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52-21, Medelĺın, Colombia

Abstract

This paper considers a variant of the electric vehicle routing problem including realistic
assumptions about the charging process: the electric vehicle routing problem with partial
charging and nonlinear charging function (eVRP-PNL). To tackle this problem, we propose
an iterated local search (ILS) enhanced with heuristic concentration (HC). At each iteration
of the ILS, a variable-neighborhood descent (VND) procedure with three different local
search operators is applied, and the routes of the local optimum are added in a pool of routes.
Once the ILS phase is completed, the HC component assembles the final solution from this
pool of routes. One original feature of this approach is the use in the VND component of
a local search operator which aims at improving the charging decisions on a route (detour
to charging stations and amount of energy recharged). The use of this operator implies
the solution of a new problem known as the fixed-route vehicle-charging problem (FRVCP)
which consists in defining the charging decisions of a fixed-route. We solve the FRVCP by
a heuristic and a mixed-integer linear programming formulation. To test our approach, we
propose a new 120-instances testbed. The results show a high performance of the proposed
hybrid metaheuristic and the importance of making optimal charging decisions on the routes
of electric vehicle routing problems.
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1. Introduction

Electric vehicles are a promising technology for reducing greenhouse gas emissions and
transportation costs in goods distribution (Electrification-Coalition 2013, TU Delft 2013).
Therefore, several companies have significantly increased the use of electric vehicles in their
operations in last years. The adoption of this technology by La Poste and UPS were popular
success cases (Kleindorfer et al. 2012, UPS 2008). Since then, several companies of different
sectors and sizes have started to use electric vehicles (Nesterova et al. 2015). For instances,
the Portuguese postal company CTT operates with 10 small electric vans (Post & Parcel
2014). Heineken started to use the Europe’s largest electric truck to distribute the beer
within Amsterdam (Heineken 2013). In Mexico, Bimbo the biggest food company signed
orders to buy 100 electric vehicles which will use the energy from a wind farm (Ramirez
2015). In Colombia, a health care company uses electric vehicles for their home healthcare
service (Loaiza 2014).

The use of electric vehicles in goods distribution and services introduces a new family
of vehicle routing problems (VRPs), the so-called electric VRPs (eVRPs) (Pelletier et al.
2016). These problems extend classical VRPs to consider the limited driving range of electric
vehicles and their long battery charging times. Because of the short driving range, eVRP
solutions frequently include routes with planned detours to charging stations (CSs) where the
vehicles recharge. In general, the work on eVRPs makes different simplifications concerning
the capacity of the CSs, the consumption rate, and the modeling of the charging process.
This study focuses on a more realistic modeling of the charging process.

To model the battery charging process, eVRP models make assumptions about the charg-
ing policy and the charging function approximation. The former defines how much of the
battery capacity can be (or must be) restored when a vehicle visits a CS, and the latter
models the relationship between battery charging time and charging level. With respect
to the charging policies, the eVRP literature can be classified into two groups: studies as-
suming full and partial charging policies. As the name suggests, in full charging policies,
the battery capacity is fully restored every time a vehicle reaches a CS. Some studies in
this group assume that there is no charging function but rather a constant charging time
(Conrad & Figliozzi 2011, Erdoğan & Miller-Hooks 2012, Montoya et al. 2015). This is a
plausible assumption in applications where the CSs replace a (partially) depleted battery
with a fully charged one. On the other hand, Schneider et al. (2014), Hiermann et al. (2016),
Desaulniers et al. (2014), Goeke & Schneider (2015), and Schneider et al. (2015) consider
full charging policies with a linear charging function approximation (i.e., the battery level
is assumed to be a linear function of the charging time). In their models, the time spent
at each CS depends on the battery level when the vehicle arrives and on the (constant)
charging rate of the CS. In partial charging policies, the amount of charge (and thus the
time spent at each charging point) is a decision variable. To the best of our knowledge, all
existing eVRP models with partial charging consider linear function approximations (Felipe
et al. 2014, Desaulniers et al. 2014, Sassi et al. 2014, Bruglieri et al. 2015, Schiffer & Walther
2015, Keskin & Çatay 2016).

In practice, using linear approximations to model the charging function may not be re-
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alistic. Indeed, it is well documented that the charging level is a concave function of the
charging time (Bruglieri et al. 2014, Hõimoja et al. 2012, Pelletier et al. 2015). Further-
more, (as shown in the Part I of the electronic companion) disallowing partial charging and
neglecting the nonlinear nature of the charging function may lead to infeasible or overly
expensive solutions. Therefore, in this paper we introduce a more realistic eVRP extension:
the electric vehicle routing problem with partial charging and nonlinear charging functions
(eVPR-PNL).

To solve the eVRP-PNL we propose a hybrid metaheuristic combining iterated local
search (ILS) and heuristic concentration (HC). The ILS component uses a variable neigh-
borhood descent (VND) procedure for the local search phase. The VND uses three local
search operators. The first two operators are classical relocate and 2-Opt moves. On the
other hand, the third one is a specialized operator for improving the charging decisions. This
operator relies on solving the fixed-route vehicle-charging problem (FRVCP). A new problem
defining the charging decisions (i.e., where and how much to charge) of an energy-infeasible
fixed-route (i.e., a route infeasible with respect to the energy autonomy of the vehicle). To
solve the FRVCP, we propose a heuristic and a mixed-integer linear programming (MILP)
formulation. Finally, the HC component assembles the final solution from the set of all
routes found in the local optima reached by the ILS.

The main contributions of this research are fourfold: i) we introduce a new eVRP problem
that considers realistic assumptions about the charging process (i.e., partial charging and
nonlinear charging functions); ii) we present a hybrid metaheuristic that solve the problem
with competitive results; iii) we introduce the fixed-route vehicle-charging problem, which
arises as a subproblem of the eVRP-PNL, when making charging decisions for a fixed-route,
and propose two methods to solve it; iv) we show the importance of making optimal charging
decisions when visiting multiple CSs in eVRP-PNL solutions.

The remainder of this paper is organized as follows. Section 2 describes the problem.
Section 3 introduces our hybrid metaheuristic. Section 4 discusses the FRVCP and presents
the approaches to solve it. Section 5 presents a computational evaluation of the proposed
method. Finally, Section 6 concludes the paper and outlines future work. Additionally, the
Part I of the electronic companion presents the MILP formulation of the eVRP-PNL and
discuss the impact of different charging assumptions on the eVRP-PNL, and the Part II
presents the detailed results of our hybrid metaheuristic.

2. Problem description

Formally, the eVRP-PNL is defined on a directed and complete graph G = (V,A). The
vertex set V = {0}∪I∪F is made up of a depot (vertex 0), a set of customers I, and a set of
CSs F . Each customer i ∈ I has a service time pi. Each CS i ∈ F has a nonlinear charging
function, which is modeled using a piecewise linear approximation (see more details about
the charging function and the piecewise linear approximation in the Part I of the electronic
companion). This approximation is defined by a set of breakpoints B, where each breakpoint
k ∈ B is associated to a charging time cik and a charge level aik (see Figure 1). The set
A = {(i, j) : i, j ∈ V, i 6= j} corresponds to arcs connecting vertices of V . Each arc (i, j)
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has two associated nonnegative values: a travel time tij and a energy consumption eij. The
customers are served using an unlimited homogeneous fleet of electric vehicles. All the
vehicles have a battery of capacity Q (expressed in kWh) and a maximum tour duration
Tmax. It is assumed that the vehicles leave the depot with a fully charged battery, and that
all the CSs can handle an unlimited number of vehicles simultaneously.

For the sake of brevity we present the MILP formulation of the eVRP-PNL in the Part I of
the electronic companion. In sum, the routes in eVRP-PNL satisfy the following conditions:
each customer is visited exactly once; the level of the battery when the vehicle arrives at
any vertex is nonnegative; each route satisfies the maximum-duration limit; and each route
starts and ends at the depot.

Since the distance is related directly to the energy consumption, most work on eVRPs
with homogeneous fleet use the minimization of the distance as objective function (Schneider
et al. 2014, Desaulniers et al. 2014, Hiermann et al. 2016, Keskin & Çatay 2016). However,
this objective function ignores and important feature of eVRPs: the charging activity. This
may lead to poor charging decisions such as: charging the batteries more than needed,
or charging the batteries when their level is high (which degrades the batteries and implies
longer charging times given the charging functions profile). All those decisions affect directly
the battery degradation cost (which can represent about 3 times the energy cost Becker et al.
(2009)) or affect the charging fees at CS applying a cost per time unit (Bansal 2015). Then,
to make better decisions with reference to the travel and charging activities, we use the
same objective function than Zündorf (2014) and Liao et al. (2016) for related eVRPs: the
minimization of the travel time plus the charging time. This objective function can measure
the costs associated to the charging activity and the energy cost without being too complex.

𝑐𝑖1 𝑐𝑖2 𝑐𝑖3𝑐𝑖0
𝑎𝑖0

𝑎𝑖1

𝑎𝑖2
𝑎𝑖3 = 𝑄

B
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l

Charging time

Figure 1: Piecewise linear approximation composed of 3 linear segments for a CS of 22 kW of power, charging
a battery of 16 kWh.

With the aim that the reader can understand how the charging assumptions of this
problem are integrated in the routing decisions, we present a numerical example of an
eVRP-PNL solution. Figure 2 shows a solution with 7 customers and 3 CSs. The CSs have
different technologies (slow and fast), and each technology has a particular piecewise-linear
charging function. In the charging functions, variables qi and oi specify the battery levels
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when a vehicle arrives at and departs from CS i ∈ F . The charging function maps these
variables to charging times si and ei, in order to estimate the time spent at CS (∆i). In
this example, Route 1 does not visit any CS, because its total energy consumption is less
than the battery capacity. On the other hand Route 2 visits CS 8. In this route, the vehicle
arrives at the CS with a battery level q8 = 1.0, and it charges the battery to a level o8 = 6.0.
To estimate the time spent at the CS, we use the piecewise-linear charging function: the
charging time associated to q8 and o8 are si = 0.8 and ei = 6.0, then the time spent at CS 8
is ∆8 = 6.0− 0.8 = 5.2. The duration of Route 2 is then the sum of the travel time (13.0),
the charging time (5.2), and the service time (1.0), that is 19.2 which is lower than Tmax.
And its cost is 18.2 (travel time + charging time). Finally, Route 3 visits CSs 10 and 9; and
it spends ∆10 = 7.2 and ∆9 = 1.6 time units charging in these CSs, respectively.
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Figure 2: Example of a feasible eVRP-PNL solution

3. Hybrid metaheuristic

To solve the eVRP-PNL we developed a hybrid metaheuristic combining ILS (Lourenço
et al. 2010) an HC (Rosing & ReVelle 1997). Figure 3 presents the general structure of
ILS+HC for the eVRP-PNL. To build the initial solution we follow the route-first cluster-
second approach which uses a constructive heuristic to build a TSP tour visiting all the
customers, followed by a splitting procedure to retrieve an eVRP-PNL solution. Then each
iteration of the ILS tries to improve the current solution with a VND based on three local
search operators: relocate, 2-Opt, and global charging improvement (GCI). At the end of
the iteration, we update the best solution and add the routes of the local optimum to a pool
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of routes Ω. To diversify the search, we concatenate the routes of the local optimum to build
a new TSP tour, and subsequently perturb the new TSP tour. We start a new iteration
by splitting the perturbed TSP tour. After K iterations the ILS component stops, and we
carry out the HC. In this phase, the hybrid metaheuristic solves a set partitioning problem
over the set of routes Ω using the best solution found as upper bound. In the remainder of
this section, we describe the main components of our method.

Build a TSP tour

Split TSP tour

Relocate

GCI

Store routes in Ω

Perturb

2-Opt

Solve set partitioning over Ω

eVRP-PNL solution

VND

ILS iteration

HC

Figure 3: General structure of ILS+HC

3.1. Initial solution

We generate the initial TSP tour using the simple and well-known nearest neighbor
heuristic (NN). For a description of NN see Rosenkrantz et al. (1974)

3.2. Split

To extract a feasible solution from a TSP tour, our approach uses an adaptation of the
splitting procedure introduced by Prins (2004). The splitting procedure builds a directed
acyclic graph G∗ = (V ∗, A∗) composed of the ordered vertex set V ∗ = (v0, v1, ..., vi, ..., vn)
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and the arc set A∗. Vertex v0 = 0 is an auxiliary vertex, and each vertex vi represents the
customer in the ith position of the TSP tour. Arc (vi, vi+nr) ∈ A∗ represents a feasible route
rvi,vi+nr

with an energy consumption ervi,vi+nr
starting and ending at the depot and visiting

customers in the sequence vi+1 to vi+nr .
Since TSP tour includes only customers, route rvi,vi+nr

may not satisfy the energy con-
straint (i.e., the route’s energy consumption is greater than Q). If it does not, we try to
repair it by inserting visits to CSs. If the visits to CSs increases the duration of the route
beyond Tmax then we do not include the arc associated with the route in G∗. To obtain
an energy-feasible route, we solve a FRVCP, which is explained in Section 4. To obtain a
feasible eVRP-PNL solution, the splitting procedure finds the set of arcs (i.e., routes) along
the shortest path connecting 0 and vn in G∗.

3.3. Variable neighborhood descent

To improve the solution generated by the splitting procedure we use a VND based on
three local search operators: relocate, 2-Opt and GCI. For the first two operators we use
intra-route and inter-route versions with best-improvement selection, without changing the
current position of the CSs. Since the relocate and 2-Opt change the sequence of customers,
the current charging decisions may not be valid, then to recalculate the energy charged at
each CS we follow the approach proposed by Felipe et al. (2014): the vehicles charge at each
CS only the necessary energy to reach the next CS or the depot. Note that this procedure
may lead to a solution that is not feasible.

As its name suggest, the global charging improvement operator (GCI) optimizes the
charging decisions of the routes of a given solution. For each route that visits CSs, GCI
eliminates all the CSs of the sequence of the route. If the elimination of the CSs turns the
route infeasible with respect to the energy constraint, then (as in the split procedure) we
solve a FRVCP following the fixed sequence of the customers in the route to reinsert new
CSs and to make optimal charging decisions.

3.4. Perturb

To diversify the search our approach concatenates the routes of the current best solution
to build a TSP tour. Then, we perturb the resulting TSP tour with a randomized double
bridge (DB) operator (Lourenço et al. 2010) and then apply the split procedure to obtain a
new eVRP-PNL solution.

3.5. Heuristic concentration

The heuristic concentration component solves a set partitioning formulation over the
pool of routes Ω. The objective is then to select the best subset of routes from Ω to build
the final solution guaranteeing that each customer is visited by exactly one route.

4. The fixed-route vehicle-charging problem

As mentioned before, in the split and VND components, we solve a new fixed-route
problem to make the charging decisions. This new problem is a variant of the well-known
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fixed-route vehicle-refueling problem (FRVRP). The FRVRP seeks the minimum-cost refuel-
ing policy (which fuel stations to visit and the refueling quantity at each visited station) for
a given origin-destination route (Suzuki 2014). Most of the research carried on the FRVRP
applies to internal combustion vehicles, where the refueling time is negligible. Therefore,
new variants of the FRVRP emerged for the case of electric vehicles. Most of these variants
assume full charging policies (Montoya et al. 2015, Hiermann et al. 2016, Liao et al. 2016).
Only Sweda et al. (2014) assume a partial charging policy, however they do not take into
account the charging time, because their objective is to minimize the energy and degradation
costs, and they do not consider maximum route duration constraints.

In this section, we introduce the fixed-route vehicle-charging problem (FRVCP) where:
(i) vehicles have to detour of their fixed-route to visit the CSs; (ii) the amount of charge
is a decision variable; and (iii) the charging function is piecewise linear. Since the FRVRP
is NP-hard (Suzuki 2014) and the FRVCP generalizes the FRVRP, we can conclude that
the FRVCP is also NP-hard. To solve this problem, we propose two approaches: a MILP
formulation and a greedy heuristic.

Let Π = {π(0), π(1), ..., π(i), ..., π(j), ..., π(nr)} be a route that violates the energy con-
straint, where π(0) and π(nr) represent the depot. This route has a total time t, which is the
sum of the travel times plus the service times. The feasibility of Π may be restored by insert-
ing visits to CSs. As mentioned in Section 2, each CS j ∈ F has a piecewise-linear charging
function defined by a set of breakpoints B. The piecewise linear function is composed by a
set of segments. Each segment is defined between the breakpoints k− 1 and k ∈ B, it has a
slope ρjk (representing a charging rate), and it is bounded between the battery levels ajk−1
and ajk (see Figure 4a). In Figure 4b the values eπ(i−1)π(i) and tπ(i−1)π(i) represent respec-
tively the energy consumption and the travel time between vertices π(i − 1) and π(i) ∈ Π,
eπ(i−1)j and tπ(i−1)j represent the energy consumption and the travel time between vertex
π(i− 1) ∈ Π and CS j ∈ F , and ejπ(i) and tjπ(i) represent the energy consumption and the
travel time between the CS j ∈ F and vertex π(i) ∈ Π.

In the FRVCP the objective is to find the charging decisions (i.e., where and how much
to charge) that minimize the sum of the charging times and detour times, satisfying the
following conditions: the level of the battery when the vehicle arrives at any vertex is
nonnegative; and the route satisfies the maximum-duration limit.

4.1. Mixed-integer linear programming formulation

We formulate the FRVCP using the following decision variables: variable επ(i)j is equal
to 1 if the vehicle charges at CS j ∈ F before visiting vertex π(i) ∈ Π. Variable φπ(i) tracks
the battery level. If επ(i)j = 0, φπ(i) is the battery level when the vehicle arrives at vertex
π(i). On the other hand, if επ(i)j = 1, φπ(i) is the battery level when the vehicle arrives at
CS j ∈ F right before visiting vertex π(i). Variable θπ(i)jk is equal to 1 if the vehicle charges
on the segment defined by breakpoints k − 1 and k ∈ B at CS j ∈ F before visiting vertex
π(i) ∈ Π. Finally, variables δπ(i)jk and µπ(i)jk are respectively the amount of energy charged
and the battery level when the charging finishes on the segment defined by breakpoints k−1
and k ∈ B at CS j ∈ F before the vehicle visits vertex π(i) ∈ Π. The MILP formulation of
the FRVCP follows:
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Figure 4: Piecewise-linear charging function and fixed-route for the FRVCP

min
∑

π(i)∈Π\{π(0)}

∑
j∈F

∑
k∈B\{0}

δπ(i)jk

ρjk
+

∑
π(i)∈Π\{π(0)}

∑
j∈F

επ(i)j(tπ(i−1)j + tjπ(i) − tπ(i−1)π(i)) (1)

Subject to

φπ(1) = Q−
∑
j∈F

επ(1)jeπ(0)j − eπ(0)π(1)(1−
∑
j∈F

επ(1)j) (2)

φπ(i) = φπ(i−1) +
∑
j∈F

∑
k∈B\{0}

δπ(i−1)jk −
∑
j∈F

επ(i−1)jejπ(i−1)−∑
j∈F

επ(i)jeπ(i−1)j − eπ(i−1)π(i)(1−
∑
j∈F

επ(i)j) ∀π(i) ∈ Π \ {π(0), π(1), π(nr)} (3)
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φπ(nr) = φπ(nr−1) +
∑
j∈F

∑
k∈B\{0}

δπ(nr−1)jk+

∑
j∈F

∑
k∈B\{0}

δπ(nr)jk −
∑
j∈F

επ(nr−1)jejπ(nr−1)−∑
j∈F

επ(nr)j(eπ(nr−1)j + ejπ(nr))− eπ(nr−1)π(nr)(1−
∑
j∈F

επ(nr)j) (4)

φπ(nr−1) +
∑
j∈F

∑
k∈B\{0}

δπ(nr−1)jk −
∑
j∈F

ejπ(nr−1)επ(nr−1)j−

∑
j∈F

eπ(nr−1)jεπ(nr)j

)
≥ 0 (5)

µπ(i)j1 = φπ(i) + δπ(i)j1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (6)

µπ(nr)j1 = φπ(nr−1) +
∑
l∈F

∑
k∈B\{0}

δπ(nr−1)lk−∑
l∈F

elπ(nr−1)επ(nr−1)l − επ(nr)jeπ(nr−1)j + δπ(nr)j1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (7)

µπ(i)jk = µπ(i)j,k−1 + δπ(i)jk ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0, 1} (8)

µπ(i)jk ≥ ajk−1θπ(i)jk ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0, 1} (9)

µπ(i)jk ≤ ajkθπ(i)jk + (1− θπ(i)jk)Q ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (10)∑
j∈F

επ(i)j ≤ 1, ∀π(i) ∈ Π \ {π(0)} (11)

θπ(i)jk ≤ επ(i)j ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (12)

δπ(i)jk ≤ θπ(i)jkQ ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (13)

t+
∑

π(i)∈Π\{π(0)}

∑
j∈F

∑
k∈B\{0}

δπ(i)jk

ρjk
+

∑
π(i)∈Π

∑
j∈F

επ(i)j(tπ(i−1)j + tjπ(i))− tπ(i−1)π(i)) ≤ Tmax (14)

φπ(i) ≥ 0, ∀πi ∈ Π \ {π(0)} (15)

επ(i)j ∈ {0, 1}, ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (16)

θπ(i)jk ∈ {0, 1} ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (17)

δπ(i)jk ≥ 0 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (18)

µπ(i)jk ≥ 0 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (19)

The objective function (1) seeks to minimize the total route time (including charging
and detour times). Constraints (2-5) define the battery level when the vehicle arrives at
vertex π(i) ∈ Π if επ(i)j = 0, or to CS j ∈ F before visiting the vertex π(i) ∈ Π, if επ(i)j = 1.
Constraints (6-8) define the battery level when the vehicle finishes charging at CS j ∈ F in
the segment between breakpoints k− 1 and k ∈ B before the vehicle visits vertex π(i) ∈ Π.
Constraints (9-10) ensure that if the vehicle charges on a given segment, the battery level
lays between the values of its corresponding break points (aj,k−1 and ajk). Constraints (11)
state that only one CS is visited between any two vertices of the fixed route. Constraints (12)
ensure that the vehicle only uses segments of visited CSs. Likewise, constraints (13) ensure
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that the vehicle charges only at selected segments of visited CSs. Constraint (14) represents
the duration constraint of the route. Finally, constraints (15-19) define the domain of the
decision variables.

To reduce the size of the MILP formulation and consequently improve the solution time,
we introduce three strategies to forbid visits to CSs that will not be included in any feasible
route of the eVRP-PNL. All the strategies rely on the two following premises: (i) energy
consumption and travel time between vertices meet the triangle inequality; (ii) since the
piecewise-linear charging function is concave (i.e., ρjk−1 ≥ ρjk), the first segment has the
fastest charging rate. We propose two types of strategies. The first two strategies identify
infeasible visits to CSs between pairs of vertices i and h ∈ I ∪ {0}, and before or after a
vertex i ∈ I ∪ {0}, without exploiting information on the fixed-route. These strategies are
applied once before running ILS+HC. Whereas, the third strategy identifies infeasible visits
to CSs between vertices i and h ∈ Π considering the information of the fixed route.

Strategy 1 : This strategy estimates the minimum time τ needed to visit CS j ∈ F between
two vertices i and h ∈ I ∪ {0}. This time is defined as the sum of a lower bound of
the travel time (u) plus a lower bound of the charging time (v). To compute u, note
that the shortest travel time to reach a vertex i is to come directly from the depot.
Note also that the shortest travel time to finish a tour from vertex h is to go directly
to the depot. Then the minimum travel time of a route visiting CS j between vertices
i and h is u = t0,i + ti,j + tj,h + th,0 + pi + ph. To compute the minimum charging time
v, we need to compute the minimum amount of energy (ec) that the vehicle coming
from vertex i and traveling to vertex h must charge at CS j. This minimum amount
is the charge needed to recover the energy consumed to make the detour to j, that is
defined as ec = eij + ejh − eih. Because the battery level when the vehicle arrives at i
is impossible to estimate a priori, we consider that the battery is recharged with the
charging rate ρ0j (fastest charging rate). Then v = ec

ρ0j
. Finally, if τ = u+ v is greater

than Tmax, then we forbid the visit to CS j between the two vertices i and h.

Strategy 2 : This strategy computes a lower bound q of the energy consumed by a vehicle
which visits a CS j after a vertex i, and a lower bound o of the energy consumed by
a vehicle which visits a CS j before a vertex h. The first lower bound is computed
as follows: in terms of energy consumption, the best path to reach vertex i is to
come directly from its closest charging station c(i) (which may be the depot). Then
q = ec(i)i+ eij. Similarly, the path consuming the least energy after visiting vertex h is
the one going directly to its closest station c(h). Thus, the minimum energy consumed
by a vehicle which visits a CS j before a vertex h is o = ejh + ehc(h). If q > Q (resp.
o > Q) then we forbid visiting CS j after i (resp. before h).

Strategy 3 : This strategy estimates the minimum time τ needed to visit CS j ∈ F
between two vertices π(i) and π(i + 1) ∈ Π , i 6= nr, considering the current total
time of the fixed-route (t). This minimum time τ is defined as the sum of the travel
time (u) plus a lower bound of the charging time (v). First, we know that u =
t+ tπ(i),j + tj,π(i+1)− tπ(i),π(i+1). Second, we follow the same idea than in Strategy 1 to

11



obtain a lower bound on v. Therefore v = ec
ρ0j

, with ec = eπ(i)j +ejπ(i+1)−eπ(i)π(i+1) the

charge needed to recover the energy consumed in the detour to j. Finally, if τ = u+ v
is greater than Tmax, then we forbid visiting CS j between vertices π(i) and π(i+ 1).

4.2. Greedy heuristic

Existing metaheuristics for eVRPs use different approaches to make charging decisions.
One of them is the recharge relocation operator proposed by Felipe et al. (2014) for the green
vehicle routing problem with multiple technology and partial recharges (GVRP- MTPR).
This approach considers the insertion of only one CS per route. It starts from an energy-
feasible fixed-route composed of a set a customers and one CS. It deletes the current CS,
and tries to improve the charging decisions by inserting each CS into each arc of the fixed-
route. In addition, it uses a simple rule for the energy charged at the inserted CS: vehicles
charge the energy needed to reach the depot (i.e., to complete the route). We propose here
a heuristic to solve the FRVCP based on this approach.

Our heuristic is composed of two phases: location of CSs and charge setting. In the
first phase, the heuristic iteratively inserts CSs into the arcs of the fixed-route Π in order
to ensure the feasibility in terms of energy. In the second phase, the heuristic improves
the charging decisions by adjusting the energy charged at each visited CS. Algorithm 1
describes the structure of our heuristic. It uses three important procedures trackBattery,
sumNegative, and totalTime. Procedure trackBattery computes the battery level Yi at
each vertex i ∈ Π, supposing that the vehicle fully charges its battery in each visit to CSs.
Procedure sumNegative computes the sum of the battery levels with negative values (i.e.,
Yi < 0). Notice that sumNegative computes the aggregated infeasibility of the route Π
in terms of energy. Finally, procedure totalTime computes the total time t of the route
(supposing a full charging policy). This heuristic starts by the location phase (line 2-27).
After computing the sum of battery levels with negative values for the current fixed-route Π,
the heuristic enters the outer loop (line 7-27). Each pass through the outer loop evaluates
all the possible insertions of each CS in F into each arc of Π supposing that the vehicle
fully charges its battery, and keeps the best insertion in terms of the sum of battery levels
s with negative value (line 8-25). If s = 0 (i.e., the route is energy-feasible), the heuristic
keeps the best insertion in terms of the total time of the route t (line 19-23). Then, the
heuristic inserts the best CS Fu into the best arc (πv, πv+1) (line 26). If the route Π is still
energy-infeasible (s < 0) the heuristic inserts another CS starting again in line 8. In the
charge setting phase (line 28), the heuristic invokes a procedure called ruleMinEnergy(Π)

to set the energy charged at each inserted CS following Felipe et al. (2014) approach: the
vehicle only charges at each CS the energy needed to arrive at the next CS or the depot.
Finally, the heuristic evaluates if the repaired route satisfies the duration constraint (29-33).
The heuristic returns a boolean variable indicating whether or not the fixed-route is feasible,
and the repaired route Π, if found.
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Algorithm 1 Greedy heuristic

1: function GreedyHeuristic(Π0,F )
2: Π←− Π0

3: Y ←− trackBattery(Π)

4: s←− sumNegative(Y )
5: t←−∞
6: f ←− false
7: while s < 0 do
8: for i = 1 to |F | do
9: for j = 0 to nr − 1 do

10: Π←− {π0, ..., πj, Fi, πj+1, ..., πnr}
11: Y ′ ←− trackBattery(Π)

12: s′ ←− sumNegative(Y ′)
13: t′ ←− totalTime(Π)

14: if s′ > s then
15: s←− s′

16: u←− i
17: v ←− j
18: end if
19: if s′ = 0 and t′ < t then
20: t←− t′

21: u←− i
22: v ←− j
23: end if
24: end for
25: end for
26: Π←− {π0, ..., πv, Fu, πv+1, ..., πnr}
27: end while
28: 〈t,Π〉 ←− RuleMinEnergy(Π)

29: if t ≤ Tmax then
30: f ←− true
31: else
32: Π←− Π0

33: end if
34: return Π, f
35: end function

5. Computational experiments

In this section, we present three computational studies. The first study compares the
quality of the solutions obtained by two versions of our metaheuristic. The second study
evaluates the CPU time of our metaheuristic, and assesses the impact of the preprocessing
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strategies. Finally, the third study analyses the charging decisions of the best solutions
found.

5.1. Test instances for the eVRP-PNL

To test our approach, we propose a new 120-instances testbed using real data of vehicle
configuration and charging functions. In order to ensure the feasibility of the instances, we
opt to generate our set of instances, instead of using classical instances form the literature.
Our instances range from 10 to 320 customers. We locate the customers into a geographic
space of 120 x 120 km. This geographic space represents a semi-urban operation, where
the distance of the routes may exceed the autonomy of the vehicles (a setting where eVRPs
are more interesting). To locate the customers, we use three options: random uniform
distribution, random clustered distribution and a mixture of both. For each instance the
customer location option is selected randomly with equal probability.

Considering that the number and location of the CSs impact the routing and charging
decisions, for each number of customers we generate four types of configurations changing
these factors. For the number of CSs, we evaluate two levels: low and high availability of CSs.
The values of these levels are proportional to the number of customers in order to ensure
the feasibility of the instances. For the location of the CSs, we use two approaches: random
location and one using a simple p-median heuristic. This p-media heuristic starts with a
random location and exchanges iteratively the location of the CSs, in order to minimize
the total distance between the CSs and the customers. We use three types of CSs: slow,
moderate, and fast. For each location of the CSs we select randomly with uniform probability
the type of the station. Finally, for the vehicle and charging parameters of this set of
instances, we use the real data of a Peogout Ion. This vehicle has a consumption rate
of 0.125 kWh/km, and a battery of 16 kWh. Figure 5 shows the piecewise linear charging
function associate to each charging station. These piecewise linear functions were generated
using real data provided by Uhrig et al. (2015). Finally, the maximum route duration was
fixed to 10 hours.
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Type of CSs Slow Moderate Fast

Charging power (kWh/h) 11 22 44

Piecewise linear approximation
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Figure 5: Piecewise linear approximation for different types of CS charging a vehicle with a battery of 16
kWh.

5.2. Parameter settings & experimental environment

As mentioned before, we propose two approaches to solve the FRVCP in the split and
VND components. Considering that the objective of the split procedure is only to find an
initial solution for the VND, and to favor short running times we opt to use the greedy
heuristic rather than the MILP formulation in the split procedure of ILS+HC. On the other
hand, we use the two approaches to solve the FRVCP in the VND component. We thus
present two ILS+HC versions: ILS(M)+HC and ILS(H)+HC. As their name suggest the
former uses the MILP formulation to solve the FRVCP whereas the later uses the heuristic.
This allow us to evaluate the impact of optimal versus heuristic charging decisions over the
solution quality and the computing times of ILS+HC.

For the number of iterations of ILS (K), we conducted a parameter tuning, and found
that K = 80 provides the best trade-off between solution quality and computing time. For
the sake of brevity, we will not present these experiments.

We implemented our ILS in Java (jre V.1.8.0) and used Gurobi Optimizer (version 5.6.0)
to solve the FRVCP and the set partitioning problem. We set a time limit of 800 seconds on
Gurobi to control the running time of the heuristic concentration phase. All the experiments
were run on a computing cluster with 2.33 GHz Inter Xeon E5410 processors with 16 GB of
RAM running under Linux Rocks 6.1.1. The results for the two versions of the metaheuristic
are computed over 10 runs. Each replication of the experiments was run on a single processor.

5.3. Solution quality evaluation

Initially, we compare the two versions of the metaheuristic to evaluate the impact of the
optimal and heuristic charging decisions over the eVRP-PNL results. Table 1 summarizes
the results of the two versions on the 20 small instances of 10 customers compared with the
optimal solutions found using the MILP formulation presented in the Part I of the electronic
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companion. The rows of Table 1 indicate the number of times that each metaheuristic version
found the optimal solution, the average and maximum gap (in %) with respect to the optimal
solution over the 10 runs, and the average best gap 1 (in %). Table 2 presents the results
obtained for the other instances (without proven optima). The first row contains the number
of solutions found by the MILP formulation and the two versions of the metaheuristic. The
following rows contain the same metrics than Table 1 but the comparison is done against
the best solutions found (BKSs) by the MILP formulation or any of the two versions of the
metaheuristic. The detailed results are reported in the Part II of the electronic companion.

As Table 1 shows, for the instances with proven optimal solution, ILS(M)+HC has a
remarkable performance: it matches 20 out of 20 optimal solutions, and has an average gap
of only 0.34%. On the other hand, ILS(H)+HC only matches 15 out of 20 optimal solutions,
and has an average gap of 1.97%. The maximum gap reached by ILS(H)+HC (17.07%) also
highlights that making heuristic charging decisions has an important impact on the solution
quality even for these small instances. The results are similar on larger instances(Table 2).
ILS(M)+HC matches 100 out of 100 BKSs and has an average and maximum gaps of 1.51%
and 4.44% respectively. By contrast ILS(H)+HC only matches 7 out of 100 BKSs and has
an average gap of 7.51% and a maximum gap of 28.68%. On the other hand, using the
MILP formulation with a time limit of 10 hours, Gurobi found integer solutions (without
guaranteeing optimality) for only 25 out of 100 instances, and obtains 7 out of 100 BKSs,
with an average gap of 41.36%.

In conclusion, the proposed ILS(M)+HC has competitive results. It matches all the
optimal solutions on small instances and all the BKSs of large instances. The clear out-
performance of ILS(M)+HC over ILS(H)+HC shows the importance of making optimal
charging decisions to obtain high-quality solutions of the eVRP-PNL.

Table 1: Comparison of the two versions of the metaheuristic on small instances (with proven optima)

Metric ILS(H)+HC ILS(M)+HC

Number of optimal solutions 15/20 20/20
Avg. Gap (%) 1.97 0.34
Max. Gap (%) 17.07 1.87
Avg. Best Gap (%) 1.20 0.00

5.4. Computing time performance

Table 3 summarizes the computing time (in seconds) of ILS(H)+HC, a version of ILS+HC
without the preprocessing strategies (ILS(M′)+HC), and the original ILS(M)+HC which in-
cludes these strategies. For each instance size (measured in number of customers), the
first three columns indicate the average computing time of the three methods (in seconds),
and the last column indicates the average speedup between ILS(M′)+HC and ILS(M)+HC

1The best gap is the gap between the best solution found over 10 runs and the optimal solution
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Table 2: Comparison of the two versions of the metaheuristic on large instances

Metric Gurobi ILS(H)+HC ILS(M)+HC

Number of solutions 25/100 100/100 100/100
Number of BKSs 7/100 7/100 100/100
Avg. Gap (%) 41.36 7.51 1.51
Max. Gap (%) NA 28.68 4.44
Avg. Best Gap (%) NA 5.28 0.00

(measured as the ratio of their computing times). The results show that ILS(H)+HC is
the fastest approach. However, as mentioned before, it does not provide competitive results
in terms of solution quality. Despite ILS(M)+HC has remarkable results, the use of an
MILP formulation for the charging decision has an impact over the computing time (it is
roughly five times slower than ILS(H)+HC). However, the use of the preprocessing strate-
gies reduces significantly the computing time of the ILS(M)+HC. On average the speedup
between ILS(M′)+HC and ILS(M)+HC is 1.65.

Table 3: Average computing time (in seconds) of different variants of the metaheuristic

Instance size ILS(H)+HC ILS(M′)+HC ILS(M)+HC Speedup

10 0.64 8.54 5.62 1.52
20 1.75 17.47 10.56 1.65
40 8.48 64.16 35.35 1.82
80 39.35 148.76 80.11 1.86
160 289.08 976.84 568.02 1.72
320 2,568.94 5,759.67 4,397.64 1.31
Average 484.71 1,162.57 849.55 1.65
Max 4,766.36 10,335.56 7,636.50 2.53
Min 0.49 3.71 2.36 1.16

ILS(M′)+HC and ILS(M)+HC are the hybrid metaheuristic with and without preprocessing strategies

5.5. Analysis of the charging decisions in the solutions

As pointed out previously, there are several simplifications of the charging process in
the eVRP literature: most of the studies assume that the battery is completely recharged
at each visit to a CS, and/or that at most one CS can be visited in a route. In order to
compare these assumptions against those introduced in the eVRP-PNL (i.e., the partial
charging option and the possibility to visit several CSs in a route), we analyze the best
solutions obtained for each instance.

Figure 6 presents the percentage of the routes with/without visits to CSs grouped by
instance size (in terms of number of customers). The results show that on average 71.47%
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of the routes visit at least one CS, and this percentage is roughly the same for each instance
size. This shows that charging decisions impact most of the routes.
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Figure 6: Percentage of the routes with/without visits to CSs by instance size.

Figure 7a and 7b present histograms of the number of visited CSs per route and the
maximum number of visited CSs in the routes of each solution. Figure 7a shows that among
the routes visiting CSs, 58.58% visit only one CS, 40.00% visit two CSs and 1.43% three CSs.
Although a large portion of the routes visit only one CS, 85.83% of the solutions contain at
least a route visiting more than one CS (Figure 7b). This confirm the importance of allowing
the option of visiting several CSs in a route. Moreover, Figure 8 presents the histogram of
the average amount of charge by route (in terms of percentage of the battery capacity). The
cumulative curve shows that in roughly 99% of the routes the vehicles charge partially. This
last result supports the fact that partial charging is necessary in the eVRPs context.
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(a) Histogram of number of visits to CS per route.
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(b) Histogram of the maximum number of visited CSs
in the routes of each solution.

Figure 7: Analysis of the number of visits to CSs
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Figure 8: Histogram of the average charged amount per route

Finally, Figure 9 presents the average gap of ILS(H)+HC and ILS(M)+HC grouped by
the maximum number of visited CSs in the routes of each solution. This figure shows that
the average gap of the ILS(M)+HC remains roughly constant regardless of the number of
visited CSs. On the other hand, the average gap of ILS(H)+HC increases significantly with
the number of visited CSs. This confirms the importance of a procedure that makes optimal
charging decisions when including the option to visit several CSs in a route.
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Figure 9: Average gap grouped by maximum number of visited CSs in the routes of each solution

6. Conclusion and future work

This paper considers an extension of the electric vehicle routing problem which includes
realistic assumptions about the charging process: the electric vehicle routing problem with
partial charging and nonlinear charging function (eVRP-PNL). We present an iterated local
search (ILS) with a heuristic concentration (HC) to solve it. An important step in this
metaheuristic is the resolution of a sub-problem known as the fixed-route vehicle-charging
problem (FRVCP). We propose two solution methods to solve it: a heuristic and an MILP
formulation. Computational results on a set of 120 instances of different sizes reveal that
the version of the metaheuristic using the MILP formulation to solve the FRVCP obtains
competitive results: it matches all the optimal solutions for small instances and all the
best known solutions for the others. Finally, the analysis of charging decisions of the best
solutions highlights the importance of making optimal charging decisions, including the
option to visit multiple CSs, and allowing partial charging in the routes of eVRPs.

Interesting research directions include the resolution of the eVRP-PNL using other meta-
heuristics and the development of alternative methods to solve the FRVCP to optimality.
In addition, in ongoing research we are extending the problem definition to consider a cost
objective function, and time windows.
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Montoya, A., Guéret, C., Mendoza, J. E. & Villegas, J. G. (2015), ‘A multi-space sampling heuris-
tic for the green vehicle routing problem’, Transportation Research Part C: Emerging Technologies
p. DOI:10.1016/j.trc.2015.09.009.

Nesterova, N., Quak, H., Balm, S., Roche-Cerasi, I. & Tretvik, T. (2015), Project frevue deliverable d1. 3:
State of the art of the electric freight vehicles implementation in city logistics, Technical Report 5, TNO
and SINTEF. European Commission Seventh framework programme.

21

http://www.electrificationcoalition.org/sites/default/files/EC_State_of_PEV_Market_Final_1.pdf
http://www.electrificationcoalition.org/sites/default/files/EC_State_of_PEV_Market_Final_1.pdf
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://sustainabilityreport.heineken.com/Reducing-CO2-emissions/Case-studies/Europes-largest-electric-truck-will-drive-down-emissions/index.htm
http://www.sura.com/blogs/autos/convenio-sura-celsia-por-el-medio-ambiente.aspx
http://www.sura.com/blogs/autos/convenio-sura-celsia-por-el-medio-ambiente.aspx


Pelletier, S., Jabali, O. & Laporte, G. (2016), ‘50th anniversary invited article—goods distribution with
electric vehicles: Review and research perspectives’, Transportation Science 50(1), 3–22.

Pelletier, S., Jabali, O., Laporte, G. & Veneroni, M. (2015), Goods distribution with electric vehicles:
Battery degradation and behaviour modeling, Technical report, Technical Report, CIRRELT-2015.

Post & Parcel (2014), ‘CTT group invests 5M of euros in green fleet’, http://postandparcel.info/60290/
uncategorized/ctt-group-invests-e5m-in-green-fleet/. Last accessed 13/04/2016.

Prins, C. (2004), ‘A simple and effective evolutionary algorithm for the vehicle routing problem’, Computers
& Operations Research 31(12), 1985 – 2002.

Ramirez (2015), ‘El periodismo necesita inversión. comparte este art́ıculo utilizando los ı́conos que aparecen
en la página.’, http://www.milenio.com/negocios/Centro_de_Ventas_Ecologico-bimbo-Centro_

de_Ventas_Ecologico_bimbo_0_633536930.html. Last accessed 13/04/2016.
Rosenkrantz, D., Stearns, R. & Lewis, P. (1974), Approximate algorithms for the traveling salesperson

problem, in ‘Switching and Automata Theory, 1974., IEEE Conference Record of 15th Annual Symposium
on’, pp. 33–42.

Rosing, K. & ReVelle, C. (1997), ‘Heuristic concentration: Two stage solution construction’, European
Journal of Operational Research 97(1), 75 – 86.

Sassi, O., Cherif, W. R. & Oulamara, A. (2014), Vehicle routing problem with mixed fleet of conventional
and heterogenous electric vehicles and time dependent charging costs, Technical report, hal-01083966.

Schiffer, M. & Walther, G. (2015), The electric location routing problem with time windows and partial
recharging, Technical report, RWTH Aachen University.

Schneider, M., Stenger, A. & Goeke, D. (2014), ‘The electric vehicle-routing problem with time windows
and recharging stations’, Transportation Science 48(4), 500–520.

Schneider, M., Stenger, A. & Hof, J. (2015), ‘An adaptive VNS algorithm for vehicle routing problems with
intermediate stops’, OR Spectrum 37(2), 353–387.

Suzuki, Y. (2014), ‘A variable-reduction technique for the fixed-route vehicle-refueling problem’, Computers
& Industrial Engineering 67, 204–215.

Sweda, T. M., Dolinskaya, I. S. & Klabjan, D. (2014), ‘Optimal recharging policies for electric vehicles’,
Transportation Science, forthcoming .

TU Delft, HAW Hamburg, L. Z. F. (2013), ‘Comparative analysis of european examples of schemes for freight
electric vehicles - compilation report. e-mobility nsr’, http://e-mobility-nsr.eu/fileadmin/user_

upload/downloads/info-pool/E-Mobility_-_Final_report_7.3.pdf. Last accessed 01/01/2016.
Uhrig, M., Weiß, L., Suriyah, M. & Leibfried, T. (2015), E-mobility in car parks–guidelines for charging in-

frastructure expansion planning and operation based on stochastic simulations, in ‘the 28th International
Electric Vehicle Symposium and Exhibition, KINTEX, Korea’.

UPS (2008), ‘UPS hybrid electric vehicle fleet.’, http://www.pressroom.ups.com/HEV. Last accessed
05/14/2014.

Zündorf, T. (2014), Electric vehicle routing with realistic recharging models, Master’s thesis, Karlsruhe
Institute of Technology, Karlsruhe, Germany.

22

http://postandparcel.info/60290/uncategorized/ctt-group-invests-e5m-in-green-fleet/
http://postandparcel.info/60290/uncategorized/ctt-group-invests-e5m-in-green-fleet/
http://www.milenio.com/negocios/Centro_de_Ventas_Ecologico-bimbo-Centro_de_Ventas_Ecologico_bimbo_0_633536930.html
http://www.milenio.com/negocios/Centro_de_Ventas_Ecologico-bimbo-Centro_de_Ventas_Ecologico_bimbo_0_633536930.html
http://e-mobility-nsr.eu/fileadmin/user_upload/downloads/info-pool/E-Mobility_-_Final_report_7.3.pdf
http://e-mobility-nsr.eu/fileadmin/user_upload/downloads/info-pool/E-Mobility_-_Final_report_7.3.pdf
http://www.pressroom.ups.com/HEV


Electronic companion of:

A hybrid metaheuristic for the electric vehicle routing problem with

partial charging and nonlinear charging function
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Part I

Comparison of different charging assumptions

The objective of this part of the electronic companion is to show the importance of consid-
ering a nonlinear function to model the battery charging process and the impact of partial
recharges of the battery. We first present the approximations used for the charging function
in transportation planning problems. Then, we propose a mixed-integer linear program-
ming (MILP) formulation for the electric vehicle routing problem with partial charging and
nonlinear charging function (eVRP-PNL) that, with a few modifications, can be adapted
to model other charging policies and charging function approximations used in the extant
eVRP literature. We use the MILP formulation and a commercial solver to evaluate the
impact of including the nonlinear charging functions and partial charging in eVRPs. Our
results suggest that disallowing partial charging and neglecting the nonlinear nature of the
charging functions leads to solutions that may be infeasible or overly expensive.

1. Modeling of battery charging functions

The charging function of a battery models the relationship between battery charging time
and charging level. In general, the charging functions are nonlinear, because the terminal
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voltage and current change during the charging process. This process is divided into two
phases. In the first phase, the charging current is held constant, and thus the state of charge
(SOC) increases linearly with time until the battery’s terminal voltage increases to a specific
maximum value (see Figure 1). In the second phase, the current decreases exponentially and
the terminal voltage is held constant to avoid battery damages. The SOC increases then
concavely with the time (Pelletier et al. 2015).

Figure 1: Typical charging curve, where i and u represent the currency and terminal voltage respectively.
(Source Hõimoja et al. (2012))

Although the shape of the charging functions are known, their exact modeling is very
complex because it depends on many factors as: currency, voltage, self-recovery and temper-
ature, among others (Wang et al. 2013). The battery state of charge is then often described
by differential equations. Since such equations are difficult to integrate in transportation
problems, different approximations are used in those problems. These approximations are
presented below compared with real data of a charging function provided by Uhrig et al.
(2015). Each of them can be used in a full recharge policy (FR) or in a partial recharge
policy (PR).

First segment (FS) : To avoid dealing with the nonlinear segment, Bruglieri et al. (2014)
use a linear approximation that considers only the first segment (Figure 2).
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Figure 2: First segment approximation (FS)

Linear approximations (L1 and L2) : Although several authors assume a linear ap-
proximation (Felipe et al. 2014, Sassi et al. 2014, Bruglieri et al. 2015, Desaulniers
et al. 2014, Schiffer & Walther 2015, Keskin & Çatay 2016), they do not explain how
the approximation is estimated. Two options can be considered. In the first one (L1)
the charging rate of the function corresponds to the slope of the first segment of the
piecewise linear approximation (see Figure 3a). This approximation is optimistic, be-
cause it assumes that batteries charge up to Q faster than they do in reality. In the
second approximation (L2) the charging rate is the slope of the line connecting the
first and last observations (see Figure 3b) of the charging curve. This approximation
tends to be pessimistic, because over a large portion of the curve, the charging rate is
slower than in reality.
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(a) Linear approximation 1 (L1)
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(b) Linear approximation 2 (L2)

Figure 3: Linear approximations of charging functions.

Piecewise linear approximations (PL) : This approximation, proposed by Zündorf (2014)
for a shortest path problem with electric vehicles, consists in approximating the charg-
ing function by a series of linear segments (see Figure 4a).

In this study, we use the same approximation proposed by Zündorf (2014). To assess
the validity of this approximation, we use the data provided by Uhrig et al. (2015). These
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authors conducted experiments to estimate the charging time for different charge levels with
two types of electric vehicles and three types of CSs. We fit piecewise linear functions to the
data and obtain approximations with an average relative absolute error of 0.90%, 1.24%,
and 1.90% for CSs of 11, 22, and 44 kW, respectively. Figure 4b shows the piecewise linear
approximation for a CS i of 22 kW charging a vehicle equipped with a battery of 16 kWh.
In the plot, cik and aik represent the charging time and the charge level for the breakpoint
k ∈ B of the CS i ∈ F ′, where B = {0, .., b} is the set of breakpoints of the piecewise linear
approximation.
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Figure 4: Piecewise linear approximation (PL).

2. Mixed-integer linear programming formulation

We present in this section the MILP formulation of the eVRP-PNL. We also show how it
can be adapted to model other approximations and full charging policies

To formulate the eVRP-PNL, we introduce the set F ′ that contains the set F and β
copies of each CS (i.e., |F ′| = |F | × (1 + β)). The value of 1 + β corresponds to the number
of times that each CS can be visited. For this MILP formulation, we use the following
decision variables: variable xij is equal to 1 if a vehicle travels from vertex i to j, and 0
otherwise. Variables τj and yj track the time and charge level when the vehicle departs
from vertex j ∈ V . Variables qi and oi specify the charge levels when a vehicle arrives at
and departs from CS i ∈ F ′, and si and di are the associated charging times (see Figure 5).
Variable ∆i = di−si represents the time spent at CS i ∈ F ′. Variables zik and wik are equal
to 1 if the charge level is between ai,k−1 and aik, with k ∈ B \ {0}, when the vehicle arrives
at and departs from CS i ∈ F ′ respectively. Finally, variables αik and λik are the coefficients
of the breakpoint k ∈ B in the piecewise linear approximation, when the vehicle arrives at
and departs from CS i ∈ F ′ respectively. The MILP formulation follows:
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Figure 5: Battery charge levels and charging times i ∈ F ′

min
∑
i,j∈V

tijxij +
∑
i∈F ′

∆i (1)

subject to

∑
j∈V,i 6=j

xij = 1, ∀i ∈ I (2)

∑
j∈V,i 6=j

xij ≤ 1, ∀i ∈ F ′ (3)

∑
j∈V,i 6=j

xji −
∑

j∈V,i6=j

xij = 0, ∀i ∈ V (4)

eijxij − (1− xij)Q ≤ yi − yj ≤ eijxij + (1− xij)Q, ∀i ∈ V,∀j ∈ I (5)

eijxij − (1− xij)Q ≤ yi − qj ≤ eijxij + (1− xij)Q, ∀i ∈ V,∀j ∈ F ′ (6)

yi ≥ ei0xi0, ∀i ∈ V (7)

yi = oi, ∀i ∈ F ′ (8)

y0 = Q (9)

qi ≤ oi, ∀i ∈ F ′ (10)

qi =
∑
k∈B

αikaik, ∀i ∈ F ′ (11)

si =
∑
k∈B

αikcik, ∀i ∈ F ′ (12)∑
k∈B

αik =
∑
k∈B

zik, ∀i ∈ F ′ (13)∑
k∈B

zik =
∑
j∈V

xij , ∀i ∈ F ′ (14)

αik ≤ zik + zi,k+1, ∀i ∈ F ′,∀k ∈ B \ {b} (15)

αib ≤ zib, ∀i ∈ F ′ (16)

oi =
∑
k∈B

λikaik, ∀i ∈ F ′ (17)
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di =
∑
k∈B

λikcik, ∀i ∈ F ′ (18)∑
k∈B

λik =
∑
k∈B

wik, ∀i ∈ F ′ (19)∑
k∈B

wik =
∑
j∈V

xij , ∀i ∈ F ′ (20)

λik ≤ wik + wi,k+1, ∀i ∈ F,′ ∀k ∈ B \ {b} (21)

λib ≤ wib, ∀i ∈ F ′ (22)

∆i = di − si, ∀i ∈ F ′ (23)

τi + (tij + pj)xij − Tmax(1− xij) ≤ τj , ∀i ∈ V,∀j ∈ I (24)

τi + ∆j + tijxij − (Smax + Tmax)(1− xij) ≤ τj , ∀i ∈ V,∀j ∈ F ′ (25)

τj + tj0 ≤ Tmax, ∀j ∈ V (26)

τ0 ≤ Tmax (27)

xij = 0, ∀i, j ∈ F ′ : mij = 1 (28)

τi ≥ τj , ∀i, j ∈ F ′ : mij = 1, j ≤ i (29)

τj ≤ Tmax

∑
i∈V

xij , ∀j ∈ F ′ (30)∑
i∈V

xih ≥
∑
j∈V

xjf , ∀h, f ∈ F ′ : mhf = 1, h ≤ f (31)

xij ∈ {0, 1}, ∀i, j ∈ V (32)

τi ≥ 0, yi ≥ 0 ∀i ∈ V (33)

zik ∈ {0, 1}, wik ∈ {0, 1}, αik ≥ 0, λik ≥ 0, ∀i ∈ F ′,∀k ∈ B (34)

qi ≥ 0, oi ≥ 0, si ≥ 0, di ≥ 0,∆i ≥ 0, ∀i ∈ F ′ (35)

The objective function (1) seeks to minimize the total time (travel times plus charging
times). Constraints (2) ensure that each customer is visited once. Constraints (3) ensure
that each CS is visited at most once. Constraints (4) impose the flow conservation. Con-
straints (5) and (6) track the battery charge level at each vertex. Constraints (7) ensure
that, if the vehicle travels between a vertex and the depot, it has sufficient energy to reach
its destination. Constraints (8) reset the battery tracking to oi upon departure from CS
i ∈ F ′. Constraint (9) ensures that the battery charge level is Q at the depot. Constraints
(10) couple the charge levels when a vehicle arrives at and departs from any CS. Constraints
(11–16) define the charge level (and its corresponding charging time) when a vehicle arrives
at CS i ∈ F ′ (based on the piecewise linear approximation of the charging function). Simi-
larly, constraints (17–22) define the charge level (and its corresponding charging time) when
a vehicle departs from CS i ∈ F ′. Constraints (23) define the time spent at any CS. Con-
straints (24) and (25) track the departure time at each vertex, where Smax = maxi∈F ′{cib}.
Constraints (26) and (27) ensure that the vehicles return to the depot no later than Tmax.
Constraints (28) and (31) help to avoid the symmetry generated by the copies of the CSs.
The parameter mij is equal to 1 if i and j ∈ F ′ represent the same CS. Finally, constraints
(32–35) define the domain of the decision variables.

This MILP formulation can be easily adapted to model the other approximations (FS,
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L1, and L2) and the different charging policies (FR and PR):

• Full charge and piecewise linear approximations (FR-PL): we replace constraints (17)
and (18) by

oi =
∑
k∈B

λikaib,∀i ∈ F ′ (36)

ei =
∑
k∈B

λikcib,∀i ∈ F ′ (37)

• Partial charge using the first segment (PR-FS): To run our MILP with this assumption,
we modify the input data to include only the first segment.

• Partial charge and linear approximations (PR-L): To run our MILP with PR-L1 and
PR-L2, we modify the input data so that in the piecewise linear approximation there
is a single segment with the corresponding charging rate.

3. Results of the comparison

3.1. Experimental settings

As mentioned in the last section, the MILP formulation uses β copies of the CSs to model
multiple visits to the same CS. Although several authors followed this strategy (Conrad &
Figliozzi 2011, Erdoğan & Miller-Hooks 2012, Schneider et al. 2014, Sassi et al. 2014, Goeke
& Schneider 2015, Hiermann et al. 2016), they do not explain how the value of β is set. It
is worth noting that β plays an important role in the definition of the solution space, and
therefore it restricts the optimal solution of the model. For instance, an optimal solution
found with β = 3 may not be optimal for β = 4. In practice, there is no restriction on the
number of times that a CS can be visited, but large values of β result in models that are
computationally intractable. To overcome this difficulty, we designed an iterative procedure
to solve the MILP for increasing values of β. Starting with β = 0, at each iteration, our
procedure (i) tries to solve the MILP to optimality with a time limit of 100 h, and (ii) sets
β = β + 1. The procedure stops when the time limit is reached or an iteration ends with a
solution sβ satisfying f(sβ) = f(s∗β−1), where f(·) denotes the objective function and ∗ an
optimal solution.

3.2. Results

To assess the value of considering partial charging and nonlinear charging function approx-
imations in eVRPs, we conducted an experiment to compare our battery charging assump-
tions with the assumptions commonly used in the literature. We compare only optimal
solutions of the different approaches so that the comparison is independent of the solution
method.
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Table 1 presents the results. For each charging assumption, we give the objective function
value (of), the percentage gap between of and the PR-PL solution (G), the number of routes
in the solution (r), and the value of β. Since in practice the charging time is controlled by
the nonlinear charging function, the charging decisions of the PR-L solutions are evaluated
a posteriori using the piecewise linear approximation. The last rows of Table 1 summarize
the results. We present, for each assumption, the average and maximum percentage gap, the
number of solutions employing more vehicles than in the PR-PL solution, and the number
of infeasible solutions.

The results show that solutions based on the full charging policy perform poorly in terms
of both objective function (+20.11% on average) and number of routes (8 solutions use a
larger fleet) with respect to those based on the partial charging policy. This is because the
vehicles spend more time than necessary at the CSs. The main motivation for a full charging
policy is to avoid complex charging-quantity decisions. However, according to our results,
the gain in simplicity does not offset the loss of solution quality.

In the PR-FS assumption vehicles can charge their batteries up to only around 80% of
the actual capacity. Artificially constraining the capacity may force vehicles to detour to
CSs more often than necessary when traveling to distant customers. Because the maximum
route duration is limited, the time spent detouring and recharging the battery reduces the
number of customers that can be visited. Consequently, more routes may be needed to
service the same number of customers. Our results confirm this intuition: in 3 of the 20
instances the PR-FS assumption increases the number of routes. Furthermore, in practice
some distant customers may not be included in routes unless the vehicles can fully use
their battery capacity. In our experiments, 9 instances become infeasible under PR-FS. In
conclusion, although PR-FS simplifies the problem (avoiding the nonlinear segment of the
charging function) it may lead to solutions that are infeasible, or with larger fleets and (on
average) 2.70% more expensive.

As mentioned before, PR-L1 assumes that batteries charge faster than they do in reality
(Figure 3a). As a consequence, routes based on PR-L1 may in practice need more time
to reach the planned charge levels. The extra time may make a route infeasible if there
is little slack in the duration constraint. Indeed, a post-hoc evaluation shows that for 14
instances, the PR-L1 solutions are infeasible in practice. On the other hand, PR-L2 assumes
that batteries charge slower than in reality (Figure 3b). Overestimating the charging times
does not lead to feasibility issues, but the resulting routes may be overly conservative. For
instance, in our experiments PR-L2 leads to solutions that are (on average) 1.45% more
expensive, and it increases the number of routes in 2 instances.
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Table 1: Comparison of our charging assumptions with charging assumptions from the literature

Instance PR-PL FR-PL PR-FS PR-L1 PR-L2

Solution Evaluation Solution Evaluation

ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ

tc0c10s2cf1 19.75 3 2 20.82 5.42 3 2 NFS NFS NFS NFS 19.61 3 2 NFE NFE NFE NFE 20.50 3 2 20.22 2.38 3 2
tc0c10s2ct1 12.30 2 0 12.53 1.87 2 0 12.61 2.52 3 0 12.22 2 0 12.42 0.98 2 0 12.46 2 0 12.30 0.00 2 0
tc0c10s3cf1 19.75 3 2 20.82 5.42 3 2 NFS NFS NFS NFS 19.61 3 2 NFE NFE NFE NFE 20.50 3 2 20.22 2.38 3 2
tc0c10s3ct1 10.80 2 0 11.10 2.78 2 0 10.80 0.00 2 0 10.79 2 0 11.03 2.13 2 0 10.97 2 0 10.80 0.00 2 0
tc1c10s2cf2 9.03 3 0 9.19 1.77 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s2cf3 16.37 3 2 21.33 30.30 3 2 NFS NFS NFS NFS 15.99 3 1 NFE NFE NFE NFE 16.89 3 2 16.37 0.00 3 2
tc1c10s2cf4 16.10 3 2 25.31 57.20 4 3 NFS NFS NFS NFS 15.66 3 2 NFE NFE NFE NFE 16.43 3 2 16.23 0.81 3 2
tc1c10s2ct2 10.75 3 1 11.14 3.63 3 0 10.75 0.00 3 1 10.75 3 0 10.76 0.09 3 0 10.94 3 0 10.78 0.28 3 0
tc1c10s2ct3 13.17 2 2 22.76 72.82 3 3 15.98 21.34 3 2 13.06 2 2 NFE NFE NFE NFE 13.60 2 2 13.17 0.00 2 2
tc1c10s2ct4 13.83 2 1 17.61 27.33 3 1 NFS NFS NFS NFS 13.34 2 1 NFE NFE NFE NFE 14.17 2 1 14.17 2.46 2 1
tc1c10s3cf2 9.03 3 0 9.19 1.77 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s3cf3 16.37 3 1 21.33 30.30 3 2 NFS NFS NFS NFS 15.99 3 1 NFE NFE NFE NFE 16.89 3 2 16.37 0.00 3 2
tc1c10s3cf4 14.90 3 1 18.43 23.69 4 0 NFS NFS NFS NFS 14.56 2 1 NFE NFE NFE NFE 15.18 3 0 15.18 1.88 3 0
tc1c10s3ct2 9.20 3 0 11.14 21.09 3 0 9.20 0.00 3 0 9.19 3 0 NFE NFE NFE NFE 10.80 3 0 10.57 14.89 3 0
tc1c10s3ct3 13.02 2 0 17.06 31.03 3 0 13.07 0.38 2 1 12.98 2 0 13.16 1.08 2 0 13.60 2 0 13.02 0.00 2 0
tc1c10s3ct4 13.21 2 0 15.54 17.64 3 1 13.58 2.80 3 1 12.92 2 1 NFE NFE NFE NFE 13.71 2 0 13.21 0.00 2 0
tc2c10s2cf0 21.77 3 3 25.24 15.94 4 2 NFS NFS NFS NFS 14.53 2 2 NFE NFE NFE NFE 22.78 4 4 22.15 1.75 4 4
tc2c10s2ct0 12.45 3 2 15.05 20.88 3 3 12.45 0.00 3 2 12.44 3 3 NFE NFE NFE NFE 12.93 3 2 12.45 0.00 3 2
tc2c10s3cf0 21.77 3 2 25.24 15.94 4 2 NFS NFS NFS NFS 14.53 2 2 NFE NFE NFE NFE 23.02 4 3 22.20 1.98 4 3
tc2c10s3ct0 11.51 3 0 13.27 15.29 2 0 11.51 0.00 3 0 11.50 3 0 NFE NFE NFE NFE 11.92 3 0 11.54 0.26 3 0

Avg. Difference (%) 20.11 2.70 1.04 1.45
Max. Difference (%) 72.82 21.34 2.13 14.89
Solutions with larger fleet 8 3 0 2
Infeasible solutions 0 9 14 0

NFS: Non-feasible solution, NFE: Non-feasible evaluation
G(%) = (of − ofPR−PL)/ofPR−PL × 100

Part II

Detailed results of the hybrid metaheuristic

Tables 2 and 3 show the results of our two ILS versions (i.e, ILS(M)+HC and MILP(H)+HC)
for the small and large eVRP-PNL instances. In Table 2, we compare our results with the
optimal solutions found by Gurobi using the MILP formulation. In Table 3, we compare
our results with the best results obtained with Gurobi. For each instance, we report the
problem name1, and the best solution (BKS) taken from the results of Gurobi, ILS(H)+HC
or ILS(M)+HC.

For the results obtained with Gurobi, we report the best solution (Best), and the gap with
respect to the BKS (G) 2. For the results obtained with the ILS(H) + HC and ILS(M) + HC,
we report the best solution, the average solution (Avg.), and the average computing time
(t in seconds) over ten runs. For the ILS(M) + HC, we also report the average computing
time using the preprocessing procedure (t∗). For the two ILS + HC versions, we provide the
gap of the average solution and best solution with reference to the BKS. The last rows of
the table summarize the average and maximum BKS gap, the number of times each method
found the BKS, and the average and maximum running time. Values in bold indicate that

1tcαααcβββsµµµcεεε###, where ααα is the type of the location of the customers (i.e., 0:randomize, 1:cluster, 2: mixture
of both), βββ is the number of customers, µµµ is the number of the CSs, εεε is ‘t’ if we use a p-media heuristic to
locate the CSs and ‘f’ otherwise, and ### is the number of the instance for each combination of parameters
(i.e., # = 0, 1, 2, 3, 4)

2G(%) = (of − ofBKS)/ofBKS × 100
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a method found the BKS.

Table 2: Results of ILS(H)+HC and ILS(M)+HC on the 20 small instances

Gurobi ILS(H) + HC ILS(M) + HC

Instance BKS Best G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c10s2cf0 21.77 21.77 0.00 22.49 3.31 22.51 3.40 0.61 21.77 0.00 21.77 0.00 10.54 8.53
tc0c10s2cf1 19.75 19.75 0.00 19.75 0.00 20.12 1.87 0.60 19.75 0.00 20.12 1.87 4.59 3.86
tc1c10s2cf2 9.03 9.03 0.00 9.03 0.00 9.04 0.11 0.57 9.03 0.00 9.07 0.44 3.71 2.43
tc1c10s2cf3 16.37 16.37 0.00 16.37 0.00 16.37 0.00 0.83 16.37 0.00 16.37 0.00 7.58 5.63
tc1c10s2cf4 16.10 16.10 0.00 16.10 0.00 16.13 0.19 0.66 16.10 0.00 16.10 0.00 6.67 4.79
tc2c10s2ct0 12.45 12.45 0.00 12.45 0.00 12.53 0.64 0.49 12.45 0.00 12.45 0.00 8.36 5.38
tc0c10s2ct1 12.30 12.30 0.00 12.30 0.00 12.35 0.41 0.62 12.30 0.00 12.34 0.33 6.08 3.99
tc1c10s2ct2 10.75 10.75 0.00 10.76 0.09 10.77 0.19 0.54 10.75 0.00 10.75 0.00 6.51 4.21
tc1c10s2ct3 13.17 13.17 0.00 13.17 0.00 14.16 7.52 0.84 13.17 0.00 13.18 0.08 9.85 7.56
tc1c10s3ct4 13.21 13.21 0.00 13.21 0.00 13.25 0.30 0.68 13.21 0.00 13.21 0.00 11.06 6.01
tc2c10s3cf0 21.77 21.77 0.00 22.49 3.31 22.51 3.40 0.61 21.77 0.00 21.77 0.00 11.86 8.90
tc0c10s3cf1 19.75 19.75 0.00 19.75 0.00 20.12 1.87 0.63 19.75 0.00 20.12 1.87 6.46 4.41
tc1c10s3cf2 9.03 9.03 0.00 9.03 0.00 9.04 0.11 0.56 9.03 0.00 9.06 0.33 4.11 2.36
tc1c10s3cf3 16.37 16.37 0.00 16.37 0.00 16.37 0.00 0.82 16.37 0.00 16.37 0.00 9.50 6.06
tc1c10s3cf4 14.90 14.90 0.00 14.90 0.00 14.94 0.27 0.62 14.90 0.00 14.90 0.00 11.27 6.72
tc2c10s3ct0 11.51 11.51 0.00 11.54 0.26 11.65 1.22 0.51 11.51 0.00 11.54 0.26 11.18 6.81
tc0c10s3ct1 10.80 10.80 0.00 10.80 0.00 10.81 0.09 0.60 10.80 0.00 10.80 0.00 8.91 4.83
tc1c10s3ct2 9.20 9.20 0.00 10.76 16.96 10.77 17.07 0.54 9.20 0.00 9.34 1.52 9.66 5.33
tc1c10s3ct3 13.02 13.02 0.00 13.02 0.00 13.12 0.77 0.64 13.02 0.00 13.02 0.00 15.72 9.77
tc1c10s2ct4 13.83 13.83 0.00 13.83 0.00 13.83 0.00 0.77 13.83 0.00 13.83 0.00 7.08 4.84

Avg. Gap 0.00 1.20 1.97 0.00 0.34
Max. Gap - 16.96 17.07 0.00 1.87
Best 20 15 20
Avg. Time 0.64 8.54 5.62
Max. Time 0.84 15.72 9.77

Table 3: Results of ILS(H)+HC and ILS(M)+HC on the 100 large instances

Gurobi ILS(H)+HC ILS(M)+HC

Instance BKS Best G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc2c20s3cf0 24.68 24.73 0.20 24.68 0.00 24.71 0.12 2.14 24.68 0.00 24.68 0.00 22.12 13.86
tc1c20s3cf1 17.50 17.55 0.29 17.51 0.06 17.68 1.03 1.39 17.50 0.00 17.53 0.17 19.54 12.32
tc0c20s3cf2 27.60 28.54 3.41 27.61 0.04 27.65 0.18 3.14 27.60 0.00 27.66 0.22 16.06 11.77
tc1c20s3cf3 16.63 16.81 1.08 16.63 0.00 16.79 0.96 1.41 16.63 0.00 16.78 0.90 13.15 8.41
tc1c20s3cf4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.20 17.00 0.00 17.00 0.00 5.77 3.77
tc2c20s3ct0 25.79 25.79 0.00 25.79 0.00 25.80 0.04 2.38 25.79 0.00 25.79 0.00 23.31 14.66
tc1c20s3ct1 18.95 19.38 2.27 19.55 3.17 19.65 3.69 1.58 18.95 0.00 19.38 2.27 23.49 15.25
tc0c20s3ct2 17.08 17.11 0.18 17.08 0.00 17.18 0.59 1.73 17.08 0.00 17.13 0.29 12.49 8.49
tc1c20s3ct3 12.65 12.68 0.24 12.75 0.79 12.82 1.34 1.76 12.65 0.00 12.72 0.55 15.36 8.86
tc1c20s3ct4 16.21 16.21 0.00 16.25 0.25 16.31 0.62 1.26 16.21 0.00 16.25 0.25 9.74 5.16
tc2c20s4cf0 24.67 25.36 2.80 25.29 2.51 25.35 2.76 1.77 24.67 0.00 24.69 0.08 25.90 14.63
tc1c20s4cf1 16.39 16.40 0.06 17.16 4.70 17.47 6.59 1.53 16.39 0.00 16.40 0.06 27.19 13.47
tc0c20s4cf2 27.48 - - 27.60 0.44 27.65 0.62 3.04 27.48 0.00 27.61 0.47 18.53 12.81
tc1c20s4cf3 16.56 16.80 1.45 16.80 1.45 16.84 1.69 1.44 16.56 0.00 16.80 1.45 14.77 8.69
tc1c20s4cf4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.17 17.00 0.00 17.00 0.00 7.61 4.17
tc2c20s4ct0 26.02 - - 26.49 1.81 26.51 1.88 2.01 26.02 0.00 26.02 0.00 25.92 15.25
tc1c20s4ct1 18.25 18.25 0.00 19.51 6.90 19.65 7.67 1.58 18.25 0.00 18.32 0.38 27.11 16.14
tc0c20s4ct2 16.99 17.21 1.29 17.06 0.41 17.12 0.77 1.62 16.99 0.00 17.10 0.65 15.25 9.33
tc1c20s4ct3 14.43 14.43 0.00 14.56 0.90 14.58 1.04 1.41 14.43 0.00 14.50 0.49 14.30 7.99
tc1c20s4ct4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 1.49 17.00 0.00 17.00 0.00 11.74 6.08
tc0c40s5cf0 32.67 - - 33.84 3.58 34.53 5.69 6.09 32.67 0.00 33.25 1.78 46.66 23.85
tc1c40s5cf1 65.16 - - 65.32 0.25 66.64 2.27 11.90 65.16 0.00 66.03 1.34 65.41 44.01
tc2c40s5cf2 27.54 38.93 41.36 28.22 2.47 28.86 4.79 7.67 27.54 0.00 27.67 0.47 48.50 31.64
tc2c40s5cf3 19.74 21.04 6.59 20.44 3.55 20.82 5.47 4.70 19.74 0.00 20.18 2.23 30.49 16.85
tc0c40s5cf4 30.77 36.47 18.52 33.06 7.44 34.21 11.18 11.08 30.77 0.00 31.49 2.34 49.91 33.33
tc0c40s5ct0 28.72 - - 29.22 1.74 29.78 3.69 8.55 28.72 0.00 29.35 2.19 41.76 24.50
tc1c40s5ct1 52.68 - - 54.54 3.53 55.05 4.50 12.64 52.68 0.00 53.36 1.29 94.40 58.52
tc2c40s5ct2 26.91 - - 26.99 0.30 27.15 0.89 8.18 26.91 0.00 27.02 0.41 38.38 22.85
tc2c40s5ct3 23.54 - - 23.56 0.08 23.90 1.53 5.77 23.54 0.00 23.77 0.98 43.87 26.48
tc0c40s5ct4 28.63 - - 29.72 3.81 30.84 7.72 10.49 28.63 0.00 28.72 0.31 45.55 32.55
tc0c40s8cf0 31.28 - - 32.73 4.64 33.68 7.67 6.11 31.28 0.00 32.02 2.37 72.91 33.59
tc1c40s8cf1 40.75 - - 45.86 12.54 50.71 24.44 12.11 40.75 0.00 42.33 3.88 108.49 69.99
tc2c40s8cf2 27.15 29.19 7.51 28.05 3.31 28.19 3.83 7.87 27.15 0.00 27.31 0.59 57.90 28.92
tc2c40s8cf3 19.66 22.01 11.95 19.86 1.02 20.17 2.59 5.41 19.66 0.00 20.24 2.95 45.15 19.46
tc0c40s8cf4 29.32 - - 32.53 10.95 33.69 14.90 9.93 29.32 0.00 29.86 1.84 91.10 43.05
tc0c40s8ct0 26.35 30.29 14.95 27.65 4.93 28.32 7.48 6.01 26.35 0.00 26.89 2.05 71.70 28.54
tc1c40s8ct1 40.56 - - 49.35 21.67 49.85 22.90 11.86 40.56 0.00 41.19 1.55 124.31 70.50
tc2c40s8ct2 26.33 - - 26.82 1.86 27.07 2.81 7.12 26.33 0.00 26.71 1.44 58.68 25.64
tc2c40s8ct3 22.71 23.51 3.52 23.26 2.42 23.44 3.21 5.16 22.71 0.00 23.23 2.29 63.76 25.25
tc0c40s8ct4 29.20 - - 29.82 2.12 31.68 8.49 10.93 29.20 0.00 29.27 0.24 84.36 47.46
tc0c80s8cf0 39.43 - - 39.78 0.89 40.52 2.76 31.70 39.43 0.00 39.86 1.09 104.77 56.41

Continued on next page
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Table 3 – continued from previous page
Gurobi ILS(H) + HC ILS(M) + HC

Instance BKS Avg G(%) Best G(%) Avg. G(%) t (s) Best G(%) Avg. G(%) t (s) t *(s)

tc0c80s8cf1 45.23 - - 46.48 2.76 47.33 4.64 76.55 45.23 0.00 45.73 1.11 183.74 121.27
tc1c80s8cf2 30.81 - - 32.52 5.55 33.30 8.08 31.57 30.81 0.00 31.83 3.31 79.36 50.99
tc2c80s8cf3 32.44 - - 32.53 0.28 32.90 1.42 43.83 32.44 0.00 32.60 0.49 95.72 64.05
tc2c80s8cf4 49.29 - - 50.41 2.27 51.06 3.59 45.59 49.29 0.00 49.69 0.81 160.43 99.84
tc0c80s8ct0 41.90 - - 42.18 0.67 42.89 2.36 27.68 41.90 0.00 42.76 2.05 99.20 54.35
tc0c80s8ct1 45.27 - - 46.39 2.47 47.50 4.93 82.12 45.27 0.00 45.85 1.28 195.16 129.66
tc1c80s8ct2 31.74 - - 32.59 2.68 32.90 3.65 37.77 31.74 0.00 32.36 1.95 93.21 59.73
tc2c80s8ct3 32.31 - - 32.74 1.33 33.41 3.40 25.10 32.31 0.00 32.55 0.74 111.47 65.15
tc2c80s8ct4 44.83 - - 49.08 9.48 50.31 12.22 43.42 44.83 0.00 46.61 3.97 178.48 111.24
tc0c80s12cf0 34.64 - - 36.01 3.95 37.25 7.53 29.39 34.64 0.00 35.59 2.74 126.00 57.24
tc0c80s12cf1 42.90 - - 43.81 2.12 45.51 6.08 35.17 42.90 0.00 44.07 2.73 157.55 74.58
tc1c80s12cf2 29.54 - - 32.61 10.39 33.34 12.86 31.52 29.54 0.00 30.73 4.03 112.44 61.34
tc2c80s12cf3 31.97 - - 34.10 6.66 35.13 9.88 25.63 31.97 0.00 32.70 2.28 159.17 75.64
tc2c80s12cf4 43.89 - - 47.95 9.25 48.57 10.66 50.96 43.89 0.00 44.97 2.46 274.06 131.13
tc0c80s12ct0 39.31 - - 39.97 1.68 40.48 2.98 32.01 39.31 0.00 39.83 1.32 159.79 65.54
tc0c80s12ct1 41.94 - - 42.56 1.48 43.67 4.12 35.06 41.94 0.00 43.03 2.60 162.38 73.32
tc1c80s12ct2 29.52 - - 31.11 5.39 32.33 9.52 29.45 29.52 0.00 30.66 3.86 122.60 58.85
tc2c80s12ct3 30.83 - - 32.09 4.09 32.31 4.80 28.06 30.83 0.00 31.59 2.47 123.57 57.57
tc2c80s12ct4 42.40 - - 47.16 11.23 48.40 14.15 44.51 42.40 0.00 42.82 0.99 276.16 134.33
tc1c160s16cf0 79.80 - - 88.37 10.74 90.49 13.40 298.56 79.80 0.00 80.75 1.19 1139.49 765.69
tc2c160s16cf1 60.34 - - 61.56 2.02 63.57 5.35 181.57 60.34 0.00 61.26 1.52 464.11 273.86
tc0c160s16cf2 61.20 - - 63.85 4.33 65.42 6.90 224.18 61.20 0.00 62.99 2.92 600.43 365.10
tc1c160s16cf3 71.76 - - 73.93 3.02 75.04 4.57 331.06 71.76 0.00 72.75 1.38 666.64 461.58
tc0c160s16cf4 82.92 - - 98.16 18.38 101.13 21.96 536.94 82.92 0.00 83.84 1.11 1662.82 1213.20
tc1c160s16ct0 79.04 - - 83.82 6.05 85.47 8.14 391.41 79.04 0.00 79.90 1.09 1012.72 643.27
tc2c160s16ct1 60.27 - - 61.97 2.82 62.64 3.93 177.27 60.27 0.00 60.62 0.58 507.69 287.64
tc0c160s16ct2 60.13 - - 64.10 6.60 64.50 7.27 204.82 60.13 0.00 62.80 4.44 587.52 341.86
tc1c160s16ct3 73.29 - - 75.29 2.73 76.55 4.45 180.48 73.29 0.00 75.11 2.48 483.20 278.67
tc0c160s16ct4 82.37 - - 95.78 16.28 97.20 18.00 433.62 82.37 0.00 83.08 0.86 1413.91 944.60
tc1c160s24cf0 78.60 - - 85.59 8.89 87.66 11.53 346.79 78.60 0.00 79.30 0.89 1343.54 741.12
tc2c160s24cf1 59.82 - - 61.30 2.47 63.62 6.35 182.55 59.82 0.00 61.14 2.21 653.44 304.66
tc0c160s24ct2 59.25 - - 62.93 6.21 63.31 6.85 206.85 59.25 0.00 60.19 1.59 861.85 409.80
tc1c160s24ct3 68.72 - - 71.78 4.45 74.54 8.47 196.47 68.72 0.00 69.98 1.83 756.39 358.35
tc0c160s24cf4 81.44 - - 95.47 17.23 99.35 21.99 508.19 81.44 0.00 82.13 0.85 1984.26 1209.32
tc1c160s24ct0 78.21 - - 83.38 6.61 84.84 8.48 284.88 78.21 0.00 79.35 1.46 1183.70 577.83
tc2c160s24ct1 59.13 - - 60.84 2.89 62.49 5.68 192.18 59.13 0.00 59.72 1.00 748.95 340.40
tc0c160s24cf2 59.27 - - 62.63 5.67 64.12 8.18 210.13 59.27 0.00 60.92 2.78 845.72 403.33
tc1c160s24cf3 68.56 - - 72.83 6.23 75.18 9.66 240.33 68.56 0.00 69.57 1.47 883.61 483.10
tc0c160s24ct4 80.96 - - 90.55 11.85 93.83 15.90 453.34 80.96 0.00 82.11 1.42 1736.76 956.94
tc2c320s24cf0 182.52 - - 195.23 6.96 210.45 15.30 3762.57 182.52 0.00 186.94 2.42 7855.89 6566.41
tc2c320s24cf1 95.51 - - 97.39 1.97 100.07 4.77 1003.08 95.51 0.00 96.42 0.95 1927.61 1456.16
tc1c320s24cf2 152.23 - - 177.71 16.74 185.68 21.97 3162.07 152.23 0.00 153.99 1.16 8370.48 7105.63
tc1c320s24cf3 117.48 - - 124.23 5.75 126.08 7.32 2089.09 117.48 0.00 118.36 0.75 3737.73 3065.82
tc2c320s24cf4 122.88 - - 134.30 9.29 136.17 10.82 2177.20 122.88 0.00 124.68 1.46 4961.50 3681.14
tc2c320s24ct0 181.50 - - 208.32 14.78 212.18 16.90 4434.40 181.50 0.00 186.23 2.61 8606.62 7204.02
tc2c320s24ct1 94.73 - - 96.69 2.07 99.71 5.26 942.21 94.73 0.00 96.49 1.86 1737.70 1259.26
tc1c320s24ct2 148.77 - - 173.82 16.84 182.34 22.57 3617.64 148.77 0.00 154.13 3.60 8231.61 6853.35
tc1c320s24ct3 116.64 - - 122.75 5.24 125.71 7.78 1984.42 116.64 0.00 119.17 2.17 3783.98 3273.79
tc2c320s24ct4 122.02 - - 131.87 8.07 133.68 9.56 3074.58 122.02 0.00 123.85 1.50 5447.73 4273.94
tc2c320s38cf0 177.01 - - 202.48 14.39 207.83 17.41 4007.13 177.01 0.00 182.31 2.99 9150.09 6733.82
tc2c320s38cf1 94.29 - - 97.55 3.46 99.54 5.57 1082.91 94.29 0.00 95.07 0.83 2443.29 1601.78
tc1c320s38cf2 141.68 - - 173.71 22.61 181.84 28.35 3208.78 141.68 0.00 147.08 3.81 9490.84 7235.62
tc1c320s38cf3 116.33 - - 122.49 5.30 125.30 7.71 2024.26 116.33 0.00 117.74 1.21 4600.98 3113.71
tc2c320s38cf4 122.32 - - 128.72 5.23 131.01 7.10 1814.78 122.32 0.00 123.47 0.94 4138.21 2660.68
tc2c320s38ct0 191.09 - - 205.08 7.32 208.44 9.08 4766.36 191.09 0.00 192.15 0.55 10335.56 7636.50
tc2c320s38ct1 94.53 - - 97.44 3.08 98.62 4.33 938.85 94.53 0.00 95.29 0.80 2284.16 1408.88
tc1c320s38ct2 141.14 - - 172.99 22.57 181.62 28.68 3660.78 141.14 0.00 145.09 2.80 9264.46 6974.34
tc1c320s38ct3 116.07 - - 122.91 5.89 126.17 8.70 1993.12 116.07 0.00 117.71 1.41 4559.66 3062.95
tc2c320s38ct4 121.66 - - 127.40 4.72 130.35 7.14 1634.65 121.66 0.00 123.15 1.22 4265.37 2784.91

Avg. Gap 4.71 5.28 7.51 0.00 1.51
Max. Gap 41.36 22.61 28.68 0.00 4.44
Found solution 25 100 100
Best 7 7 3 100
Avg. Time 581.52 1393.38 1018.33
Max. Time 4766.36 10335.56 7636.50
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