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Abstract

In this paper we consider the electric vehicle routing problem with nonlinear charging
function (eVRP-NL), a variant of the electric vehicle routing problem with more-realistic
assumptions about the battery charging process. To tackle the problem, we propose an
iterated local search (ILS) enhanced with heuristic concentration (HC). At each iteration,
our ILS applies a variable neighborhood descent (VND) procedure with three different local
search operators and stores the routes of the local optimum in a pool of routes. When the
ILS finishes, the HC component assembles the final solution by recombining routes from
the pool. One original feature of our approach is the use in the VND component of a local
search operator that aims at improving the charging decisions of each route (where and how
much to charge). To achieve this goal, the operator solves a new optimization problem:
the fixed-route vehicle-charging problem (FRVCP). Our implementation solves the FRVCP
using a heuristic and a commercial solver. To test our approach, we propose a new 120-
instance testbed for the e-VRP-PNL. We discuss experiments assessing the performance of
the proposed approach and showing the relevance of making optimal charging decisions.

Keywords: Vehicle routing problem, Electric vehicle routing problem with nonlinear
charging function, Iterated local search (ILS), Matheuristic

1. Introduction

Electric vehicles (EVs) are a promising technology for reducing greenhouse gas emis-
sions and transportation costs in goods distribution (Electrification-Coalition 2013, TU Delft
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2013). Therefore, it is not surprising that every day more companies add EVs to their fleets.
Probably the two earliest successful implementations were those reported by La Poste (Klein-
dorfer et al. 2012) and UPS (UPS 2008). Since then, several companies of different sectors
and sizes have started to use EVs (Nesterova et al. 2015). For instance: the Portuguese
postal company CTT operates with 10 small electric vans (Post & Parcel 2014); Heineken
uses Europe’s larges fleet of EVs to distribute beer in Amsterdam (Heineken 2013); Bimbo,
the largest F&B company in Mexico, signed orders to buy 100 EVs which will use the energy
from a wind farm (Ramirez 2015); and in Colombia a health care company uses EVs for
their home healthcare service (Loaiza 2014).

The use of EVs in goods distribution and services introduces a new family of vehicle
routing problems (VRPs), the so-called electric VRPs (eVRPs) (Pelletier et al. 2016). These
problems extend classical VRPs to consider the limited driving range of EVs and their long
battery charging times. Because of the short driving range, eVRP solutions frequently
include routes with planned detours to charging stations (CSs) where the EVs recharge.
In general, eVRP models make assumptions about the capacity of the CSs, the EV energy
consumption, and the EV battery charging process. This research focuses on the latter.

To model the battery charging process, eVRP models make assumptions about the charg-
ing policy and the charging function approximation. The former defines how much of the
battery capacity can be (or must be) restored when an EV visits a CS, and the latter mod-
els the relationship between battery charging time and charging level. With respect to the
charging policies, the eVRP literature can be classified into two groups: studies assuming
full and partial charging policies. As the name suggests, in full charging policies, the battery
capacity is fully restored every time an EV reaches a CS. Some studies in this group assume
that there is no charging function but rather a constant charging time (Conrad & Figliozzi
2011, Erdoğan & Miller-Hooks 2012, Montoya et al. 2015). This is a plausible assumption in
applications where the CSs replace a (partially) depleted battery with a fully charged one.
On the other hand, Schneider et al. (2014), Hiermann et al. (2016), Desaulniers et al. (2014),
Goeke & Schneider (2015), Schneider et al. (2015), and Szeto & Cheng (2016) consider full
charging policies with a linear charging function approximation (i.e., the battery level is
assumed to be a linear function of the charging time). In their models, the time spent at
each CS depends on the battery level when the EV arrives and on the (constant) charging
rate of the CS. In partial charging policies, the amount of charge (and thus the time spent
at each charging point) is a decision variable. To the best of our knowledge, all existing
eVRP models with partial charging consider linear function approximations (Felipe et al.
2014, Desaulniers et al. 2014, Sassi et al. 2015, Bruglieri et al. 2015, Schiffer & Walther 2015,
Keskin & Çatay 2016).

In practice, using linear approximations to model the charging function may not be
pertinent. Indeed, it is well documented that the charging level is a concave function of the
charging time (Bruglieri et al. 2014, Hõimoja et al. 2012, Pelletier et al. 2015). To assess the
impact of neglecting the nonlinear nature of the charging function, we conducted a study
comparing optimal solutions found under different battery charging assumptions commonly
used in the literature. The results of the study show that solutions found under the linear
approximation assumption may turn out to be infeasible or overly expensive in practice.
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This study can be found in the supplementary material of this paper.
The main contributions of this research are fourfold. First, we introduce the electric

vehicle routing problem with nonlinear charging functions (eVRP-NL), a new eVRP that
considers more realistic assumptions about the charging process. Second, we introduce and
study a new variant of the fixed-route vehicle-charging problem (FRVCP) that appears as a
subproblem of the eVRP-NL. The FRVCP consists in finding the optimal charging decisions
(i.e., where and how much to charge) for a route servicing a fixed sequence of customers.
Third, we propose a hybrid metaheuristic to solve the eVRP-NL and assess its performance
in a new set of benchmark instances. Fourth, analyze our solutions and provide some insight
into the characteristics of good eVRP-NL solutions.

The remainder of this paper is organized as follows. Section 2 describes the problem.
Section 3 introduces our hybrid metaheuristic. Section 4 discusses the FRVCP and presents
two approaches to solve it. Section 5 presents a computational evaluation of the proposed
method. Finally, Section 6 concludes the paper and outlines future work.

2. Problem description

Formally, the eVRP-NL can be defined on a directed and complete graph G = (V,A).
The vertex set V = {0}∪I∪F is made up of a depot (vertex 0), a set of customers I, and a set
of CSs F . Each customer i ∈ I has a service time pi. Each CS i ∈ F has a nonlinear charging
function, which is modeled using a piecewise linear approximation. This approximation is
defined by a set of breakpoints B, where each breakpoint k ∈ B is associated to a charging
time cik and a charge level aik (see Figure 1). The set A = {(i, j) : i, j ∈ V, i 6= j}
corresponds to arcs connecting vertices in V . Each arc (i, j) has two associated nonnegative
values: a travel time tij and an energy consumption eij. The customers are served using
an unlimited and homogeneous fleet of EVs. All the EVs have a battery of capacity Q
(expressed in kWh) and a maximum tour duration Tmax. It is assumed that the EVs leave
the depot with a fully charged battery, and that all the CSs can handle an unlimited number
of EVs simultaneously. Feasible solutions to the eVRP-NL satisfy the following conditions:
each customer is visited exactly once; each route satisfies the maximum-duration limit; each
route starts and ends at the depot; and the battery level when an EV arrives to and departs
from any vertex is between 0 and Q.

Since the distance is directly related to the energy consumption, most work on eVRPs
with homogeneous fleet focuses on minimizing the total distance (Schneider et al. 2014,
Desaulniers et al. 2014, Hiermann et al. 2016, Keskin & Çatay 2016). However, this objective
function neglects the impact of charging operations in the cost of the solutions. This may
lead to decisions such as: charging the batteries more than needed, or charging the batteries
when their level is high. These decisions directly affect the battery’s long-term degradation
cost (which according to Becker et al. (2009) can be threefold the energy cost) and the
charging fees at CSs (Bansal 2015). To better capture the impact of charging operations, in
the eVRP-NL we minimize the total travel and charging time. This objective function has
been studied by Zündorf (2014) and Liao et al. (2016) on related routing problems.

3



𝑐𝑖1 𝑐𝑖2 𝑐𝑖3𝑐𝑖0
𝑎𝑖0

𝑎𝑖1

𝑎𝑖2
𝑎𝑖3 = 𝑄

B
at
te
ry

le
ve
l

Charging time

Figure 1: Piecewise linear approximation composed of 3 linear segments for a CS of 22 kW of power, charging
a battery with Q = 16 kWh.

Figure 2 presents a numerical example illustrating the eVRP-NL. The figure depicts a
solution to an instance with 7 customers and 3 CSs. The CSs have different technologies
(slow and fast), and each technology has a particular piecewise-linear charging function. In
the charging functions, variables qi and oi specify the battery levels when an EV arrives at
and departs from CS i ∈ F . The charging function maps these variables to charging times si
and ei, in order to estimate the time spent at the CS (∆i). In this example, Route 1 does not
visit any CS, because its total energy consumption is less than the battery capacity. On the
other hand Route 2 visits CS 8. In this route, the EV arrives at the CS with a battery level
q8 = 1.0, and it charges the battery to a level o8 = 6.0. To estimate the time spent at the
CS, we use the piecewise-linear charging function: the charging time associated to q8 and o8

are si = 0.8 and ei = 6.0, then the time spent at CS 8 is ∆8 = 6.0− 0.8 = 5.2. The duration
of Route 2 is the sum of the travel time (13.0), the charging time (5.2), and the service time
(1.0), that is, 19.2 which is lower than Tmax. The cost of this route is 18.2 (travel time +
charging time). Finally, Route 3 visits CSs 10 and 9; and it spends ∆10 = 7.2 and ∆9 = 1.6
time units charging in these CSs, respectively. In addition to the problem description and
numerical example, to help the reader understanding the eVRP-NL, we have included a
mixed integer linear programming (MILP) formulation of the problem in the supplementary
material.
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Figure 2: Example of a feasible eVRP-NL solution

3. Hybrid metaheuristic

To solve the eVRP-NL we developed a hybrid metaheuristic combining ILS (Lourenço
et al. 2010) an HC (Rosing & ReVelle 1997). Figure 3 presents the general structure of the
proposed approach (hereafter referred to as ILS+HC).

To find an initial solution we follow a sequence-first split-second approach which uses a
constructive heuristic to build a TSP tour visiting all the customers and a splitting procedure
to retrieve an eVRP-NL solution. Then, at each iteration of the ILS we improve the current
solution using a variable neighborhood descent (VND) (Mladenović & Hansen 1997) with
three local search operators: relocate, 2-Opt, and global charging improvement (GCI). At
the end of each ILS iteration, we update the best solution and add the routes of the local
optimum to a pool of routes Ω. To diversify the search, we concatenate the routes of the
local optimum to build a new TSP tour, and then perturb the new TSP tour. We start a new
ILS iteration by splitting the perturbed TSP tour. After K iterations the ILS component
stops, and we carry out the HC. In this phase, we solve a set partitioning problem over the
set of routes Ω to obtain an eVRP-NL solution. In the remainder of this section, we describe
the main components of our method.
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VND
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Figure 3: General structure of ILS+HC

3.1. Initial solution

We generate the initial TSP tour using the simple and well-known nearest neighbor
heuristic (NN). For a description of NN see Rosenkrantz et al. (1974)

3.2. Split

To extract a feasible solution from a TSP tour, our approach uses an adaptation of the
splitting procedure introduced by Prins (2004). The splitting procedure builds a directed
acyclic graph G∗ = (V ∗, A∗) composed of the ordered vertex set V ∗ = (v0, v1, ..., vi, ..., vn)
and the arc set A∗. Vertex v0 = 0 is an auxiliary vertex, and each vertex vi represents the
customer in the ith position of the TSP tour. Arc (vi, vi+nr) ∈ A∗ represents a feasible route
rvi,vi+nr

with an energy consumption ervi,vi+nr
, starting and ending at the depot and visiting

customers in the sequence vi+1 to vi+nr .
Note that since the TSP tour only includes customers, route rvi,vi+nr

may be energy-
infeasible (i.e., the total energy needed to cover the route is greater than Q). In that case,
we solve a FRVCP to obtain an energy-feasible route by inserting visits to CSs. If visiting
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CSs increases the duration of the route beyond Tmax, we do not include the arc associated
with the route in A∗. Finally, to obtain a feasible eVRP-NL solution, the splitting procedure
finds the set of arcs (i.e., routes) along the shortest path connecting 0 and vn in G∗.

3.3. Variable neighborhood descent

To improve the solution generated by the splitting procedure we use a VND based on
three local search operators. The first two operators, namely, relocate and 2-Opt1, focus
on the customer sequencing decisions. In other words, these two operators only alter the
sequence of customers and do not have the ability to insert, remove, or change the position of
CSs. To update the charging times after a relocate or 2-Opt move we use the rule proposed
by Felipe et al. (2014): when visiting a CS, charge the strict minimum amount of energy
needed to continue the route until reaching the next CS (or the depot if there is no other
CS downstream). If reaching the next CS (or the depot) is impossible, even with a fully
charged battery, the move is deemed infeasible. Similarly, if after updating the charging
times the resulting route is infeasible in terms of the maximum-duration limit, the move is
simply discarded. It is worth nothing that the Felipe et al. (2014) rule is optimal when all
CSs are homogeneous; nonetheless, that is not the case in our eVRP-NL.

As its name suggest, the third operator, global charging improvement or GCI, focuses on
the charging decisions. GCI is applied to every route visiting at least one CS. The operator
works as follows. First, GCI removes from the route all visits to CSs. If the resulting route
is energy-feasible, the operator stops. On the other hand, if the route is energy-infeasible,
GCI solves a FRVCP trying to optimize the charging decisions (where and how much to
charge) for the concerned route. Depending on the configuration, our ILS+HC solves the
underlying FRVCP either heuristically or optimally. Full details on the FRVCP and the
solution techniques embedded in our approach to solve it are given in Section 4.

3.4. Perturb

To diversify the search our approach concatenates the routes of the current best solution
to build a TSP tour. Then, we perturb the resulting TSP tour with a randomized double
bridge operator (Lourenço et al. 2010) and then apply the split procedure to obtain a new
eVRP-NL solution.

3.5. Heuristic concentration

Finally, the heuristic concentration component solves a set partitioning formulation over
the pool of routes Ω. The objective is then to select the best subset of routes from Ω to
build the final solution guaranteeing that each customer is visited by exactly one route.

1In our implementation we use intra-route and inter-route versions with best-improvement selection.
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4. The fixed-route vehicle-charging problem

As mentioned above our ILS+HC relies on solving a variant of the FRVCP at two specific
points of its execution: when evaluating routes in the split procedure, and when searching the
GCI neighborhood. The FRVCP is a variant of the well-known fixed-route vehicle-refueling
problem (FRVRP). The FRVRP seeks the minimum-cost refueling policy (which fuel stations
to visit and the refueling quantity at each visited station) for a given origin-destination route
(Suzuki 2014). Most of the research carried on the FRVRP and its variants applies only
to internal combustion vehicles (which have negligible refueling times). Nonetheless, a few
FRVCP variants have received attention in the literature. Most of these variants assume
full charging policies (Montoya et al. 2015, Hiermann et al. 2016, Liao et al. 2016). To our
knowledge, only Sweda et al. (2016) assume a partial charging policy. Their problem differs
from ours in three fundamental ways: i) they do not take into account the charging times
(because their objective is to minimize the energy and degradation costs), ii) they do not
deal with maximum route duration constraints, and iii) in their problem the CSs are already
included in the fixed route and no detours are to be planned. In the remainder of this section
we introduce our FRVCP and the techniques embedded in our approach to solve it. For the
sake of simplicity, in the remainder of the manuscript to refer to our FRVCP variant simply
as the FRVCP.

Let Π = {π(0), π(1), ..., π(i), ..., π(j), ..., π(nr)} be an energy-infeasible route, where π(0)
and π(nr) represent the depot. The route has a total time t, which is the sum of the travel
times plus the service times. The feasibility of Π may be restored by inserting visits to
CSs. As mentioned in Section 2, each CS j ∈ F has a piecewise-linear charging function
defined by a set of breakpoints B. The piecewise linear function is composed by a set of
segments. Each segment is defined between the breakpoints k− 1 and k ∈ B, it has a slope
ρjk (representing a charging rate), and it is bounded between the battery levels ajk−1 and
ajk (see Figure 4a). Figure 4b shows the fixed-route Π and the possible visits to the CSs
between two vertices of Π. In Figure 4b the values eπ(i−1)π(i) and tπ(i−1)π(i) represent the
energy consumption and the travel time between vertices π(i− 1) and π(i) ∈ Π. Similarly,
eπ(i−1)j and tπ(i−1)j represent the energy consumption and the travel time between vertex
π(i− 1) ∈ Π and CS j ∈ F , and ejπ(i) and tjπ(i) represent the energy consumption and the
travel time between the CS j ∈ F and vertex π(i) ∈ Π.

In the FRVCP the objective is to find the charging decisions (where and how much
to charge) that minimize the sum of the charging times and detour times while satisfying
the following conditions: the level of the battery when the EV arrives at any vertex is
nonnegative; the charge in the battery does not exceed its capacity; and the route satisfies
the maximum-duration limit. Since the FRVRP is NP-hard (Suzuki 2014) and the FRVCP
generalizes the FRVRP, we can conclude that the FRVCP is also NP-hard.

4.1. Mixed-integer linear programming formulation

We formulate the FRVCP using the following decision variables: variable επ(i)j is equal
to 1 if the EV charges at CS j ∈ F before visiting vertex π(i) ∈ Π. Variable φπ(i) tracks the
battery level. If επ(i)j = 0, φπ(i) is the battery level when the EV arrives at vertex π(i). On
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Figure 4: Piecewise-linear charging function and fixed-route for the FRVCP

the other hand, if επ(i)j = 1, φπ(i) is the battery level when the EV arrives at CS j ∈ F right
before visiting vertex π(i). Variable θπ(i)jk is equal to 1 if the EV charges on the segment
defined by breakpoints k−1 and k ∈ B at CS j ∈ F before visiting vertex π(i) ∈ Π. Finally,
variables δπ(i)jk and µπ(i)jk are (respectively) the amount of energy charged and the battery
level when the charging finishes on the segment between breakpoints k− 1 and k ∈ B at CS
j ∈ F before the visit to vertex π(i) ∈ Π. The MILP formulation of the FRVCP follows:

min
∑

π(i)∈Π\{π(0)}

∑
j∈F

∑
k∈B\{0}

δπ(i)jk

ρjk
+

∑
π(i)∈Π\{π(0)}

∑
j∈F

επ(i)j(tπ(i−1)j + tjπ(i) − tπ(i−1)π(i)) (1)
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Subject to

φπ(1) = Q−
∑
j∈F

επ(1)jeπ(0)j − eπ(0)π(1)

1−
∑
j∈F

επ(1)j

 (2)

φπ(i) = φπ(i−1) +
∑
j∈F

∑
k∈B\{0}

δπ(i−1)jk −
∑
j∈F

επ(i−1)jejπ(i−1)−

∑
j∈F

επ(i)jeπ(i−1)j − eπ(i−1)π(i)

1−
∑
j∈F

επ(i)j

 ∀π(i) ∈ Π \ {π(0), π(1), π(nr)}

(3)

φπ(nr) = φπ(nr−1) +
∑
j∈F

∑
k∈B\{0}

δπ(nr−1)jk+

∑
j∈F

∑
k∈B\{0}

δπ(nr)jk −
∑
j∈F

επ(nr−1)jejπ(nr−1)−

∑
j∈F

επ(nr)j(eπ(nr−1)j + ejπ(nr))− eπ(nr−1)π(nr)

1−
∑
j∈F

επ(nr)j

 (4)

φπ(nr−1) +
∑
j∈F

∑
k∈B\{0}

δπ(nr−1)jk −
∑
j∈F

ejπ(nr−1)επ(nr−1)j−

∑
j∈F

eπ(nr−1)jεπ(nr)j

)
≥ 0 (5)

µπ(i)j1 = φπ(i) + δπ(i)j1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (6)

µπ(nr)j1 = φπ(nr−1) +
∑
l∈F

∑
k∈B\{0}

δπ(nr−1)lk−∑
l∈F

elπ(nr−1)επ(nr−1)l − επ(nr)jeπ(nr−1)j + δπ(nr)j1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (7)

µπ(i)jk = µπ(i)j,k−1 + δπ(i)jk ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0, 1} (8)

µπ(i)jk ≥ ajk−1θπ(i)jk ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0, 1} (9)

µπ(i)jk ≤ ajkθπ(i)jk + (1− θπ(i)jk)Q ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (10)∑
j∈F

επ(i)j ≤ 1, ∀π(i) ∈ Π \ {π(0)} (11)

θπ(i)jk ≤ επ(i)j ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (12)

δπ(i)jk ≤ θπ(i)jkQ ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (13)

t+
∑

π(i)∈Π\{π(0)}

∑
j∈F

∑
k∈B\{0}

δπ(i)jk

ρjk
+

∑
π(i)∈Π

∑
j∈F

επ(i)j(tπ(i−1)j + tjπ(i))− tπ(i−1)π(i)) ≤ Tmax (14)

φπ(i) ≥ 0, ∀πi ∈ Π \ {π(0)} (15)

επ(i)j ∈ {0, 1}, ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (16)

θπ(i)jk ∈ {0, 1} ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (17)

δπ(i)jk ≥ 0 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (18)

µπ(i)jk ≥ 0 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (19)
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The objective function (1) seeks to minimize the total route time (including charging
and detour times). Constraints (2-5) define the battery level when the EV arrives at vertex
π(i) ∈ Π if επ(i)j = 0; or to CS j ∈ F before visiting vertex π(i) ∈ Π, if επ(i)j = 1. Constraints
(6-8) define the battery level when the EV finishes charging at CS j ∈ F in the segment
between breakpoints k − 1 and k ∈ B before visiting vertex π(i) ∈ Π. Constraints (9-10)
ensure that if the EV charges on a given segment, the battery level lays between the values
of its corresponding break points (aj,k−1 and ajk). Constraints (11) state that only one CS
is visited between any two vertices of the fixed route. Constraints (12) ensure that the EV
only uses segments of visited CSs. Likewise, constraints (13) ensure that the EV charges
only at selected segments of visited CSs. Constraint (14) represents the duration constraint
of the route. Finally, constraints (15-19) define the domain of the decision variables.

4.2. Solving the FRVCP

To solve the FRVCP, we embedded into our method two different solution approaches.
The first consists in solving the MILP introduced in the previous subsection using a com-
mercial solver. The second consist in solving the problem using a greedy heuristic adapted
from the literature. The remainder of this subsection describes these approaches.

4.2.1. Approach 1: commercial solver

Because of its verbosity, at first glance the model introduced in Section 4.1 may seem
too complex to be efficiently solved using out-of-the-box software. Nonetheless, since in
practice the number customers per route and the number of available CSs tend to be low,
the resulting MILP formulations are within the scope of commercial solvers. For instance,
on an problem with 8 CSs, the MILP formulation for a fixed route serving 10 customers has:
539 continuous variables, 352 integer variables, and 1,263 constraints2. We optimally solved
that model using Gurobi Optimizer (version 5.6.0) in 0.06s. Based on this observation we
decided to embed into our ILS+HC a component that relies on a commercial solver to tackle
the FRVCP.

To further reduce the size of the MILP formulation and consequently improve solver’s
performance, we propose four preprocessing strategies that eliminate infeasible CSs inser-
tions. Our strategies rely on the two following premises: (i) the energy consumption and the
travel time between vertices satisfy the triangular inequality; and (ii) since the piecewise-
linear charging function is concave (i.e., ρj,k−1 ≥ ρjk), the first segment has the fastest
charging rate.

We propose two types of strategies. The first three strategies filter CS insertions that
are infeasible independently of how the customers are packed and sequenced in the routes.
These strategies are applied only once before running the ILS+HC. On the other hand, the
fourth strategy filters CS insertions that are infeasible for a particular fixed route.

2We randomly picked the route from the best solution found to a randomly picked instance
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Strategy 1 : This strategy estimates the minimum time τ needed to visit CS j ∈ F between
two vertices i and h ∈ I ∪ {0}. This time is defined as the sum of a lower bound on
the travel time (u) and a lower bound on the charging time (v) of any route serving
customers i and h. Note that in any route serving customer i, t0i is a lower bound on
the route’s duration from the start up to customer i. Similarly, note that in any route
servicing customer h, th0 is a lower bound on the time needed to complete a route from
vertex h. Based on these two observations we can compute the minimum duration of
a route visiting CS j between vertices i and h as u = t0i + tij + tjh + th0 + pi + ph. To
compute the minimum charging time v, we need to compute the minimum amount of
energy (ec) that an EV coming from vertex i and traveling to vertex h must charge
at CS j. This amount is the charge needed to recover the energy consumed to make
the detour to j, that is, ec = eij + ejh − eih. Because the battery level when the EV
arrives at i in any eVRP-NL solution is unknown a priori, we consider that the battery
is charged at j using the fastest charging rate (ρ0j). Then v = ec

ρ0j
. It is clear that if

τ = u+ v > Tmax any route visiting CS j between customers i and h is infeasible. We
therefore forbid this insertion in our MILP.

Strategy 2 : This strategy computes a lower bound on the remaining energy that an EV
must have at arrival to customer i to be able to visit CS j right after. Note that in
terms of energy remaining, the best way to reach vertex i is to visit it right after fully
charging at CS c(i) = arg minl∈F∪{0} eli. If Q − ec(i)i < eij any route visiting j after i
is energy-infeasible and we can safely forbid this insertion in our MILP.

Strategy 3 : Note that o = Q− eji is a lower bound on the energy remaining when an EV
arrives at customer i right after charging at CS j. Note also that o must be enough
to at least close the route (reach the depot) or reach the closest CS in terms of energy
consumption. If o < eic(i), where c(i) = arg minl∈F∪{0} eil, any route visiting j before i
is energy-infeasible and we can safely forbid this insertion.

Strategy 4 : This strategy estimates a lower bound on the new duration of a given fixed
route if CS j ∈ F is inserted between vertices π(i) and π(i + 1) ∈ Π, i 6= nr. This
bound, t′, is defined as the sum of the new travel time (u) and a lower bound on the
charging time (v). It is easy to see that u = t+ tπ(i)j + tjπ(i+1)− tπ(i)π(i+1). Similarly to
Strategy 1, to estimate v, we consider that the battery is charged at j using the fastest
charging rate. Therefore v = ec

ρ0j
, where ec = eπ(i)j + ejπ(i+1) − eπ(i)π(i+1) is the charge

needed to recover the energy consumed in the detour to j. If t′ = (u + v) > Tmax,
inserting j between vertices π(i) and π(i + 1) leads to an infeasible route, so we can
safely forbid this insertion.

Applying our preprocessing strategies to the MILP formulation for the 10-customer route
of the example above, the model reduces to: 71 continuous variables, 40 integer variables,
and 165 constraints. We solved the model in Gurobi in 0.02s.
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4.2.2. Approach 2: greedy heuristic

Existing metaheuristics for eVRPs use different approaches to make charging decisions.
One popular approach is the recharge relocation operator proposed by Felipe et al. (2014) for
the green vehicle routing problem with multiple technologies and partial recharges (GVRP-
MTPR). This approach considers the insertion of only one CS per route. Starting from
an energy-feasible fixed-route the procedure first deletes the current CS. Then, it tries to
improve the charging decisions by inserting each CS into each arc of the fixed-route. To
decide how much energy to charge at the inserted CS, the algorithm applies a simple rule:
charge the minimum amount of energy needed to reach the depot (i.e., to complete the
route). We propose here a heuristic to solve the FRVCP based on this approach.

Our heuristic works in two phases: location of CSs and charge setting. In the first phase,
the heuristic iteratively inserts CSs into the arcs of the fixed-route Π in order to ensure
the feasibility in terms of energy. In the second phase, the heuristic improves the charging
decisions by adjusting the energy charged at each visited CS. Algorithm 1 describes the struc-
ture of our heuristic. It uses four important procedures trackBattery(·), sumNegative(·),
totalTime(·), and copyAndInsert(·). Procedure trackBattery(·) computes the battery
level Yi at each vertex i ∈ Π, assuming that the EV fully charges its battery at each visited
CS. Note that Yi may take negative values. Procedure sumNegative(·) computes the sum of
the battery levels with negative values (i.e., s =

∑
i∈Π min{0, Yi}). Procedure totalTime(·)

computes the total time t of the route (supposing a full charging policy). Finally, procedure
copyAndInsert(·) takes as input a fixed route, a CS, and a position in the route; and returns
a copy of the fixed route with the CS inserted at the given position.

The heuristic starts by the location phase (line 2-27). After computing s for the current
fixed-route Π, the heuristic enters the outer loop (line 7-27). In each pass through the inner
loop (line 8-25), the heuristic: i) evaluates the insertion of a CS into each arc of Π assuming
that the EV fully charges its battery, and ii) selects the insertion that maximizes s (lines
14-18). If s = 0 (i.e., the route is energy-feasible), the heuristic selects the insertion that
minimizes t (line 19-23). Then, the heuristic performs the selected insertion (line 26). If the
route Π is still energy-infeasible (i.e., s < 0), the heuristic starts again at line 8 and tries to
insert additional CSs until feasibility in terms of energy is reached.

In the charge setting phase (line 28), the heuristic invokes procedure ruleMinEnergy(Π)

to set the energy charged at each CS following the Felipe et al. (2014) rule. Finally, the
heuristic evaluates if the route satisfies the maximum-duration constraint (29-33). The
heuristic returns a boolean variable indicating whether or not the fixed-route is feasible (f),
and the route Π with the newly inserted CSs.
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Algorithm 1 Greedy heuristic

1: function GreedyHeuristic(Π0,F )
2: Π←− Π0

3: Y ←− trackBattery(Π)

4: s←− sumNegative(Y )
5: t←−∞
6: f ←− false
7: while s < 0 do
8: for j = 1 to |F | do
9: for i = 0 to nr − 1 do

10: Π′ ←− copyAndInsert(Π, Fj, i)
11: Y ′ ←− trackBattery(Π′)
12: s′ ←− sumNegative(Y ′)
13: t′ ←− totalTime(Π′)
14: if s′ > s then
15: s←− s′

16: u←− j
17: v ←− i
18: end if
19: if s′ = 0 and t′ < t then
20: t←− t′

21: u←− j
22: v ←− i
23: end if
24: end for
25: end for
26: Π←− copyAndInsert(Π, Fu, i)
27: end while
28: 〈t,Π〉 ←− RuleMinEnergy(Π)

29: if t ≤ Tmax then
30: f ←− true
31: else
32: Π←− Π0

33: end if
34: return f , Π
35: end function

5. Computational experiments

In this section, we present three computational studies. The first study compares the
quality of the solutions obtained by two versions of our metaheuristic. The second study
evaluates the CPU time of our metaheuristic, and assesses the impact of the preprocessing
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strategies. Finally, the third study analyses the charging decisions of the best solutions
found.

5.1. Test instances for the eVRP-NL

To test our approach, we generated a new 120-instance testbed built using real data of
EV configuration and battery charging functions. In order to ensure feasibility, we opted to
generate our instances instead of adapting a existing dataset from the literature. To build
the instances we first generated 30 sets of customer locations with {10, 20, 40, 80, 160, 320}
customers. For each instance size, we generated 5 sets of customers location. We located the
customers in a geographic space of 120 x 120 km using either a random uniform distribution,
a random clustered distribution, or a mixture of both. For each of the 30 sets of locations
we chose the customer location strategy using a uniform probability distribution. Our main
motivation to choose a 120 x 120 geographic area was to build instances representing a semi-
urban operation. These operations are the best suited applications for eVRPs. Indeed, in
city operations routes tend to be sufficiently short to be covered without mid-route charging.
On the opposite side, in rural operations routes tend to be long enough to required multiple
mid-route charges but access to charging infrastructure is very limited (at least for 2016
standards).

From each of the 30 sets of locations we built 4 instances varying the level of charging
infrastructure availability and the strategy used to locate the CSs. We considered two
levels of charging infrastructure availability: low and high. To favor feasibility, for each
combination of number of customers and infrastructure availability level we handpicked
the number CSs as a proportion of the number of customers. We located the CSs either
randomly or using a simple p-median heuristic. Our p-median heuristic starts from a set of
randomly generated CS locations and iteratively moves those locations trying to minimize
the total distance between the CSs and the customers. In our instances, we included three
types of CSs: slow, moderate, and fast. For each CS we randomly selected the type using a
uniform probability distribution.

The EVs in our instances are Peugeot Ion. This EV has a consumption rate of 0.125 kWh/km,
and a battery of 16 kWh. Note that an EV with this characteristics is well suited to service
applications such as homecare routing. In reality the exact energy consumption on an arc
(eij) varies with parameters such as the cumulative elevation gain, the external temperature,
the speed, and the use of peripherals (e.g., the radio). Nonetheless, for the sake of simplicity
we followed the classical approach in the literature and assumed that the energy consump-
tion on an arc is simply the EV’s consumption rate multiplied by the arc’s distance. To
generate the charging functions we fit piece-wise linear functions to the real charging data
for a 16 kWh battery provided by Uhrig et al. (2015). Figure 5 depicts our piece-wise lin-
ear approximations. Finally, the maximum route duration for every instance was fixed to
10 hours. Our 120 instances are publicly available at www.vrp-rep.org (Mendoza et al.
2014)3.

3The instances will be made effectively public after the completion of the reviewing process
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Type of CSs Slow Moderate Fast

Charging power (kWh/h) 11 22 44
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Figure 5: Piecewise linear approximation for different types of CS charging an EV with a battery of 16 kWh.

5.2. Parameter settings & experimental environment

As discussed in Section 4.2 our ILS+HC can be configured to solve the FRVCP using
two different approaches, namely, the commercial solver and the greedy heuristic. We tested
our algorithm with two different configurations. The first configuration (ILS(S)+HC) uses
the commercial optimizer to solve the FRVCP in the GCI neighborhood, while the second
configuration (ILS(H)+HC) uses the greedy heuristic. In both configurations, the algorithm
solves the FRVCP in the split procedure using the greedy heuristic. This choice was guided
by computational performance.

To fine tune the number of iterations of the ILS component (i.e., K), we conducted a
short computational study. Our results showed that K = 80 provides the best trade-off
between solution quality and computational performance. For the sake of brevity we do not
discuss the study in this paper.

We implemented our ILS in Java (jre V.1.8.0) and used Gurobi Optimizer (version 5.6.0)
to solve the FRVCP and the set partitioning problem in the HC component. We set a
time limit of 800 seconds on Gurobi to control the running time of the HC phase. All the
experiments were run on a computing cluster with 2.33 GHz Inter Xeon E5410 processors
with 16 GB of RAM running under Linux Rocks 6.1.1. The results delivered by the two
ILS+HC configurations are compared over 10 runs. Each replication of the experiments was
run on a single processor.

5.3. Solution accuracy: optimal vs. heuristic charging decisions

Since the eVRP-NL is a new problem, there are no results or algorithms to benchmark
against. To get an idea of the quality of the solutions delivered by our ILS+HC, we ran its two
versions, ILS(S)+HC and ILS(H)+HC, on the twenty 10-customer instances and compared
their results with optimal solutions found using the MILP for the eVRP-NL presented in
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the supplementary material. Table 1 summarizes the results comparing the two algorithms
under the light of four metrics: the number of optimal solutions found, the average and
maximum gap with respect to the optimal solution over the 10 runs, and the average best
gap4. AppendixA presents detailed results for the 20 instances.

Table 1: Comparison of the two versions of the metaheuristic on small instances with proven optima

Metric ILS(H)+HC ILS(S)+HC

Number of optimal solutions 15/20 20/20
Avg. Gap (%) 1.97 0.34
Max. Gap (%) 17.07 1.87
Avg. Best Gap (%) 1.20 0.00

The results suggest that our algorithms are able to deliver high-quality solutions for
the eVRP-NL. As shown in the table, ILS(S)+HC matched the 20 optimal solutions while
ILS(H)+HC matched 15. The spread in the number of optimal solutions and the values
reported for Avg. Best Gap tip the balance towards ILS(S)+HC over ILS(H)+HC in terms
accuracy. This result is not surprising since one could expect that making optimal, instead
of heuristic, charging decisions would translate into higher quality solutions. A close look at
the Avg. and Max. gaps reveals a less foreseeable result: ILS(S)+HC exhibits a significantly
more stable behavior than ILS(H)+HC.

To compare the performance of ILS(S)+HC and ILS(H)+HC on more industrial-sized
instances we ran both algorithms on the remaining 100 benchmarks. Table 2 summarizes
the results. In the comparison we employed the same metrics introduced above, replacing
the number of optimal solutions by the number of best known solutions (BKSs) found. As
a reference, we included in the table the results delivered by the commercial solver running
the MILP for 10h. It is worth mentioning that Gurobi reported integer solutions for only 25
out of the 100 instances. None of these 25 solutions has a certificate of optimality. Detailed
results for each instance can be found in AppendixA.

The results in Table 2 confirm the conclusions drawn on our first experiment: optimally
solving the FRVCP in the ICG neighborhood leads to a more accurate and stable solution
method. According to our data, ILS(S)+HC not only found the 100 BKSs but also reported
significantly lower Avg. and Max. gaps (1.51% and 4.44% vs. 7.51% and 28.68%).

5.3.1. The cost of making optimal charging decisions

In Section 5.3 we showed the benefits of making optimal charging decisions when solving
the eVRP-NL. This benefits, however, comes at the price of losing computational perfor-
mance. To estimate this loss, we measured the execution times of three versions of our
algorithm on the 120 instances: ILS(S)+HC, ILS(H)+HC, and ILS(S’)+HC. The latter is
a version of ILS(S)+HC running without our preprocessing strategies (see §4.2.1). Table 3

4The best gap is the gap between the best solution found over 10 runs and the optimal solution
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Table 2: Comparison of the two versions of the metaheuristic on large instances

Metric Gurobi ILS(H)+HC ILS(S)+HC

Number of solutions 25/100 100/100 100/100
Number of BKSs 7/100 7/100 100/100
Avg. Gap (%) 41.36 7.51 1.51
Max. Gap (%) NA 28.68 4.44
Avg. Best Gap (%) NA 5.28 0.00

reports for each instance size, the average execution time (in seconds) of each algorithm. In
addition, the last column of the table reports the average speedup between ILS(S′)+HC and
ILS(S)+HC (measured as the ratio of their execution times).

Not surprisingly, the results show that ILS(H)+HC is the fastest approach. It is in-
teresting to note that in relative terms, the gap in computational performance between
ILS(H)+HC and ILS(S)+HC decreases with the size of the instance. This behavior can be
explained by the positive correlation between the instance size and the time needed to solve
the set partitioning model in the HC phase. Indeed, the latter heavily depends on the size
of the pool Ω which, in turn, is more correlated to the size of the instance than to the strat-
egy used to generate the routes. In other words, on large instances both algorithms spend
around the same (considerable) amount of time solving the HC phase. As a consequence,
the performance gap in the ILS phase becomes less remarkable.

A second interesting conclusion from this study is that the preprocessing strategies have
a remarkable positive impact on the computational performance of the algorithm. As the
table shows, on average, the strategies are responsible for a 1.65 speedup on the execution
time. The data also suggests that the speedup is independent of the size of the instance.
A plausible explanation for this behavior is that for a given instance both ILS(S)+HC and
ILS(S’)+HC evaluate around the same number of routes during the ILS phase.

Table 3: Average computing time (in seconds) of different variants of the metaheuristic

Instance size ILS(H)+HC ILS(S′)+HC ILS(S)+HC Speedup

10 0.64 8.54 5.62 1.52
20 1.75 17.47 10.56 1.65
40 8.48 64.16 35.35 1.82
80 39.35 148.76 80.11 1.86
160 289.08 976.84 568.02 1.72
320 2,568.94 5,759.67 4,397.64 1.31
Average 484.71 1,162.57 849.55 1.65
Max 4,766.36 10,335.56 7,636.50 2.53
Min 0.49 3.71 2.36 1.16

ILS(S)+HC and ILS(S′)+HC are the hybrid metaheuristic with and without preprocessing strategies, respectively
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5.3.2. Characteristics of good eVRP-NL solutions

We analyze in this section the characteristics of the BKSs found in our experiments. We
aim to provide the reader with some insight that may be useful when designing new solution
methods for the eVRP-NL.

In total, our BKSs are made up of 1,426 routes. Our first analysis concerns the fraction
of those routes that exploit mid-route charging. Figure 6 presents the percentage of routes
with and without visits to CSs grouped by instance size. The data shows that on average
71.47% of the routes in the BKSs visit at least one CS. This percentage is roughly the same
for each instance size. This figure provides two insights. First, mid-route charging is a
key element of good eVRP-NL solutions (probably because it gives algorithms flexibility to
better pack the customers into the routes). Second, since charging decisions concern most
of the routes making up a good solution, they play a critical role in its quality. The latter
observation helps explaining the spread on accuracy between ILS(S)+HC and ILS(H)+HC
found in the computational studies reported in §5.3.
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Figure 6: Percentage of the routes with/without visits to CSs by instance size.

The second analysis concerns the number of mid-route charges per route. Figure 7a
and 7b present histograms of the number mid-route charges per route and the maximum
number of mid-route charges per route on a solution. Figure 7a shows that among the routes
performing mid-route charging, 58.58% do it once, 40.00% twice, and 1.43% three times.
Although a large portion of the routes perform a single mid-route charge, 85.83% of the
solutions contain at least one route performing more than one mid-route charge (Figure 7b).
This figures suggest that models and methods for the eVRP-NL can benefit from relaxing
the at-the-most-one-visit-to-a-CS-per-route constraint that is sometimes used in the eVRP
literature.

The third analysis concerns the energy recovered through mid-route charges. Figure
8 presents the histogram of the average battery level (in % of the total battery capacity)
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(b) Histogram of the maximum number of visited CSs
in the routes of each solution.

Figure 7: Analysis of the number of visits to CSs

after a mid-route charge. The numbers show that over 90% of the mid-route charges are
partial charges (i.e., they do not fully charge the battery). This figure tips the importance of
embedding components capable of making partial charging decisions into eVRP-NL solution
methods5. A second interesting observation from the data displayed in Figure 8 comes from
the percentage (around 12%) of mid-route charges that restore the battery above 80% of its
capacity. As mentioned in the study reported in the supplementary material, one common
assumption in the eVRP literature is that the battery can only be charge on the linear
segment of the charging curve (which ends at roughly 80% of the battery capacity). Our
data suggest that good eVRP-NL solutions often include routes with mid-route charges that
take the battery level up to the non-linear part of the charging function.

5Note that up to 2016 this was rather the exception than the rule in the eVRP literature
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Figure 8: Histogram of the average battery level (in % of the total battery capacity) after a mid-route charge

6. Conclusion and future work

This paper introduces an extension of the electric vehicle routing problem which considers
more-realistic assumptions about the battery charging process: the electric vehicle routing
problem with nonlinear charging function (eVRP-NL). To solve the problem we propose
an iterated local search (ILS) enhanced with heuristic concentration (HC). At the heart
of the proposed method lays a neighborhood scheme consisting in solving a new variant
of the fixed-route vehicle-charging problem (FRVCP). This problem consists in optimizing
the charging decisions (where and how much to charge) of a route serving a fixed sequence
of customers. Depending on the configuration, our ILS+HC solves the underlying FRVCP
either using a greedy heuristic or a commercial solver. To improve the performance of the
solver, we proposed four preprocessing strategies that eliminate infeasible detours to CSs.
To assess the performance of our method, we built a set of 120 instances based on real EV
and battery charging data. Tested on 20 small 10-customer instances, our method matched
the optimal solutions for every instance. Experiments conducted on larger instances proved
the value of equipping eVRP-NL algorithms with components capable of making optimal
charging decisions. Finally, we analyzed the solutions delivered by our method aiming
to provide fellow researchers with some insight into the characteristics of good eVRP-NL
solutions. Our analysis concluded that good eVRP-NL solutions tend to use multiple mid-
route charges, exploit partial recharges, and employ the non-linear segment of the battery
charging function.

Interesting research directions include designing alternative eVRP-NL methods (both
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exact and heuristic) to have a better base of comparison for our results. Another interesting
perspective is to develop approaches for the FRVCP that offer a different trade off between
accuracy and efficiency than those of the two approaches proposed in this paper. In ongoing
research, we are extending the problem definition to consider a cost objective function, and
time windows.
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AppendixA. Detailed results of the hybrid metaheuristic

Tables A.4 and A.5 show the results of our two ILS versions (i.e, ILS(S)+HC and
MILP(H)+HC) for the small and large eVRP-PNL instances. In Table A.4, we compare
our results with the optimal solutions found by Gurobi using the MILP formulation. In
Table A.5, we compare our results with the best results obtained with Gurobi. For each
instance, we report the problem name6, and the best solution (BKS) taken from the results
of Gurobi, ILS(H)+HC or ILS(S)+HC.

For the results obtained with Gurobi, we report the best solution (Best), and the gap with
respect to the BKS (G) 7. For the results obtained with the ILS(H)+HC and ILS(S)+HC,
we report the best solution, the average solution (Avg.), and the average computing time (t
in seconds) over ten runs. For the ILS(S)+HC, we also report the average computing time
using the preprocessing procedure (t∗). For the two ILS+HC versions, we provide the gap
of the average solution and best solution with reference to the BKS. The last rows of the
table summarize the average and maximum BKS gap, the number of times each method
found the BKS, and the average and maximum running time. Values in bold indicate that
a method found the BKS.

6tcαααcβββsµµµcεεε###, where ααα is the type of the location of the customers (i.e., 0:randomize, 1:cluster, 2: mixture
of both), βββ is the number of customers, µµµ is the number of the CSs, εεε is ‘t’ if we use a p-median heuristic to
locate the CSs and ‘f’ otherwise, and ### is the number of the instance for each combination of parameters
(i.e., # = 0, 1, 2, 3, 4)

7G(%) = (of − ofBKS)/ofBKS × 100
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Table A.4: Results of ILS(H)+HC and ILS(S)+HC on the 20 small instances

Gurobi ILS(H)+HC ILS(S)+HC

Instance BKS Best G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c10s2cf0 21.77 21.77 0.00 22.49 3.31 22.51 3.40 0.61 21.77 0.00 21.77 0.00 10.54 8.53
tc0c10s2cf1 19.75 19.75 0.00 19.75 0.00 20.12 1.87 0.60 19.75 0.00 20.12 1.87 4.59 3.86
tc1c10s2cf2 9.03 9.03 0.00 9.03 0.00 9.04 0.11 0.57 9.03 0.00 9.07 0.44 3.71 2.43
tc1c10s2cf3 16.37 16.37 0.00 16.37 0.00 16.37 0.00 0.83 16.37 0.00 16.37 0.00 7.58 5.63
tc1c10s2cf4 16.10 16.10 0.00 16.10 0.00 16.13 0.19 0.66 16.10 0.00 16.10 0.00 6.67 4.79
tc2c10s2ct0 12.45 12.45 0.00 12.45 0.00 12.53 0.64 0.49 12.45 0.00 12.45 0.00 8.36 5.38
tc0c10s2ct1 12.30 12.30 0.00 12.30 0.00 12.35 0.41 0.62 12.30 0.00 12.34 0.33 6.08 3.99
tc1c10s2ct2 10.75 10.75 0.00 10.76 0.09 10.77 0.19 0.54 10.75 0.00 10.75 0.00 6.51 4.21
tc1c10s2ct3 13.17 13.17 0.00 13.17 0.00 14.16 7.52 0.84 13.17 0.00 13.18 0.08 9.85 7.56
tc1c10s3ct4 13.21 13.21 0.00 13.21 0.00 13.25 0.30 0.68 13.21 0.00 13.21 0.00 11.06 6.01
tc2c10s3cf0 21.77 21.77 0.00 22.49 3.31 22.51 3.40 0.61 21.77 0.00 21.77 0.00 11.86 8.90
tc0c10s3cf1 19.75 19.75 0.00 19.75 0.00 20.12 1.87 0.63 19.75 0.00 20.12 1.87 6.46 4.41
tc1c10s3cf2 9.03 9.03 0.00 9.03 0.00 9.04 0.11 0.56 9.03 0.00 9.06 0.33 4.11 2.36
tc1c10s3cf3 16.37 16.37 0.00 16.37 0.00 16.37 0.00 0.82 16.37 0.00 16.37 0.00 9.50 6.06
tc1c10s3cf4 14.90 14.90 0.00 14.90 0.00 14.94 0.27 0.62 14.90 0.00 14.90 0.00 11.27 6.72
tc2c10s3ct0 11.51 11.51 0.00 11.54 0.26 11.65 1.22 0.51 11.51 0.00 11.54 0.26 11.18 6.81
tc0c10s3ct1 10.80 10.80 0.00 10.80 0.00 10.81 0.09 0.60 10.80 0.00 10.80 0.00 8.91 4.83
tc1c10s3ct2 9.20 9.20 0.00 10.76 16.96 10.77 17.07 0.54 9.20 0.00 9.34 1.52 9.66 5.33
tc1c10s3ct3 13.02 13.02 0.00 13.02 0.00 13.12 0.77 0.64 13.02 0.00 13.02 0.00 15.72 9.77
tc1c10s2ct4 13.83 13.83 0.00 13.83 0.00 13.83 0.00 0.77 13.83 0.00 13.83 0.00 7.08 4.84

Avg. Gap 0.00 1.20 1.97 0.00 0.34
Max. Gap - 16.96 17.07 0.00 1.87
Best 20 15 20
Avg. Time 0.64 8.54 5.62
Max. Time 0.84 15.72 9.77

Table A.5: Results of ILS(H)+HC and ILS(S)+HC on the 100 large instances

Gurobi ILS(H)+HC ILS(S)+HC

Instance BKS Best G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c20s3cf0 24.68 24.73 0.20 24.68 0.00 24.71 0.12 2.14 24.68 0.00 24.68 0.00 22.12 13.86
tc1c20s3cf1 17.50 17.55 0.29 17.51 0.06 17.68 1.03 1.39 17.50 0.00 17.53 0.17 19.54 12.32
tc0c20s3cf2 27.60 28.54 3.41 27.61 0.04 27.65 0.18 3.14 27.60 0.00 27.66 0.22 16.06 11.77
tc1c20s3cf3 16.63 16.81 1.08 16.63 0.00 16.79 0.96 1.41 16.63 0.00 16.78 0.90 13.15 8.41
tc1c20s3cf4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.20 17.00 0.00 17.00 0.00 5.77 3.77
tc2c20s3ct0 25.79 25.79 0.00 25.79 0.00 25.80 0.04 2.38 25.79 0.00 25.79 0.00 23.31 14.66
tc1c20s3ct1 18.95 19.38 2.27 19.55 3.17 19.65 3.69 1.58 18.95 0.00 19.38 2.27 23.49 15.25
tc0c20s3ct2 17.08 17.11 0.18 17.08 0.00 17.18 0.59 1.73 17.08 0.00 17.13 0.29 12.49 8.49
tc1c20s3ct3 12.65 12.68 0.24 12.75 0.79 12.82 1.34 1.76 12.65 0.00 12.72 0.55 15.36 8.86
tc1c20s3ct4 16.21 16.21 0.00 16.25 0.25 16.31 0.62 1.26 16.21 0.00 16.25 0.25 9.74 5.16
tc2c20s4cf0 24.67 25.36 2.80 25.29 2.51 25.35 2.76 1.77 24.67 0.00 24.69 0.08 25.90 14.63
tc1c20s4cf1 16.39 16.40 0.06 17.16 4.70 17.47 6.59 1.53 16.39 0.00 16.40 0.06 27.19 13.47
tc0c20s4cf2 27.48 - - 27.60 0.44 27.65 0.62 3.04 27.48 0.00 27.61 0.47 18.53 12.81
tc1c20s4cf3 16.56 16.80 1.45 16.80 1.45 16.84 1.69 1.44 16.56 0.00 16.80 1.45 14.77 8.69
tc1c20s4cf4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.17 17.00 0.00 17.00 0.00 7.61 4.17
tc2c20s4ct0 26.02 - - 26.49 1.81 26.51 1.88 2.01 26.02 0.00 26.02 0.00 25.92 15.25
tc1c20s4ct1 18.25 18.25 0.00 19.51 6.90 19.65 7.67 1.58 18.25 0.00 18.32 0.38 27.11 16.14
tc0c20s4ct2 16.99 17.21 1.29 17.06 0.41 17.12 0.77 1.62 16.99 0.00 17.10 0.65 15.25 9.33
tc1c20s4ct3 14.43 14.43 0.00 14.56 0.90 14.58 1.04 1.41 14.43 0.00 14.50 0.49 14.30 7.99
tc1c20s4ct4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.49 17.00 0.00 17.00 0.00 11.74 6.08
tc0c40s5cf0 32.67 - - 33.84 3.58 34.53 5.69 6.09 32.67 0.00 33.25 1.78 46.66 23.85
tc1c40s5cf1 65.16 - - 65.32 0.25 66.64 2.27 11.90 65.16 0.00 66.03 1.34 65.41 44.01
tc2c40s5cf2 27.54 38.93 41.36 28.22 2.47 28.86 4.79 7.67 27.54 0.00 27.67 0.47 48.50 31.64
tc2c40s5cf3 19.74 21.04 6.59 20.44 3.55 20.82 5.47 4.70 19.74 0.00 20.18 2.23 30.49 16.85
tc0c40s5cf4 30.77 36.47 18.52 33.06 7.44 34.21 11.18 11.08 30.77 0.00 31.49 2.34 49.91 33.33
tc0c40s5ct0 28.72 - - 29.22 1.74 29.78 3.69 8.55 28.72 0.00 29.35 2.19 41.76 24.50
tc1c40s5ct1 52.68 - - 54.54 3.53 55.05 4.50 12.64 52.68 0.00 53.36 1.29 94.40 58.52
tc2c40s5ct2 26.91 - - 26.99 0.30 27.15 0.89 8.18 26.91 0.00 27.02 0.41 38.38 22.85
tc2c40s5ct3 23.54 - - 23.56 0.08 23.90 1.53 5.77 23.54 0.00 23.77 0.98 43.87 26.48
tc0c40s5ct4 28.63 - - 29.72 3.81 30.84 7.72 10.49 28.63 0.00 28.72 0.31 45.55 32.55
tc0c40s8cf0 31.28 - - 32.73 4.64 33.68 7.67 6.11 31.28 0.00 32.02 2.37 72.91 33.59
tc1c40s8cf1 40.75 - - 45.86 12.54 50.71 24.44 12.11 40.75 0.00 42.33 3.88 108.49 69.99
tc2c40s8cf2 27.15 29.19 7.51 28.05 3.31 28.19 3.83 7.87 27.15 0.00 27.31 0.59 57.90 28.92
tc2c40s8cf3 19.66 22.01 11.95 19.86 1.02 20.17 2.59 5.41 19.66 0.00 20.24 2.95 45.15 19.46
tc0c40s8cf4 29.32 - - 32.53 10.95 33.69 14.90 9.93 29.32 0.00 29.86 1.84 91.10 43.05
tc0c40s8ct0 26.35 30.29 14.95 27.65 4.93 28.32 7.48 6.01 26.35 0.00 26.89 2.05 71.70 28.54
tc1c40s8ct1 40.56 - - 49.35 21.67 49.85 22.90 11.86 40.56 0.00 41.19 1.55 124.31 70.50
tc2c40s8ct2 26.33 - - 26.82 1.86 27.07 2.81 7.12 26.33 0.00 26.71 1.44 58.68 25.64
tc2c40s8ct3 22.71 23.51 3.52 23.26 2.42 23.44 3.21 5.16 22.71 0.00 23.23 2.29 63.76 25.25
tc0c40s8ct4 29.20 - - 29.82 2.12 31.68 8.49 10.93 29.20 0.00 29.27 0.24 84.36 47.46
tc0c80s8cf0 39.43 - - 39.78 0.89 40.52 2.76 31.70 39.43 0.00 39.86 1.09 104.77 56.41
tc0c80s8cf1 45.23 - - 46.48 2.76 47.33 4.64 76.55 45.23 0.00 45.73 1.11 183.74 121.27
tc1c80s8cf2 30.81 - - 32.52 5.55 33.30 8.08 31.57 30.81 0.00 31.83 3.31 79.36 50.99
tc2c80s8cf3 32.44 - - 32.53 0.28 32.90 1.42 43.83 32.44 0.00 32.60 0.49 95.72 64.05

Continued on next page

23



Table A.5 – continued from previous page
Gurobi ILS(H)+HC ILS(S)+HC

Instance BKS Avg G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c80s8cf4 49.29 - - 50.41 2.27 51.06 3.59 45.59 49.29 0.00 49.69 0.81 160.43 99.84
tc0c80s8ct0 41.90 - - 42.18 0.67 42.89 2.36 27.68 41.90 0.00 42.76 2.05 99.20 54.35
tc0c80s8ct1 45.27 - - 46.39 2.47 47.50 4.93 82.12 45.27 0.00 45.85 1.28 195.16 129.66
tc1c80s8ct2 31.74 - - 32.59 2.68 32.90 3.65 37.77 31.74 0.00 32.36 1.95 93.21 59.73
tc2c80s8ct3 32.31 - - 32.74 1.33 33.41 3.40 25.10 32.31 0.00 32.55 0.74 111.47 65.15
tc2c80s8ct4 44.83 - - 49.08 9.48 50.31 12.22 43.42 44.83 0.00 46.61 3.97 178.48 111.24
tc0c80s12cf0 34.64 - - 36.01 3.95 37.25 7.53 29.39 34.64 0.00 35.59 2.74 126.00 57.24
tc0c80s12cf1 42.90 - - 43.81 2.12 45.51 6.08 35.17 42.90 0.00 44.07 2.73 157.55 74.58
tc1c80s12cf2 29.54 - - 32.61 10.39 33.34 12.86 31.52 29.54 0.00 30.73 4.03 112.44 61.34
tc2c80s12cf3 31.97 - - 34.10 6.66 35.13 9.88 25.63 31.97 0.00 32.70 2.28 159.17 75.64
tc2c80s12cf4 43.89 - - 47.95 9.25 48.57 10.66 50.96 43.89 0.00 44.97 2.46 274.06 131.13
tc0c80s12ct0 39.31 - - 39.97 1.68 40.48 2.98 32.01 39.31 0.00 39.83 1.32 159.79 65.54
tc0c80s12ct1 41.94 - - 42.56 1.48 43.67 4.12 35.06 41.94 0.00 43.03 2.60 162.38 73.32
tc1c80s12ct2 29.52 - - 31.11 5.39 32.33 9.52 29.45 29.52 0.00 30.66 3.86 122.60 58.85
tc2c80s12ct3 30.83 - - 32.09 4.09 32.31 4.80 28.06 30.83 0.00 31.59 2.47 123.57 57.57
tc2c80s12ct4 42.40 - - 47.16 11.23 48.40 14.15 44.51 42.40 0.00 42.82 0.99 276.16 134.33
tc1c160s16cf0 79.80 - - 88.37 10.74 90.49 13.40 298.56 79.80 0.00 80.75 1.19 1139.49 765.69
tc2c160s16cf1 60.34 - - 61.56 2.02 63.57 5.35 181.57 60.34 0.00 61.26 1.52 464.11 273.86
tc0c160s16cf2 61.20 - - 63.85 4.33 65.42 6.90 224.18 61.20 0.00 62.99 2.92 600.43 365.10
tc1c160s16cf3 71.76 - - 73.93 3.02 75.04 4.57 331.06 71.76 0.00 72.75 1.38 666.64 461.58
tc0c160s16cf4 82.92 - - 98.16 18.38 101.13 21.96 536.94 82.92 0.00 83.84 1.11 1662.82 1213.20
tc1c160s16ct0 79.04 - - 83.82 6.05 85.47 8.14 391.41 79.04 0.00 79.90 1.09 1012.72 643.27
tc2c160s16ct1 60.27 - - 61.97 2.82 62.64 3.93 177.27 60.27 0.00 60.62 0.58 507.69 287.64
tc0c160s16ct2 60.13 - - 64.10 6.60 64.50 7.27 204.82 60.13 0.00 62.80 4.44 587.52 341.86
tc1c160s16ct3 73.29 - - 75.29 2.73 76.55 4.45 180.48 73.29 0.00 75.11 2.48 483.20 278.67
tc0c160s16ct4 82.37 - - 95.78 16.28 97.20 18.00 433.62 82.37 0.00 83.08 0.86 1413.91 944.60
tc1c160s24cf0 78.60 - - 85.59 8.89 87.66 11.53 346.79 78.60 0.00 79.30 0.89 1343.54 741.12
tc2c160s24cf1 59.82 - - 61.30 2.47 63.62 6.35 182.55 59.82 0.00 61.14 2.21 653.44 304.66
tc0c160s24ct2 59.25 - - 62.93 6.21 63.31 6.85 206.85 59.25 0.00 60.19 1.59 861.85 409.80
tc1c160s24ct3 68.72 - - 71.78 4.45 74.54 8.47 196.47 68.72 0.00 69.98 1.83 756.39 358.35
tc0c160s24cf4 81.44 - - 95.47 17.23 99.35 21.99 508.19 81.44 0.00 82.13 0.85 1984.26 1209.32
tc1c160s24ct0 78.21 - - 83.38 6.61 84.84 8.48 284.88 78.21 0.00 79.35 1.46 1183.70 577.83
tc2c160s24ct1 59.13 - - 60.84 2.89 62.49 5.68 192.18 59.13 0.00 59.72 1.00 748.95 340.40
tc0c160s24cf2 59.27 - - 62.63 5.67 64.12 8.18 210.13 59.27 0.00 60.92 2.78 845.72 403.33
tc1c160s24cf3 68.56 - - 72.83 6.23 75.18 9.66 240.33 68.56 0.00 69.57 1.47 883.61 483.10
tc0c160s24ct4 80.96 - - 90.55 11.85 93.83 15.90 453.34 80.96 0.00 82.11 1.42 1736.76 956.94
tc2c320s24cf0 182.52 - - 195.23 6.96 210.45 15.30 3762.57 182.52 0.00 186.94 2.42 7855.89 6566.41
tc2c320s24cf1 95.51 - - 97.39 1.97 100.07 4.77 1003.08 95.51 0.00 96.42 0.95 1927.61 1456.16
tc1c320s24cf2 152.23 - - 177.71 16.74 185.68 21.97 3162.07 152.23 0.00 153.99 1.16 8370.48 7105.63
tc1c320s24cf3 117.48 - - 124.23 5.75 126.08 7.32 2089.09 117.48 0.00 118.36 0.75 3737.73 3065.82
tc2c320s24cf4 122.88 - - 134.30 9.29 136.17 10.82 2177.20 122.88 0.00 124.68 1.46 4961.50 3681.14
tc2c320s24ct0 181.50 - - 208.32 14.78 212.18 16.90 4434.40 181.50 0.00 186.23 2.61 8606.62 7204.02
tc2c320s24ct1 94.73 - - 96.69 2.07 99.71 5.26 942.21 94.73 0.00 96.49 1.86 1737.70 1259.26
tc1c320s24ct2 148.77 - - 173.82 16.84 182.34 22.57 3617.64 148.77 0.00 154.13 3.60 8231.61 6853.35
tc1c320s24ct3 116.64 - - 122.75 5.24 125.71 7.78 1984.42 116.64 0.00 119.17 2.17 3783.98 3273.79
tc2c320s24ct4 122.02 - - 131.87 8.07 133.68 9.56 3074.58 122.02 0.00 123.85 1.50 5447.73 4273.94
tc2c320s38cf0 177.01 - - 202.48 14.39 207.83 17.41 4007.13 177.01 0.00 182.31 2.99 9150.09 6733.82
tc2c320s38cf1 94.29 - - 97.55 3.46 99.54 5.57 1082.91 94.29 0.00 95.07 0.83 2443.29 1601.78
tc1c320s38cf2 141.68 - - 173.71 22.61 181.84 28.35 3208.78 141.68 0.00 147.08 3.81 9490.84 7235.62
tc1c320s38cf3 116.33 - - 122.49 5.30 125.30 7.71 2024.26 116.33 0.00 117.74 1.21 4600.98 3113.71
tc2c320s38cf4 122.32 - - 128.72 5.23 131.01 7.10 1814.78 122.32 0.00 123.47 0.94 4138.21 2660.68
tc2c320s38ct0 191.09 - - 205.08 7.32 208.44 9.08 4766.36 191.09 0.00 192.15 0.55 10335.56 7636.50
tc2c320s38ct1 94.53 - - 97.44 3.08 98.62 4.33 938.85 94.53 0.00 95.29 0.80 2284.16 1408.88
tc1c320s38ct2 141.14 - - 172.99 22.57 181.62 28.68 3660.78 141.14 0.00 145.09 2.80 9264.46 6974.34
tc1c320s38ct3 116.07 - - 122.91 5.89 126.17 8.70 1993.12 116.07 0.00 117.71 1.41 4559.66 3062.95
tc2c320s38ct4 121.66 - - 127.40 4.72 130.35 7.14 1634.65 121.66 0.00 123.15 1.22 4265.37 2784.91

Avg. Gap 4.71 5.28 7.51 0.00 1.51
Max. Gap 41.36 22.61 28.68 0.00 4.44
Found solution 25 100 100
Best 7 7 3 100
Avg. Time 581.52 1393.38 1018.33
Max. Time 4766.36 10335.56 7636.50

References

Bansal, P. (2015), ‘Charging of electric vehicles: Technology and policy implications’, Journal of Science
Policy & Governance 6(1).

Becker, T. A., Sidhu, I. & Tenderich, B. (2009), Electric vehicles in the United States: a new model with
forecasts to 2030, Technical report.
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Hõimoja, H., Rufer, A., Dziechciaruk, G. & Vezzini, A. (2012), An ultrafast ev charging station demonstra-
tor, in ‘Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012 International
Symposium on’, IEEE, pp. 1390–1395.
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aUniversité d’Angers, LARIS (EA 7315), 62 avenue Notre Dame du Lac, 49000 Angers, France
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cUniversité François-Rabelais de Tours, CNRS, LI (EA 6300), OC (ERL CNRS 6305), 64 avenue Jean

Portalis, 37200 Tours, France
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1. Introduction

The objective of this supplementary material is to compare the assumptions to model the
battery charging process that are most commonly found in the eVRP literature. We first
present the approximations used for the charging function in transportation planning prob-
lems with electric vehicles (EVs). Then, we present a mixed-integer linear programming
(MILP) formulation for the electric vehicle routing problem with nonlinear charging func-
tion (eVRP-NL) that. With a few minor modifications, the model can be adapted to work
with other charging policies and charging function approximations used in the extant eVRP
literature. We use the MILP formulation and a commercial solver to evaluate the impact
of including the nonlinear charging functions and partial charging in eVRPs. Our results
suggest that disallowing partial charging and neglecting the nonlinear nature of the charging
functions leads to solutions that may be infeasible or overly expensive.

2. Modeling battery charging functions

The charging function of a battery models the relationship between charging time and charg-
ing level. In general, the charging functions are nonlinear, because the terminal voltage and
current change during the charging process. This process is divided into two phases. In
the first phase, the charging current is held constant, and thus the state of charge (SOC)
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increases linearly with time until the battery’s terminal voltage increases to a specific max-
imum value (see Figure 1). In the second phase, the current decreases exponentially and
the terminal voltage is held constant to avoid battery damages. The SOC increases then
concavely with the time (Pelletier et al. 2015).

Figure 1: Typical charging curve, where i and u represent the electric current and terminal voltage respec-
tively. (Source Hõimoja et al. (2012))

Although the shape of the charging functions are known, their exact modeling is very
complex because it depends on many factors such as: current, voltage, self-recovery and
temperature, among others (Wang et al. 2013). The battery state of charge is then often
described by differential equations. Since such equations are difficult to embed into opti-
mization algorithms for transportation problems, different approximations are used in the
literature. These approximations are presented below compared with real data of a charging
function provided by Uhrig et al. (2015). Each of them can be used in a full recharge policy
(FR) or in a partial recharge policy (PR).

First segment (FS) : To avoid dealing with the nonlinear segment, Bruglieri et al. (2014)
use a linear approximation that considers only the first segment (Figure 2).
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Figure 2: First segment approximation (FS)

Linear approximations (L1 and L2) : Although several authors assume a linear ap-
proximation (Schneider et al. 2014, Felipe et al. 2014, Sassi et al. 2015, Bruglieri et al.
2015, Desaulniers et al. 2014, Schiffer & Walther 2015, Keskin & Çatay 2016, Szeto &
Cheng 2016), they do not explain how the approximation is estimated. Two options
can be considered. In the first one (L1) the charging rate of the function corresponds
to the slope of the first segment of the piecewise linear approximation (see Figure 3a).
This approximation is optimistic, because it assumes that batteries charge up to Q
faster than they do in reality. In the second approximation (L2) the charging rate
is the slope of the line connecting the first and last observations (see Figure 3b) of
the charging curve. This approximation tends to be pessimistic, because over a large
portion of the curve, the charging rate is slower than in reality.
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(a) Linear approximation 1 (L1)
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(b) Linear approximation 2 (L2)

Figure 3: Linear approximations of charging functions.

Piecewise linear approximations (PL) : This approximation, proposed by Zündorf (2014)
for a shortest path problem with EVs, consists in approximating the charging function
by a series of linear segments (see Figure 4a).

In this study, we use the same approximation proposed by Zündorf (2014). To assess
the validity of this approximation, we use the data provided by Uhrig et al. (2015). These
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authors conducted experiments to estimate the charging time for different charge levels
with two types of EVs and three types of charging stations (CSs). We fit piecewise linear
functions to the data and obtain approximations with an average relative absolute error of
0.90%, 1.24%, and 1.90% for CSs of 11, 22, and 44 kW, respectively. Figure 4b shows the
piecewise linear approximation for a CS i of 22 kW charging an EV equipped with a battery
of 16 kWh. In the plot, cik and aik represent the charging time and the charge level for the
breakpoint k ∈ B of the CS i ∈ F ′, where B = {0, .., b} is the set of breakpoints of the
piecewise linear approximation.
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Figure 4: Piecewise linear approximation (PL).

3. Mixed-integer linear programming formulation

We present in this section the MILP formulation of the eVRP-NL. We also show how it can
be adapted to model other approximations and full charging policies

To formulate the eVRP-NL, we introduce the set F ′ that contains the set F and β copies
of each CS (i.e., |F ′| = |F | × (1 + β)). The value of 1 + β corresponds to the number of
times that each CS can be visited. For this MILP formulation, we use the following decision
variables: variable xij is equal to 1 if an EV travels from vertex i to j, and 0 otherwise.
Variables τj and yj track the time and charge level when the EV departs from vertex j ∈ V .
Variables qi and oi specify the charge levels when an EV arrives at and departs from CS
i ∈ F ′, and si and di are the associated charging times (see Figure 5). Variable ∆i = di− si
represents the time spent at CS i ∈ F ′. Variables zik and wik are equal to 1 if the charge
level is between ai,k−1 and aik, with k ∈ B \ {0}, when the EV arrives at and departs from
CS i ∈ F ′ respectively. Finally, variables αik and λik are the coefficients of the breakpoint
k ∈ B in the piecewise linear approximation, when the EV arrives at and departs from CS
i ∈ F ′ respectively. The MILP formulation follows:
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Figure 5: Battery charge levels and charging times i ∈ F ′

min
∑
i,j∈V

tijxij +
∑
i∈F ′

∆i (1)

subject to

∑
j∈V,i 6=j

xij = 1, ∀i ∈ I (2)

∑
j∈V,i 6=j

xij ≤ 1, ∀i ∈ F ′ (3)

∑
j∈V,i 6=j

xji −
∑

j∈V,i6=j

xij = 0, ∀i ∈ V (4)

eijxij − (1− xij)Q ≤ yi − yj ≤ eijxij + (1− xij)Q, ∀i ∈ V,∀j ∈ I (5)

eijxij − (1− xij)Q ≤ yi − qj ≤ eijxij + (1− xij)Q, ∀i ∈ V,∀j ∈ F ′ (6)

yi ≥ ei0xi0, ∀i ∈ V (7)

yi = oi, ∀i ∈ F ′ (8)

y0 = Q (9)

qi ≤ oi, ∀i ∈ F ′ (10)

qi =
∑
k∈B

αikaik, ∀i ∈ F ′ (11)

si =
∑
k∈B

αikcik, ∀i ∈ F ′ (12)∑
k∈B

αik =
∑
k∈B

zik, ∀i ∈ F ′ (13)∑
k∈B

zik =
∑
j∈V

xij , ∀i ∈ F ′ (14)

αik ≤ zik + zi,k+1, ∀i ∈ F ′,∀k ∈ B \ {b} (15)

αib ≤ zib, ∀i ∈ F ′ (16)

oi =
∑
k∈B

λikaik, ∀i ∈ F ′ (17)

5



di =
∑
k∈B

λikcik, ∀i ∈ F ′ (18)∑
k∈B

λik =
∑
k∈B

wik, ∀i ∈ F ′ (19)∑
k∈B

wik =
∑
j∈V

xij , ∀i ∈ F ′ (20)

λik ≤ wik + wi,k+1, ∀i ∈ F,′ ∀k ∈ B \ {b} (21)

λib ≤ wib, ∀i ∈ F ′ (22)

∆i = di − si, ∀i ∈ F ′ (23)

τi + (tij + pj)xij − Tmax(1− xij) ≤ τj , ∀i ∈ V,∀j ∈ I (24)

τi + ∆j + tijxij − (Smax + Tmax)(1− xij) ≤ τj , ∀i ∈ V,∀j ∈ F ′ (25)

τj + tj0 ≤ Tmax, ∀j ∈ V (26)

τ0 ≤ Tmax (27)

xij = 0, ∀i, j ∈ F ′ : mij = 1 (28)

τi ≥ τj , ∀i, j ∈ F ′ : mij = 1, j ≤ i (29)

τj ≤ Tmax

∑
i∈V

xij , ∀j ∈ F ′ (30)∑
i∈V

xih ≥
∑
j∈V

xjf , ∀h, f ∈ F ′ : mhf = 1, h ≤ f (31)

xij ∈ {0, 1}, ∀i, j ∈ V (32)

τi ≥ 0, yi ≥ 0 ∀i ∈ V (33)

zik ∈ {0, 1}, wik ∈ {0, 1}, αik ≥ 0, λik ≥ 0, ∀i ∈ F ′,∀k ∈ B (34)

qi ≥ 0, oi ≥ 0, si ≥ 0, di ≥ 0,∆i ≥ 0, ∀i ∈ F ′ (35)

The objective function (1) seeks to minimize the total time (travel times plus charging
times). Constraints (2) ensure that each customer is visited once. Constraints (3) ensure that
each CS is visited at most once. Constraints (4) impose the flow conservation. Constraints
(5) and (6) track the battery charge level at each vertex. Constraints (7) ensure that, if the
EV travels between a vertex and the depot, it has sufficient energy to reach its destination.
Constraints (8) reset the battery tracking to oi upon departure from CS i ∈ F ′. Constraint
(9) ensures that the battery charge level is Q at the depot. Constraints (10) couple the
charge levels when an EV arrives at and departs from any CS. Constraints (11–16) define
the charge level (and its corresponding charging time) when an EV arrives at CS i ∈ F ′

(based on the piecewise linear approximation of the charging function). Similarly, constraints
(17–22) define the charge level (and its corresponding charging time) when an EV departs
from CS i ∈ F ′. Constraints (23) define the time spent at any CS. Constraints (24) and
(25) track the departure time at each vertex, where Smax = maxi∈F ′{cib}. Constraints (26)
and (27) ensure that the EVs return to the depot no later than Tmax. Constraints (28) and
(31) avoid the symmetry generated by the copies of the CSs. The parameter mij is equal to
1 if i and j ∈ F ′ represent the same CS. Finally, constraints (32–35) define the domain of
the decision variables.

This MILP formulation can be easily adapted to model the other approximations (FS,
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L1, and L2) and the different charging policies (FR and PR):

• Full charge and piecewise linear approximations (FR-PL): we replace constraints (17)
and (18) by

oi =
∑
k∈B

λikaib,∀i ∈ F ′ (36)

ei =
∑
k∈B

λikcib,∀i ∈ F ′ (37)

• Partial charge using the first segment (PR-FS): To run our MILP with this assumption,
we modify the input data to include only the first segment.

• Partial charge and linear approximations (PR-L): To run our MILP with PR-L1 and
PR-L2, we modify the input data so that in the piecewise linear approximation there
is a single segment with the corresponding charging rate.

4. Results of the comparison

4.1. Experimental settings

As mentioned in the last section, the MILP formulation uses β copies of the CSs to model
multiple visits to the same CS. Although several authors followed this strategy (Conrad &
Figliozzi 2011, Erdoğan & Miller-Hooks 2012, Schneider et al. 2014, Sassi et al. 2015, Goeke
& Schneider 2015, Hiermann et al. 2016), they do not explain how the value of β is set. It
is worth noting that β plays an important role in the definition of the solution space, and
therefore it restricts the optimal solution of the model. For instance, an optimal solution
found with β = 3 may not be optimal for β = 4. In practice, there is no restriction on the
number of times that a CS can be visited, but large values of β result in models that are
computationally intractable. To overcome this difficulty, we designed an iterative procedure
to solve the MILP for increasing values of β. Starting with β = 0, at each iteration, our
procedure (i) tries to solve the MILP to optimality with a time limit of 100 h, and (ii) sets
β = β + 1. The procedure stops when the time limit is reached or an iteration ends with a
solution sβ satisfying f(sβ) = f(s∗β−1), where f(·) denotes the objective function and ∗ an
optimal solution.

4.2. Results

To assess the value of considering partial charging and nonlinear charging function approx-
imations in eVRPs, we conducted an experiment to compare our battery charging assump-
tions with the assumptions commonly used in the literature. We compare only optimal
solutions of the different approaches so that the comparison is independent of the solution
method.
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Table 1 presents the results. For each charging assumption, we give the objective function
value (of), the percentage gap between of and the PR-PL solution (G), the number of routes
in the solution (r), and the value of β. Since in practice the charging time is controlled by
the nonlinear charging function, the charging decisions of the PR-L solutions are evaluated
a posteriori using the piecewise linear approximation. The last rows of Table 1 summarize
the results. We present, for each assumption, the average and maximum percentage gap,
the number of solutions employing more EVs than in the PR-PL solution, and the number
of infeasible solutions.

The results show that solutions based on the full charging policy perform poorly in terms
of both objective function (+20.11% on average) and number of routes (8 solutions use a
larger fleet) with respect to those based on the partial charging policy. This is because the
EVs spend more time than necessary at the CSs. The main motivation for a full charging
policy is to avoid complex charging-quantity decisions. However, according to our results,
the gain in simplicity does not offset the loss of solution quality.

In the PR-FS assumption EVs can charge their batteries up to only around 80% of
the actual capacity. Artificially constraining the capacity may force EVs to detour to CSs
more often than necessary when traveling to distant customers. Because the maximum route
duration is limited, the time spent detouring and recharging the battery reduces the number
of customers that can be visited. Consequently, more routes may be needed to service the
same number of customers. Our results confirm this intuition: in 3 of the 20 instances the
PR-FS assumption increases the number of routes. Furthermore, in practice some distant
customers may not be included in routes unless the EVs can fully use their battery capacity.
In our experiments, 9 instances become infeasible under PR-FS. In conclusion, although
PR-FS simplifies the problem (avoiding the nonlinear segment of the charging function) it
may lead to solutions that are infeasible, or with larger fleets and (on average) 2.70% more
expensive.

As mentioned before, PR-L1 assumes that batteries charge faster than they do in reality
(Figure 3a). As a consequence, routes based on PR-L1 may in practice need more time
to reach the planned charge levels. The extra time may make a route infeasible if there
is little slack in the duration constraint. Indeed, a post-hoc evaluation shows that for 14
instances, the PR-L1 solutions are infeasible in practice. On the other hand, PR-L2 assumes
that batteries charge slower than in reality (Figure 3b). Overestimating the charging times
does not lead to feasibility issues, but the resulting routes may be overly conservative. For
instance, in our experiments PR-L2 leads to solutions that are (on average) 1.45% more
expensive, and it increases the number of routes in 2 instances.
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Table 1: Comparison of our charging assumptions with charging assumptions from the literature

Instance PR-PL FR-PL PR-FS PR-L1 PR-L2

Solution Evaluation Solution Evaluation

ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ

tc0c10s2cf1 19.75 3 2 20.82 5.42 3 2 NFS NFS NFS NFS 19.61 3 2 NFE NFE NFE NFE 20.50 3 2 20.22 2.38 3 2
tc0c10s2ct1 12.30 2 0 12.53 1.87 2 0 12.61 2.52 3 0 12.22 2 0 12.42 0.98 2 0 12.46 2 0 12.30 0.00 2 0
tc0c10s3cf1 19.75 3 2 20.82 5.42 3 2 NFS NFS NFS NFS 19.61 3 2 NFE NFE NFE NFE 20.50 3 2 20.22 2.38 3 2
tc0c10s3ct1 10.80 2 0 11.10 2.78 2 0 10.80 0.00 2 0 10.79 2 0 11.03 2.13 2 0 10.97 2 0 10.80 0.00 2 0
tc1c10s2cf2 9.03 3 0 9.19 1.77 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s2cf3 16.37 3 2 21.33 30.30 3 2 NFS NFS NFS NFS 15.99 3 1 NFE NFE NFE NFE 16.89 3 2 16.37 0.00 3 2
tc1c10s2cf4 16.10 3 2 25.31 57.20 4 3 NFS NFS NFS NFS 15.66 3 2 NFE NFE NFE NFE 16.43 3 2 16.23 0.81 3 2
tc1c10s2ct2 10.75 3 1 11.14 3.63 3 0 10.75 0.00 3 1 10.75 3 0 10.76 0.09 3 0 10.94 3 0 10.78 0.28 3 0
tc1c10s2ct3 13.17 2 2 22.76 72.82 3 3 15.98 21.34 3 2 13.06 2 2 NFE NFE NFE NFE 13.60 2 2 13.17 0.00 2 2
tc1c10s2ct4 13.83 2 1 17.61 27.33 3 1 NFS NFS NFS NFS 13.34 2 1 NFE NFE NFE NFE 14.17 2 1 14.17 2.46 2 1
tc1c10s3cf2 9.03 3 0 9.19 1.77 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s3cf3 16.37 3 1 21.33 30.30 3 2 NFS NFS NFS NFS 15.99 3 1 NFE NFE NFE NFE 16.89 3 2 16.37 0.00 3 2
tc1c10s3cf4 14.90 3 1 18.43 23.69 4 0 NFS NFS NFS NFS 14.56 2 1 NFE NFE NFE NFE 15.18 3 0 15.18 1.88 3 0
tc1c10s3ct2 9.20 3 0 11.14 21.09 3 0 9.20 0.00 3 0 9.19 3 0 NFE NFE NFE NFE 10.80 3 0 10.57 14.89 3 0
tc1c10s3ct3 13.02 2 0 17.06 31.03 3 0 13.07 0.38 2 1 12.98 2 0 13.16 1.08 2 0 13.60 2 0 13.02 0.00 2 0
tc1c10s3ct4 13.21 2 0 15.54 17.64 3 1 13.58 2.80 3 1 12.92 2 1 NFE NFE NFE NFE 13.71 2 0 13.21 0.00 2 0
tc2c10s2cf0 21.77 3 3 25.24 15.94 4 2 NFS NFS NFS NFS 14.53 2 2 NFE NFE NFE NFE 22.78 4 4 22.15 1.75 4 4
tc2c10s2ct0 12.45 3 2 15.05 20.88 3 3 12.45 0.00 3 2 12.44 3 3 NFE NFE NFE NFE 12.93 3 2 12.45 0.00 3 2
tc2c10s3cf0 21.77 3 2 25.24 15.94 4 2 NFS NFS NFS NFS 14.53 2 2 NFE NFE NFE NFE 23.02 4 3 22.20 1.98 4 3
tc2c10s3ct0 11.51 3 0 13.27 15.29 2 0 11.51 0.00 3 0 11.50 3 0 NFE NFE NFE NFE 11.92 3 0 11.54 0.26 3 0

Avg. Difference (%) 20.11 2.70 1.04 1.45
Max. Difference (%) 72.82 21.34 2.13 14.89
Solutions with larger fleet 8 3 0 2
Infeasible solutions 0 9 14 0

NFS: Non-feasible solution, NFE: Non-feasible evaluation
G(%) = (of − ofPR−PL)/ofPR−PL × 100
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