussian initial data (we shall discuss, in the conclusion,
the limitation of this first hypothesis), an approach which
has regularly provided interesting results (see, e.g.,
Refs. [15–17]), and by restricting our study to the odd-
parity l ¼ 1 mode of the Fierz-Pauli theory in the
Schwarzschild spacetime (we shall come back, in the
conclusion, on this second hypothesis) but by considering
the full signal generated by the perturbation and not just the
purely quasinormal contribution, we shall show that, in
fact, the extraordinary BH ringings are neutralized in
waveforms due to the coexistence of two phenomena:

(i) The excitation of the quasibound states (QBSs) of
the Schwarzschild BH. Indeed, it is well known that,
for massive fields, the resonance spectrum of a BH
includes, in addition to the complex frequencies
associated with QNMs, those corresponding to
QBSs. Here, we refer to Refs. [18–21] for important
pioneering works on this topic and to Refs. [6,8] for
recent articles dealing with the QBS of BHs in
massive gravity. In a previous article [22], we have
considered the role of QBSs in connection with
gravitational radiation from BHs. By using a toy
model in which the graviton field is replaced with a
massive scalar field linearly coupled to a plunging
particle, we have highlighted in particular that, in
waveforms, the excitation of QBSs blurs the QNM
contribution. Unfortunately, due to numerical insta-
bilities, we have limited our study to the low-mass
regime. Now, we are able to overcome these
numerical difficulties and we shall observe that,
near the critical mass ~α0, the QBSs of the BH not
only blur the QNM contribution but provide the
main contribution to waveforms.

(ii) The evanescent nature of the particular partial mode
which could excite the concerned QNM and gen-
erate the resonant behavior of its associated excita-
tion factor. Indeed, if the mass parameter lies near
the critical value ~α0, we shall show that the real part
of the quasinormal frequency is smaller than the
mass parameter and lies into the cut of the retarded

Green function. In other words, the QNM is excited
by an evanescent partial mode and, as a conse-
quence, this leads to a significant attenuation of its
amplitude.

It is interesting to note that, despite the neutralization
process, the waveform amplitude remains rather pro-
nounced (if we compare it with those generated in the
framework of Einstein’s general relativity) and slowly
decaying, this last effect being now due to the excited
long-lived QBSs.
In the article, even if it was not our main initial concern,

we have also briefly consider the behavior of the waveform
for very small values of the reduced mass parameter ~α
corresponding to the weak instability regime. Indeed, our
results concerning the QNMs as well as the QBSs of the
Schwarzschild BH have permitted us to realize that the
waveform associated with the odd-parity l ¼ 1 mode of
the Fierz-Pauli theory could be helpful to test massive
gravity even if the graviton mass is very small: the
fundamental QNM generates a ringing which is neither
giant nor slowly decaying but which is not blurred by the
QBS contribution.
Throughout this article, we adopt units such that

ℏ ¼ c ¼ G ¼ 1. We consider the exterior of the
Schwarzschild BH of mass M defined by the metric
ds2 ¼ −ð1 − 2M=rÞdt2 þ ð1 − 2M=rÞ−1dr2 þ r2dσ22 (here
dσ22 denotes the metric on the unit 2-sphere S2) with the
Schwarzschild coordinates ðt; rÞ which satisfy t ∈� −∞;
þ∞½ and r ∈�2M;þ∞½. We also use the so-called tortoise
coordinate r� ∈� −∞;þ∞½ defined from the radial
Schwarzschild coordinate r by dr=dr� ¼ ð1 − 2M=rÞ
and given by r�ðrÞ ¼ rþ 2M ln½r=ð2MÞ − 1� and assume
a harmonic time dependence expð−iωtÞ for the spin-2 field.

II. WAVEFORMS GENERATED BY AN INITIAL
VALUE PROBLEM AND NEUTRALIZATION

OF GIANT RINGINGS

A. Theoretical considerations

1. Construction of the waveform

We consider the massive spin-2 field in the
Schwarzschild spacetime and we focus on the odd-parity
l ¼ 1 mode of this field theory (see Ref. [8]). The
corresponding partial amplitude ϕðt; rÞ satisfies (to sim-
plify the notation, the angular momentum index l ¼ 1 will
be, from now on, suppressed in all formulas)

�
−

∂2

∂t2 þ
∂2

∂r2� − VðrÞ
�
ϕðt; rÞ ¼ 0; ð1Þ

with the effective potential VðrÞ given by

VðrÞ ¼
�
1 −

2M
r

��
μ2 þ 6

r2
−
16M
r3

�
: ð2Þ
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We describe the source of the BH perturbation by an initial
value problem with Gaussian initial data. More precisely,
we consider that the partial amplitude ϕðt; rÞ is given, at
t ¼ 0, by ϕðt ¼ 0; rÞ ¼ ϕ0ðrÞ with

ϕ0ðrÞ ¼ ϕ0 exp

�
−

a2

ð2MÞ2 ðr�ðrÞ − r�ðr0ÞÞ2
�

ð3Þ

and satisfies ∂tϕðt ¼ 0; rÞ ¼ 0. By Green’s theorem, we
can show that the time evolution of ϕðt; rÞ is described, for
t > 0, by

ϕðt; rÞ ¼
Z þ∞

−∞
∂tGretðt; r; r0Þϕ0ðr0Þdr0�: ð4Þ

Here we have introduced the retarded Green function
Gretðt; r; r0Þ solution of

�
−

∂2

∂t2 þ
∂2

∂r2� − VðrÞ
�
Gretðt; r; r0Þ ¼ −δðtÞδðr� − r0�Þ ð5Þ

and satisfying the condition Gretðt; r; r0Þ ¼ 0 for t ≤ 0. We
recall that it can be written as

Gretðt; r; r0Þ ¼ −
Z þ∞þic

−∞þic

dω
2π

ϕin
ωðr<Þϕup

ω ðr>Þ
WðωÞ e−iωt; ð6Þ

where c > 0, r< ¼ minðr; r0Þ, r> ¼ maxðr; r0Þ and with
WðωÞ denoting the Wronskian of the functions ϕin

ω and ϕup
ω .

These two functions are linearly independent solutions of
the Regge-Wheeler equation

d2ϕω

dr2�
þ ½ω2 − VðrÞ�ϕω ¼ 0: ð7Þ

When ImðωÞ > 0, ϕin
ω is uniquely defined by its ingoing

behavior at the event horizon r ¼ 2M (i.e., for r� → −∞),

ϕin
ωðrÞ ∼

r�→−∞
e−iωr� ; ð8aÞ

and, at spatial infinity r → þ∞ (i.e., for r� → þ∞), it has
an asymptotic behavior of the form

ϕin
ωðrÞ ∼

r�→þ∞

�
ω

pðωÞ
�
1=2

× ðAð−ÞðωÞe−i½pðωÞr�þ½Mμ2=pðωÞ� lnðr=MÞ�

þ AðþÞðωÞeþi½pðωÞr�þ½Mμ2=pðωÞ� lnðr=MÞ�Þ: ð8bÞ

Similarly, ϕup
ω is uniquely defined by its outgoing behavior

at spatial infinity,

ϕup
ω ðrÞ ∼

r�→þ∞

�
ω

pðωÞ
�
1=2

eþi½pðωÞr�þ½Mμ2=pðωÞ� lnðr=MÞ�; ð9aÞ

and, at the horizon, it has an asymptotic behavior of the
form

ϕup
ω ðrÞ ∼

r�→−∞
Bð−ÞðωÞe−iωr� þ BðþÞðωÞeþiωr� : ð9bÞ

In Eqs. (8) and (9),

pðωÞ ¼ ðω2 − μ2Þ1=2 ð10Þ

denotes the “wave number,” while Að−ÞðωÞ, AðþÞðωÞ,
Bð−ÞðωÞ, and BðþÞðωÞ are complex amplitudes which,
like the in- and up- modes, can be defined by analytic
continuation in the full complex ω plane or, more precisely,
in an appropriate Riemann surface taking into account the
cuts associated with the functions pðωÞ and ½ω=pðωÞ�1=2.
By evaluating the Wronskian WðωÞ at r� → −∞ and
r� → þ∞, we obtain

WðωÞ ¼ 2iωAð−ÞðωÞ ¼ 2iωBðþÞðωÞ: ð11Þ

Using (6) into (4) and assuming that the source ϕ0ðrÞ
given by (3) is strongly localized near r ¼ r0 (this can be
easily achieved if we assume that the width of the Gaussian
function is not too large, i.e., if a is not too small) while the
observer is located at a rather large distance from the
source, we obtain

ϕðt; rÞ ¼ −
1

2π
Re

�Z þ∞þic

0þic
dω

�
e−iωt

Að−ÞðωÞ

�

× ϕup
ω ðrÞ

Z þ∞

−∞
dr0�ϕ0ðr0Þϕin

ωðr0Þ
�
: ð12Þ

This formula will permit us to construct numerically the
waveform for an observer at ðt; rÞ.

2. Extraction of the QNM contribution

The zeros of the Wronskian WðωÞ are the resonances of
the BH. Here, it is worth recalling that if WðωÞ vanishes,
the functions ϕin

ω and ϕup
ω are linearly dependent. The zeros

of the Wronskian lying in the lower part of the first
Riemann sheet associated with the function pðωÞ (see
Fig. 16 in Ref. [22]) are the complex frequencies of the
l ¼ 1 QNMs. Their spectrum is symmetric with respect to
the imaginary ω axis. Similarly, the zeros of the Wronskian
lying in the lower part of the second Riemann sheet
associated with the function pðωÞ are the complex frequen-
cies of the l ¼ 1 QBSs and their spectrum is symmetric
with respect to the imaginary ω axis.
The contour of integration in Eq. (12) may be deformed

in order to capture the QNM contribution [15], i.e., the
extrinsic ringing of the BH. By Cauchy’s theorem and if we
do not take into account all the other contributions (those
arising from the arcs at jωj ¼ ∞, from the various cuts and
from the complex frequencies of the QBSs), we can extract
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a residue series over the quasinormal frequencies ωn lying
in the fourth quadrant of the first Riemann sheet associated
with the function pðωÞ. We then isolate the BH ringing
generated by the initial data. It is given by

ϕQNMðt; rÞ ¼ 2Re

�X
n

iωnCne−iωnt

�
pðωnÞ
ωn

�
1=2

ϕup
ωnðrÞ

�
:

ð13Þ
In this sum, n ¼ 0 corresponds to the fundamental QNM
(i.e., the least damped one) and n ¼ 1; 2;… to the over-
tones. Moreover, Cn denotes the excitation coefficient of
the QNM with overtone index n. It is defined from the
corresponding excitation factor

Bn ¼
�

1

2pðωÞ
AðþÞðωÞ
dAð−ÞðωÞ

dω

�
ω¼ωn

ð14Þ

but, in addition, it takes explicitly into account the role of
the BH perturbation. We have

Cn ¼ Bn

Z þ∞

−∞

ϕ0ðr0Þϕin
ωn
ðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωn=pðωnÞ
p

AðþÞðωnÞ
dr0�: ð15Þ

For more precisions concerning the excitation factors
(intrinsic quantities) and the excitation coefficients (extrin-
sic quantities), we refer to Refs. [1,2,17].

B. Numerical results and discussions

1. Numerical methods

To construct the waveform (12), we have to obtain
numerically the functions ϕin

ωðrÞ and ϕup
ω ðrÞ as well as the

coefficient Að−ÞðωÞ for ω ∈ Rþ. This can be achieved by
integrating numerically the Regge-Wheeler equation (7)
with the Runge-Kutta method by using a sufficiently large
working precision. It is necessary to initialize the process
with Taylor series expansions converging near the horizon
and to compare the solutions to asymptotic expansions
with ingoing and outgoing behavior at spatial infinity. In
order to obtain reliable results for “large” values of the mass
parameter, it necessary to decode systematically, by Padé
summation, the information hidden in the divergent part
of the asymptotic expansions considered but also to work
very carefully for frequencies near the branch point þμ.
Moreover, in Eq. (12), we have to discretize the integral
overω. In order to obtain numerically stable waveforms, we
can limit the range of frequencies to −8 ≤ 2Mω ≤ þ8 and
take for the frequency resolution 2Mδω ¼ 1=10000.
The quasinormal frequencies ωn (as well as the complex

frequencies of the QBSs) can be determined by using the
method developed for massive fields by Konoplya and
Zhidenko [23] and which can be numerically implemented
by modifying the Hill determinant approach of Majumdar

and Panchapakesan [24] (for more precision, see Sec. II of
Ref. [1] as well as Appendixes B and C of Ref. [22]).
The coefficients AðþÞðωnÞ, the excitation factors Bn and

the excitation coefficients Cn can be obtained fromϕin
ωðrÞ by

integrating numerically the Regge-Wheeler equation (7) for
ω ¼ ωn andω ¼ ωn þ ϵ (we have taken ϵ ∼ 10−10) with the
Runge-Kutta method and then by comparing the solution to
asymptotic expansions (decoded by Padé summation) with
ingoing and outgoing behavior at spatial infinity.
To construct the ringing (13), we need, in addition to the

quasinormal frequencies ωn and the excitation coefficients
Cn, the functions ϕup

ωnðrÞ. They can be obtained by noting
that ϕup

ωnðrÞ ¼ ϕin
ωn
ðrÞ=AðþÞðωnÞ. It is also important to

recall that the quasinormal contribution (13) does not
provide physically relevant results at “early times” due
to its exponentially divergent behavior as t decreases. In our
previous works [1,2], we have proposed to construct the
starting time tstart of the BH ringing from the group velocity
corresponding to the quasinormal frequency ωn which is
given by vg ¼ Re½pðωnÞ�=Re½ωn�. By assuming again that
the source is strongly localized while the observer is located
at a rather large distance r from the source, we can use for
the starting time

tstart ≈
r�ðrÞ þ r�ðr0Þ

Re½pðωnÞ�=Re½ωn�
: ð16Þ

2. Numerical results and comments

In Fig. 1, we display the effect of the graviton mass on
the complex frequency ω0 of the fundamental QNM and in
Fig. 2, we exhibit the strong resonant behavior of the
associated excitation factor B0 occurring around the critical
value ~α0 ≈ 0.90. Here, we focus on the least damped QNM
but it is worth noting that the same kind of quasinormal
resonant behavior also exists for the overtones but with
excitation factors Bn of much lower amplitude. In Fig. 3,
we exhibit the strong resonant behavior of the excitation
coefficient C0 for particular values of the parameters
defining the initial data (3). It occurs around the critical

FIG. 1. Complex frequency ω0 of the odd-parity (l ¼ 1, n ¼ 0)
QNM (massive spin-2 field). 2Mω0 is followed from ~α → 0 to
~α ¼ 1.05. Above ~α ≈ 1.06, the QNM disappears.
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value ~α0 ≈ 0.89 and is rather similar to the behavior of the
corresponding excitation factor B0. It depends very little on
the parameters defining the Cauchy problem. Of course, for
overtones, the quasinormal resonant behavior is more and
more attenuated as the overtone index n increases. It is also
important to note that the quasinormal resonant behavior
occurs for masses in a range where the fundamental QNM
is a long-lived mode (see Fig. 1). From a theoretical point of
view, if we focus our attention exclusively on Eq. (13) (see
also Refs. [1,2]), it is logical to think that this leads to giant
and slowly decaying ringings. In fact, this way of thinking
is rather naive and it seems that, in waveforms, it is not
possible to exhibit such extraordinary ringings for two
main reasons (here we restrict our discussion to the
fundamental QNM because it provides the most interesting
contribution):

(i) The quasinormal ringing (13) is excited when a
real frequency ω in the integral (12) defining the
waveform coincides with (or is very close to) the
excitation frequency Re½ω0� of the n ¼ 0 QNM. In
the low-mass regime, the wave number pðω ¼
Re½ω0�Þ is a real positive number and the partial

wave which excites the ringing has a propagative
behavior (see Fig. 4). The ringing can be clearly
identify in the waveform (see Fig. 5) even if, as
the mass parameter increases, the quality of the
superposition of the signals decreases. For masses in
the range where the excitation factor B0 and the
excitation coefficient C0 have a strong resonant
behavior, the wave number pðω ¼ Re½ω0�Þ is an
imaginary number (the real part of the quasinormal
frequency is smaller than the mass parameter and
lies into the cut of the retarded Green function) and,

FIG. 2. Resonant behavior, in massive gravity, of the excitation
factor B0 of the odd-parity (l ¼ 1, n ¼ 0) QNM. The maximum
of j2MB0j occurs for the critical value ~α0 ≈ 0.89757; we then
have 2Mω0 ≈ 0.85969073–0.03878222i, 2MB0 ≈ 3.25237þ
19.28190i and j2MB0j ≈ 19.5543.

FIG. 3. Resonant behavior, in massive gravity, of the excitation
coefficient C0 of the odd-parity (l ¼ 1, n ¼ 0) QNM. It is
obtained from (15) by using (3) with ϕ0 ¼ 1, a ¼ 1 and
r0 ¼ 10M. The maximum of j2MC0j occurs for the critical value
~α0 ≈ 0.88808; we then have 2Mω0 ≈ 0.85277076–0.04084908i,
2MC0 ≈ −4.02613–1.93037i and j2MC0j ≈ 4.46498.

FIG. 4. The square of the wave number pðω ¼ Re½ω0�Þ as a
function of the mass. In the low-mass regime, the partial wave
exciting the quasinormal ringing has a propagative behavior
while, for masses in the range where the excitation factor B0 and
the excitation coefficient C0 have a strong resonant behavior, its
has an evanescent behavior.

0

FIG. 5. Comparison of the waveform (12) with the quasinormal
waveform (13). The results are obtained for (a) ~α → 0 and
(b) ~α ¼ 0.25. The parameters of the Gaussian source (3) are
ϕ0 ¼ 1, a ¼ 1 and r0 ¼ 10M. The observer is located at
r ¼ 50M. The quality of the superposition of the two signals
decreases as the mass increases due to the dispersive nature of the
massive field (the excitation of QBSs playing a negligible role).
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as a consequence, the partial wave which could
excite the ringing has an evanescent behavior (see
Fig. 4 as well as Figs. 2 and 3). Theoretically, this
leads to a significant attenuation of the ringing
amplitude in the waveform. In Fig. 6, we display
the waveform for a value of the reduced mass ~α very
close to the critical value ~α0. We cannot identify the
ringing but we can, however, observe that the
amplitude of the waveform is more larger than in
the massless limit and that it decays very slowly.
Such a behavior is a consequence of the excitation of
QBSs (see below).

(ii) For any nonvanishingvalue of the reducedmass ~α, the
QBSs of the Schwarzschild BH are excited. Of
course, their influence is negligible for ~α → 0 (see
Table I and Fig. 5) but increases with ~α (see Fig. 7
wherewedisplays the spectral content of the late-time
tail of the waveform for ~α ¼ 0.25) and, for higher
values of ~α, they can even blur the QNM contribution
(as we have already noted in another context in
Ref. [22]). But near and above the critical value ~α0
of the reducedmass, theQBSs of theBHnot only blur
the QNM contribution but provide the main contri-
bution to waveforms (see Figs. 6 and 8).

It is interesting to also consider waveforms for reduced
mass parameters:

(i) Near the critical value ~α0 but outside the stability
domain (see Figs. 9 and 10 where we display the
waveform corresponding to ~α ¼ 0.82 and its spectral
content).

(ii) Far above the critical value ~α0 (see Figs. 11 and 12
where we display the waveform corresponding to
~α ¼ 1.30 and its spectral content) and, in particular,
for values for which the fundamental QNM does not
exist (see Fig. 1).

In both cases, we can observe the neutralization of the
giant ringing. It is worth noting that the amplitude of the
waveforms is smaller than that corresponding to the critical
value ~α0. In fact, we can observe that this amplitude
increases from ~α → 0 to ~α ≈ ~α0 and then decreases from
~α ¼ ~α0 to ~α → ∞. It reaches a maximum for the critical
mass parameter ~α0. In our opinion, this fact is reminiscent

FIG. 7. The spectral content of the “late-time” phase of the
waveform for ~α ¼ 0.25. The parameters of the Gaussian source
(3) are ϕ0 ¼ 1, a ¼ 1 and r0 ¼ 10M. The observer is located at
r ¼ 50M. We only observe the signature of the first long-lived
QBS (see Table I); it is weakly excited (note its very low
amplitude) and has little influence on the waveform (see Fig. 5).

TABLE I. Odd-parity l ¼ 1mode of massive gravity. A sample
of the first quasibound frequencies ωln.

ðl; nÞ ~α 2Mωln
ð1; nÞ 0 =

(1,0) 0.25 0.24978–9.37148 × 10−13i
(1,1) 0.24988–5.63842 × 10−13i
(1,2) 0.24992–3.30927 × 10−13i
(1,3) 0.24995–2.05049 × 10−13i
(1,4) 0.24996–1.34298 × 10−13i
(1,0) 0.82 0.81077–0.00007i
(1,1) 0.81494–0.00004i
(1,2) 0.81684–0.00003i
(1,3) 0.81784–0.00002i
(1,4) 0.81844–0.00001i
(1,0) 0.89 0.87756–0.00030i
(1,1) 0.88324–0.00019i
(1,2) 0.88580–0.00011i
(1,3) 0.88715–0.00006i
(1,4) 0.88795–0.00004i
(1,0) 1.30 1.25689–0.01719i
(1,1) 1.27712–0.00724i
(1,2) 1.28590–0.00362i
(1,3) 1.29049–0.00204i
(1,4) 1.29317–0.00125i

FIG. 6. Comparison of thewaveforms obtained for ~α → 0 and for
~α ¼ 0.89. The parameters of the Gaussian source (3) are ϕ0 ¼ 1,
a ¼ 1 and r0 ¼ 10M. The observer is located at r ¼ 50M. (a)
Normal plot and (b) semi-log plot.
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FIG. 10. The spectral content of the full waveform for ~α ¼ 0.82
(see also Table I). The parameters of the Gaussian source (3) are
ϕ0 ¼ 1,a ¼ 1 and r0 ¼ 10M. The observer is located at r ¼ 50M.
We observe, in particular, that the first long-lived QBSs are not
excited.

FIG. 12. The spectral content of the full waveform for ~α ¼ 1.30
(see also Table I). The parameters of the Gaussian source (3) are
ϕ0 ¼ 1, a ¼ 1 and r0 ¼ 10M. The observer is located at
r ¼ 50M. We observe, in particular, that the first long-lived
QBSs are not excited.

FIG. 8. (a) The late-time phase of the waveform for ~α ¼ 0.89
and (b) the spectral content of the full waveform. The parameters
of the Gaussian source (3) are ϕ0 ¼ 1, a ¼ 1 and r0 ¼ 10M. The
observer is located at r ¼ 50M. We observe the signature of the
first long-lived QBSs (see also Table I) and beats due to
interference between QBSs of neighboring frequencies.

FIG. 9. Comparison of the waveforms obtained for ~α ¼ 0.89 and
for ~α ¼ 0.82. The parameters of theGaussian source (3) areϕ0 ¼ 1,
a ¼ 1 and r0 ¼ 10M. The observer is located at r ¼ 50M. (a)
Normal plot and (b) semi-log plot.

FIG. 11. Comparison of the waveforms obtained for ~α ¼ 0.89
and for ~α ¼ 1.30. The parameters of the Gaussian source (3) are
ϕ0 ¼ 1, a ¼ 1 and r0 ¼ 10M. The observer is located at r ¼ 50M.
(a) Normal plot and (b) semi-log plot.
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of the theoretical existence of giant ringings. We can also
observe in Fig. 12 that the first long-lived QBSs are not
excited. Indeed, they disappear because (i) their complex
frequencies lie deeper in the complex plane and (ii) the real
part of their complex frequencies is more smaller than the
mass parameter and lies into the cut of the retarded Green
function (see Table I). As a consequence, the partial waves
which could excite them have an evanescent behavior. It is
the mechanism which operates for the fundamental QNM
around the critical value ~α0 and which leads to the non-
observability of giant ringings.

III. CONCLUSION

In this article, we have shown that the giant and slowly
decaying ringings which could be generated in massive
gravity due to the resonant behavior of the quasinormal
excitation factors of the Schwarzschild BH are neutralized
in waveforms. This is mainly a consequence of the
coexistence of two effects which occur in the frequency
range of interest: (i) the excitation of the QBSs of the BH
and (ii) the evanescent nature of the particular partial modes
which could excite the concerned QNMs. It should be
noted that this neutralization process occurs for values of
the reduced mass parameter ~α into the BH stability range
(we have considered ~α ¼ 0.89 and ~α ¼ 1.30) but also
outside this range (we have considered ~α ¼ 0.82).
Despite the neutralization, the waveform characteristics
remain interesting from the observational point of view.
It is also interesting to note that, for values of ~α below

and much below the threshold value ~αt (we have considered
~α ¼ 0.25 and ~α → 0 corresponding to the weak instability
regime for the BH), the situation is very different. Of
course, the ringing is neither giant nor slowly decaying but
it is not blurred by the QBS contribution. As a conse-
quence, it could be clearly observed in waveforms and used
to test massive gravity theories with gravitational waves
even if the graviton mass is very small.
In order to simplify our task, we have restricted our study

to the odd-parity l ¼ 1 partial mode of the Fierz-Pauli
theory in the Schwarzschild spacetime (here it is important
to recall that its behavior is governed by a single differential
equation of the Regge-Wheeler type [see Eq. (1)] while
all the other partial modes are governed by two or three
coupled differential equations depending on the parity
sector and the angular momentum) and we have, moreover,
described the distortion of the Schwarzschild BH by an
initial value problem. Of course, it would be very interest-
ing to consider partial modes with higher angular momen-
tum as well as more realistic perturbation sources but these
configurations are much more challenging to treat in
massive gravity. However, even if we are not able currently
to deal with such problems, we believe that they do not lead
to very different results. Our opinion is supported by some
calculations we have achieved by replacing the massive
spin-2 field with the massive scalar field. Indeed, in this

context and when we consider partial modes with higher
angular momentum, we can observe results rather similar to
those of Sec. II:

(i) If we still describe the distortion of the Schwarzs-
child BH by an initial value problem [25].

(ii) If we consider the excitation of the BH by a particle
plunging from slightly below the innermost stable
circular orbit into the Schwarzschild BH, i.e., if we
use the toy model we developed in Ref. [22] (see
Figs. 13 and 14 and comments in figure captions).

It would be important to extend our study to a rotating
BH in massive gravity. Indeed, in that case, because the
BH is described by two parameters and not just by its mass,
the existence of the resonant behavior of the quasinormal
excitation factors might not be accompanied by the
neutralization of the associated giant ringings.
We would like to conclude with some remarks inspired

by our recent articles [1,2,22] as well as by the present
work. The topic of classical radiation from BHs when
massive fields are involved has been the subject of a large
number of studies since the 1970s but, in general, they
focus on very particular aspects such as the numerical
determination of the quasinormal frequencies, the excita-
tion of the corresponding resonant modes, the numerical
determination of QBS complex frequencies, their role in the
context of BH instability, the behavior of the late-time tail
of the signal due to a BH perturbation … and, moreover,

FIG. 13. The (l ¼ 2, n ¼ 0) QNM of the massive scalar field.
We denote by ω20 its complex frequency and by B20 the
associated excitation factor. (a) Resonant behavior of B20.
(b) The square of the wave number pðω ¼ Re½ω20�Þ as a function
of the mass parameter. For masses in the range where the
excitation factor B20 has a strong resonant behavior, the partial
wave exciting the quasinormal ringing has an evanescent behav-
ior. This leads to a significant attenuation of the ringing amplitude
in the waveform (see Fig. 14).
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they consider these aspects rather independently of each
other. When addressing the problem of the construction of
the waveform generated by an arbitrary BH perturbation
and its physical interpretation, these various aspects must
be considered together and this greatly complicates the
task. If we work in the low-mass regime, its seems that,
mutatis mutandis, the lessons we have learned from
massless fields provide a good guideline but, if this is
not the case, we face numerous difficulties. It is possible to
overcome the numerical difficulties encountered (see
Sec. II B 1) but, from the theoretical point of view, the
situation is much more tricky and, in particular, the
unambiguous identification of the different contributions
(the “prompt” contribution, the QNM and QBS contribu-
tions, the tail contribution …) in waveforms or in the

retarded Green function is not so easy and natural as for
massless fields. In fact, it would be interesting to extend
rigorously, for massive fields, the nice work of Leaver in
Ref. [15] but, in our opinion, due to the structure of the
Riemann surfaces involved as well as to the presence of the
cuts associated with the wave number pðωÞ [see Eq. (10)]
and with the function ½ω=pðωÞ�1=2 [see, e.g., in Eqs. (8b)
and (9a)], this is far from obvious and certainly requires
uniform asymptotic techniques.
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FIG. 14. Quadrupolar waveform ϕ22ðt; rÞ associated with the (l ¼ 2, m ¼ 2) mode of the massive scalar field and generated by a
scalar point particle on a plunge trajectory (see Ref. [22] for the theory). The mass parameter corresponds to the maximum of jB20j (see
Fig. 13) and the observer is located at r ¼ 10M. (a) The quasinormal ringing does not appear in the waveform. The beats are caused by
interferences between QBSs. (b) Spectral content of the adiabatic phase. We observe, in addition to the signature of the quasicircular
motion of the plunging particle, that of the first long-lived QBSs. (c) Spectral content of the late-time phase. We observe a profusion of
long-lived QBSs with an accumulation which converges to the limiting frequency 2Mω ¼ ~α.
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