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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. We study here the propagation of long waves in the presence of vorticity. In the irrotational
framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are
the standard model for the propagation of such waves. These equations couple the surface elevation
to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In
the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity
equation but it was however shown in [9] that the motion of the waves could be described using an
extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show
that they can be used to get some new insight into wave-current interactions. We show in particular
that solitary waves may have a drastically different behavior in the presence of vorticity and show the
existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the
vorticity. We also propose a robust and simple numerical scheme validated on several examples. Finally,
we give some examples of wave-current interactions with a non trivial vorticity field and topography
effects.

Keywords. Water waves, shallow water, Green-Naghdi, Boussinesq, nonlinear dispersive equations,
vorticity, solitary waves, Finite-Volume discretization.

1. Introduction

1.1. General setting

Several models have been derived for the description of nearshore dynamics. One of the most widely
spread is certainly the Nonlinear Shallow Water (NSW) model which is a nonlinear hyperbolic system
coupling the time evolution of the surface elevation ζ to the vertically averaged horizontal component
of the velocity v. This system is derived from the free surface Euler equations by averaging in the
vertical direction and neglecting all the terms of order O(µ), where the shallowness parameter µ is
defined as

µ =
H2

0

L2
=

(typical depth)2

(horizontal length scale)2
.

The NSW equations are however not fully satisfactory since they neglect all the dispersive effects
that play a very important role in many situations, and in particular during the shoaling phase.
These dispersive terms are of order O(µ) and are therefore neglected by the NSW equations. Keeping
them in the equations, and neglecting only the O(µ2) terms, one obtains a more accurate – but
mathematically and numerically more complicated – set of equations known as the Serre [45, 52], or
Green-Naghdi [21, 27], or fully nonlinear Boussinesq [55] equations. We shall refer to these models here

The first author acknowledges support from the ANR-13-BS01-0003-01 DYFICOLTY and the ANR- 13-BS01-0009-01
BOND.
The second author acknowledges support from the CNRS project LEFE-MANU SOLi and the ANR- 13-BS01-0009-01
BOND.
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Figure 1. Main notations.

as the Green-Naghdi (GN) equations. Contrary to the weakly nonlinear Boussinesq models that go
back to Boussinesq himself, no smallness assumption is made on the size of the surface perturbations.
We refer to [30] for a rigorous derivation and a mathematical justification (in the sense that their
solutions remain close to the exact solution of the free surface Euler equations) of all these models.
If the numerical approximation of various Boussinesq-type equations has attracted a lot of attention
for the last 20 years (see for instance among the recent studies [6, 17, 18, 23, 25, 38, 44, 49, 51]),
it is mostly recently that discrete formulations for the GN equations have been proposed. Denoting
by d the horizontal dimension, we can refer for instance, in the case d = 1, to [4, 5, 10] for hybrid
Finite-Volume (FV) and Finite-Difference (FD) discretizations, [16, 33, 40] for discontinuous-Galerkin
(dG) formulations, [13] for a compact FV approach, [35] for a Finite-Element (FE) approach on flat
bottom or [39] for an hybrid FV-FE formulation. There is even less studies in the case d = 2, see
[31, 32, 48]. These equations have also been adapted to handle wave breaking by adding an artificial
viscous term to the momentum equation (see for instance [11, 14, 26, 46]) or by locally switching to
the NSW equations in the vicinity of broken waves and using shock capturing schemes [24, 53, 54].
We refer to [4] for a recent review on these aspects.

The Green-Naghdi and more generally most of the Boussinesq-type models rely on the assumption
that the flow is irrotational or almost irrotational. Such an assumption is satisfied in most configura-
tions but may fail in the surf zone where wave breaking can create vorticity currents (rip currents)
or in present of some underlying current. The difficulty to describe wave motion in the presence of
vorticity is that the dynamics of the flow is in general genuinely (d + 1)-dimensional while in the ir-
rotational framework the dynamics is only d-dimensional (vertical averaging has been used to remove
the vertical variable).

It is shown in [12] that the GN equations can describe rotational flows with purely vertical vorticity.
In horizontal dimension d = 1, it is shown in [36] that vorticity is responsible for the presence of an
additional term in the momentum equation, which is coupled to the standard vorticity equation (see
also [29, 28] for a related approach).

Following the original approach by Green and Naghdi [21], several authors [19, 50, 60] assumed a
polynomial structure of the velocity profile and solved the mass and momentum equations projected
on such a basis of functions. This approach is compatible with the presence of vorticity. An interesting
and recent refinement for a better treatment of the surf zone consists in coupling this approach with
shallow water asymptotics [58].

We follow in this paper another approach initially developed in [9] where it is shown that addi-
tional terms are necessary in the momentum equation in the presence of vorticity. Contrary to other
approaches, these additional terms are determined through the resolution of d-dimensional evolution
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equations and do not require the resolution of the (d+ 1)-dimensional vorticity equation. The proce-
dure is reminiscent of turbulence theory with the difference that no artificial closure is needed here:
based on the controls on the solutions of the full Euler equations established in [8], one can show that
the cascade of equations is finite at the precision of the model (we also point out the related work
[43] where a physical modeling of the closure is used instead to handle turbulent bores). The resulting
equations are an extended GN system with additional advection-like equations for the vorticity related
terms.

This paper is concerned with the horizontal one dimensional case d = 1. Its first goal is to show
that this approach can be used to get some new insight into wave-current interactions; we show for
instance that the behavior of solitary waves can be drastically different in the presence of vorticity,
leading to extremal peaked solitary waves with an angle at the crest that depends on the vorticity.
The second goal of this paper is to propose a simple and robust numerical scheme to numerically solve
these extended GN equations and to highlight that despite the fact that these equations of motion are
purely d-dimensional, they can be used to reconstruct the internal velocity field, even in the presence
of non trivial vorticity and topography.

1.2. The models

In the case where the horizontal dimension d is equal to one and following [5], the irrotational GN
equations can be formulated as

{

∂th+ ∂x · (hv) = 0,
(I + T)[∂t(hv) + ∂x(hv

2)] + gh∂xζ + hQ1(v) = 0,
(1.1)

where we recall that ζ is the elevation of the wave with respect to the rest level and that v is the
vertically averaged horizontal velocity, while g stands for the acceleration of gravity and h is the total
water height

h = H0 + ζ − b,

where {z = H0 − b(x)} is a parametrization of the bottom (see Figure 1). Finally, the linear operator
T = T[h, b] and the quadratic form Q1(·) = Q1[h, b](·) are defined by

T[h, b]W = hT [h, b](
1

h
W ) (1.2)

T [h, b]W =R1[h, b](∂xW ) +R2[h, b]((∂xb)W ) (1.3)

Q1[h, b](V ) = −2R1[h, b]((∂xv)
2) +R2[h, b](V

2∂2xb). (1.4)

with,

R1[h, b]w = − 1

3h
∂x(h

3w) − h

2
w∂xb, (1.5)

R2[h, b]w =
1

2h
∂x(h

2w) + w∂xb. (1.6)

This formulation does not require the computation of any third-order derivative, allowing for more
robust numerical computations, especially when the waves become steeper. Note also that if one
removes the operator T and the nonlinearity Q1 from the second equation in (1.1), the model reduces
to the standard NSW equations; these two terms accounts therefore for the O(µ) dispersive and
nonlinear terms specific to the GN equations.

One of the main features of the Green-Naghdi model is that it allows the description of d + 1 di-
mensional waves (d being the horizontal dimension) by a set of d-dimensional equations (independent
on the vertical variable z), hereby leading to considerable gains in mathematical simplicity and com-
putational time. The d-dimensional nature of the flow is due to the fact that the flow is assumed to
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be irrotational; indeed, the velocity field U in the fluid domain then derives from a scalar velocity
potential Φ (i.e. U = ∇X,zΦ) and as remarked by Zakharov [57] and Craig-Sulem [15] the free surface
d+1-dimensional Euler equations can then be reduced to an Hamiltonian system coupling the surface
elevation ζ to ψ, the trace at the surface of the velocity potential. Both ζ and ψ depend only on time
and on the (d-dimensional) horizontal variable X. The Green-Naghdi equation being obtained by an
asymptotic expansion in terms of the shallowness parameter µ of the free surface Euler equations (see
[1, 30] for a full mathematical justification of this approximation), it is no surprise that they are also
d dimensional.

In presence of vorticity, the situation is drastically different since the dynamics of the vorticity
ω = curl U is in general fully (d + 1)-dimensional. The Zakharov-Craig-Sulem formulation has re-
cently been generalized in [8] to the rotational case; this generalization, also formally hamiltonian,
couples the evolution of ζ and ψ as in the irrotational case1, but this evolution is now also coupled
to the evolution of the vorticity field which depends in general on all the space variables. One should
therefore expect that generalizations of the Green-Naghdi equations in presence of vorticity have a
full (d + 1)-dimensional dependence in the space variables, hereby implying a considerable increase
of computational time. It has been shown recently in [9] that this is not the case. In the case of a
constant vorticity, that is, when

curl U = (0, ω, 0)T with ω(t, x, z) = ω0 = cst,

this is not surprising because there is no z dependence coming from the equation on the vorticity. The
vorticity field however induces a shear which, together with the dispersive effects, make the horizontal
velocity depart from its vertical average. Because of this effect, the Green-Naghdi equations (1.1) must
be replaced by











∂th+ ∂x(hv̄) = 0,

(1 + T)[∂t(hv) + ∂x(hv
2)] + gh∂xζ + hQ1(v)

+ ∂x(
1
12h

3ω2
0) + hC(ω0h, v) + hCb(ω0h, v) = 0.

(1.7)

with C(ω0h, v) and Cb(ω0h, v) are obtained by taking v♯ = ω0h in the following expressions

C(v♯, v) = − 1

6h
∂x

(

2h3v♯∂2xv + ∂x(h
3v♯)∂xv

)

, (1.8)

Cb(v♯, v) =
1

3h

(

∂x(h
2v♯∂2xbv) + h2v♯∂2xb∂xv

)

. (1.9)

(1.10)

For the case of a general vorticity, that is, when (in horizontal dimension d = 1),

curl U = (0, ω, 0)T with ω(t, x, z) = ∂zu− ∂xw

(and U = (u, 0, w)T ), the vorticity ω satisfies the transport equation

∂tω + (u∂x + w∂z)ω = 0, (1.11)

in which the z dependence cannot be removed. The fact that one can however derive z-independent
Green-Naghdi type models in this framework is therefore more surprising. Making for the sake of sim-
plicity a rather weak smallness assumption on the size of the bottom variations2, the one-dimensional

1Note however that in presence of vorticity, the velocity field U does not derive from a scalar potential, and that an
alternative definition is needed for ψ. Namely, it is defined such that ∇ψ is the projection onto (horizontal) gradient
vector field of the horizontal component of the tangential velocity at the surface.

2It is assumed that εβµ3/2 = O(µ2), where

ε =
asurf

H0

=
Amplitude of the waves

typical depth
, β =

abott

H0

=
Amplitude of the bottom variations

typical depth
.
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GN system in the presence of a general vorticity is given by






























∂th+ ∂x(hv̄) = 0,

(1 + T)[∂t(hv) + ∂x(hv
2)] + gh∂xζ + hQ1(v) + ∂xE + hC(v, v♯) = 0,

∂tv
♯ + v∂xv

♯ + v♯∂xv = 0,

∂tE + v∂xE + 3E∂xv + ∂xF = 0,

∂tF + v∂xF + 4F∂xv = 0.

(1.12)

Let us briefly comment on this model. In these equations, the term hC(v, v♯) describes the interaction
of the dispersive terms with the vorticity induced shear and is given by (1.8). The difference with the
case of a constant vorticity is that v♯ is now defined as a second order momentum of the vorticity
induced shear velocity,

v♯ =
12

h3

∫ ζ

−H0+b
(z +H0 − b)2v∗sh with v∗sh = −

∫ ζ

z
ω +

1

h

∫ ζ

−H0+b
ω. (1.13)

Even though v♯ is defined in terms of ω, it is not necessary to solve the (1 + 1)-dimensional vorticity
equation (1.11) to compute it; indeed, it is shown in [9] that it can be determined from its initial value
by solving the third equation of (1.12).
Similarly, the term ∂x(

1
12h

3ω2
0) that appears in (1.7) is now replaced by ∂xE, where E is a second

order tensor describing the self quadratic interaction of the vorticity induced shear,

E =

∫ ζ

−H0+b
(v∗sh)

2. (1.14)

Here again, one wants to be able to compute E without appealing to the vorticity equation (1.11). The
strategy adopted in [9] is inspired by an analogy with turbulence theory and recent works on roll waves
and hydraulic jumps [41, 42]. The tensor E is viewed as a “Reynolds” tensor where the “averaging”
is in the present case the vertical integration. Looking for an equation on E one obtains a cascade of
equations involving tensors of increasing order; but unlike turbulence theory, there is no need for an
artificial closure of the cascade. Indeed it can be proved that the contribution of the fourth order and
higher tensors are below the overall O(µ2) precision of the model and can therefore be neglected. The
last two equations in (1.12) furnish this finite cascade of equations on the second order tensor E and
the third order tensor F defined as

F =

∫ ζ

−H0+b
(v∗sh)

3. (1.15)

The generalization of (1.12) to two-dimensional surfaces is also given in [9] but our focus is here on
the analysis of some properties of (1.12) as well as the development of a numerical code to compute
its solutions.

Remark 1.1. As explained above, the model (1.12) is precise up to O(µ2) terms; lowering the precision

to O(µ3/2), one can work with the simpler model










∂th+ ∂x(hv̄) = 0,

(1 + T)[∂t(hv) + ∂x(hv
2)] + gh∂xζ + hQ1(v) + ∂xE = 0,

∂tE + v∂xE + 3E∂xv = 0.

(1.16)

Remark 1.2. Keeping the precision O(µ2), a simplified model can also be obtained in the situation
where F is initially almost equal to zero (this is the case when the vorticity is constant or in the

Under this assumption, the term Cb(ω0h, v) could be neglected in (1.7), see [9].
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situation considered in §5.5 for instance). Removing F from (1.12) one then obtains the reduced
model



















∂th+ ∂x(hv̄) = 0,

(1 + T)[∂t(hv) + ∂x(hv
2)] + gh∂xζ + hQ1(v) + ∂xE + hC(v, v♯) = 0,

∂tv
♯ + v∂xv

♯ + v♯∂xv = 0,

∂tE + v∂xE + 3E∂xv = 0.

(1.17)

1.3. Organization of the paper

In Section 2, we study the existence of solitary waves for the GN system with vorticity (1.12). We
show in §2.1 that the existence of smooth solitary waves can be reformulated as an ODE problem. The
existence of solutions is then established in §2.2 where we also comment on the qualitative differences
with the irrotational case. For instance, while there are solitary waves of arbitrary amplitude for the
standard GN equations, there are configurations with non trivial vorticities for which solitary waves
cannot exceed a critical amplitude. Solitary waves of critical amplitude are then studied in §2.3 where
we show that these extremal solitary waves have a peak at their crest, whose angle depends on the
vorticity.

We then present in Section 3 the numerical scheme we propose to solve (1.12). After a simple
renormalisation of the system using the mass conservation equation, we present in §3.1 a simple
splitting scheme inspired by previous works on the standard GN equations. This splitting involves
a conservative propagation step and a dispersive correction step. The conservative step is studied in
§3.2; as in the irrotational case, it is of hyperbolic type but because of the extra unknowns due to the
vorticity, its structure is more complicated. In particular, there are now three wave speeds (instead of
two in the irrotational case). A corresponding finite volume scheme is proposed, for which robustness
is proved and higher order extensions constructed. The study of the dispersive step being similar to
the irrotational case, we just briefly recall the main points in §3.3.

Section 4 is then devoted to the numerical validation of this scheme. The different kinds of smooth
solitary waves predicted in Section 2 are numerically observed in §4.1 and used to evaluate the con-
vergence rate. We also observe numerically in §4.2 the existence of the extremal peaked solitary waves
exhibited in §2.3. We provide in §4.3 a numerical simulation involving a non-flat topography; we use
this example to show that the vorticity may play a considerable role on the shoaling of waves.

Finally, we detail in Section 5 how the system of equations (1.12) can be used to describe the

dynamics of the (d + 1) velocity field U = (u,w)T at any time, up to a O(µ
3

2 ) accuracy, and show
how the previous discrete formulation of Section 3 may be simply modified to numerically perform
the corresponding velocity reconstructions. This process is illustrated by two prospective examples of
wave-current interactions, involving a non trivial vorticity field and topography effects.

2. Solitary waves

We investigate here the existence of solitary waves for the Green-Naghdi equations with vorticity
(1.12). We show in §2.1 that smooth solitary waves must satisfy a second order ODE. This ODE is
solved in §2.1, while extremal peaked solutions are studied in §2.3.
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2.1. Derivation of the ODE for the shape of the solitary waves

Our purpose here is to show that smooth solitary waves, if they exist, must satisfy a second order
ODE. We consider here flat bottoms (i.e. b = 0), and the system (1.12) can therefore be written











































ζt + (hv)x = 0,

vt + g∂xζ + v∂xv +
1

h
Ex −

1

6h

[

2h3v♯vxx + (h3v♯)xvx
]

x
=

1

3

1

h

[

h3(vxt + vvxx − v2x)
]

x

v♯t + (vv♯)x = 0,
(E

h3
)

t
+ v

(E

h3
)

x
+

1

h3
Fx = 0,

( F

h4
)

t
+ v

( F

h4
)

x
= 0,

(2.1)

with h = H0 + ζ. We look for solitary waves solutions to (2.1), i.e. solutions of the form

(ζ, v, v♯, E, F )(t, x) = (ζ, v, v♯, E, F )(x− ct),

for some constant c ∈ R, and with ζ and v vanishing at infinity, over a current that might not vanish
at infinity, that is, we assume that

lim
±∞

(ζ, v) = 0 and lim
±∞

(v♯, E, F ) = (v♯∞, E∞, F∞)

for some constants E∞, F∞, v♯∞. Such solutions should satisfy (for the sake of clarity, we do not
underline the functions in the expressions below)











































[−(c− v)h]x = 0,

−(c− v)vx + g∂xζ +
1

h
Ex −

1

6h

[

2h3v♯vxx + (h3v♯)xvx
]

x
= −1

3

1

h

[

h3((c− v)vxx + v2x)
]

x
[

(c− v)v♯
]

x
= 0,

−(c− v)
(E

h3
)

x
+

1

h3
Fx = 0,

(c− v)
( F

h4
)

x
= 0.

(2.2)

Integrating the first equation, and using the fact that ζ and v vanish at infinity, one readily deduces

(c− v)h = cH0. (2.3)

Multiplying the second equation by h and integrating in x, we therefore get

− cH0v +
g

2
(h2 −H2

0 ) + (E − E∞)− 1

6

(

2h3v♯vxx + (h3v♯)xvx
)

= −1

3

(

h2cH0vxx + h3v2x
)

, (2.4)

and we need to determine v♯ and E. Let us proceed first with v♯. From the third equation in (2.2), we
have

(c− v)v♯ = cv♯∞,

which, together with (2.3), yields

v♯ =
h

H0
v♯∞. (2.5)

We now turn to derive an expression for E. From the last equation, we get that

F =
h4

H4
0

F∞. (2.6)

Together with (2.3), this allows one to rewrite the fourth equation as

−cH0

(E

h3
)

x
+ 4

F∞
H4

0

hhx = 0,
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and therefore

E = E∞ + (
h3

H3
0

− 1)E∞ + 2
F∞
c

(h2 −H2
0 )h

3

H5
0

. (2.7)

Plugging (2.5) and (2.7) into (2.4) we obtain

−cH0v +
g

2
(h2 −H2

0 ) + (
h3

H3
0

− 1)E∞ + 2
F∞
c

(h2 −H2
0 )h

3

H5
0

− h2

3H0
v♯∞[h2vx]x = −1

3

(

h2cH0vxx + h3v2x
)

.

Since (2.3) implies that h2vx = cH0hx and v = ch−H0

h , we deduce further that

−c2H0
h−H0

h
+
g

2
(h2 −H2

0 ) + (
h3

H3
0

− 1)E∞ + 2
F∞
c

(h2 −H2
0 )h

3

H5
0

− 1

3
cv♯∞h

2hxx = −c
2

3
H2

0h
[ 1

h
hx

]

x
.

This leads us to the following definition of a (smooth) solitary wave.

Definition 2.1. A solitary wave of speed c for (2.1) is a mapping

(t, x) ∈ R
2 7→ (ζ, v, v♯, E, F )(x− ct)

such that there exists h ∈ C2(R) and E∞ > 0, v♯∞ ∈ R and F∞ ∈ R such that

ζ = h−H0, v = c
h−H0

h
, v♯ =

h

H0
v♯∞, E =

h3

H3
0

E∞ + 2
F∞
c

(h2 −H2
0 )h

3

H5
0

, F =
h4

H4
0

F∞

and h solves the ODE

1

3
c(cH2

0−v♯∞h2)hxx =
h−H0

2h
(2c2H0−gh(h+H0))−(

h3

H3
0

−1)E∞−2
F∞
c

(h2 −H2
0 )h

3

H5
0

+
c2

3
H2

0

h2x
h

(2.8)

on R and satisfies lim±∞ h = H0. The function h is called the profile of the solitary wave.

2.2. Existence of smooth solitary waves

We first consider here the case where F∞ = 0 and prove the existence of solitary waves in the sense of
Definition 2.1.

Proposition 2.2. Let E∞ > 0, v♯∞ ∈ R and F∞ = 0. Let also hmax > H0.
i. Up to translations, there can be at most two solitary waves of maximal height hmax for (2.1); if they
exist, they have opposite speed ±c, with

c =
(

ghmax +
hmax(hmax + 2H0)

H3
0

E∞
)1/2

.

ii. The solitary wave of speed c (resp. −c) exists if and only if the following condition holds

c(cH2
0 − v♯∞h

2
max) > 0 (resp. − c(−cH2

0 − v♯∞h
2
max) > 0).

The profile of the solitary wave then attains its maximal value at a unique point xmax and it is
symmetric with respect to the axis x = xmax and decaying on the half-line x > xmax.

Proof. Step 1. We derive here an expression for h2x in terms of h. For later investigations, we deal
with the general case F∞ ∈ R here. Multiplying the differential equation (2.8) by hx and dividing by
h2, we get

−c
2

3
H2

0

h3x
h3

+
1

3
c2H2

0

1

h2
hxxhx −

1

3
cv♯∞hxxhx =

h−H0

2h3
(2c2H0 − gh(h +H0))hx

− (
h3

H3
0

− 1)
hx
h2
E∞ − 2

F∞
c

(h2 −H2
0 )

H5
0

hhx.
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After integrating in x, this yields

1

6
c
(

cH2
0 − v♯∞h

2)
h2x
h2

=
c2

2

1

h2
(h−H0)

2−1

2
g
1

h
(h−H0)

2

− 1

2H3
0

1

h
(h−H0)

2(h+ 2H0)E∞ − F∞
2c

(h2 −H2
0 )

2

H5
0

(the integration constant has been chosen in order to respect the constraint that ζ and its derivatives
vanish at infinity), or equivalently

c

3

(

cH2
0 − v♯∞h

2
)

h2x = (h−H0)
2
(

c2 − gh − h(h+ 2H0)

H3
0

E∞ − h2(h+H0)
2

H5
0

F∞
c

)

. (2.9)

Step 2. Expressions for the velocity and qualitative analysis. By definition, if h is the profile of a
solitary wave then it is a C2-function and its derivative must vanish at its maximum. The formula
(2.9) then provides directly the only two (recall that F∞ is assumed to be zero here) possible values
for the speed c.

Since the function h 7→ gh + h(h+2H0)
H3

0

is strictly increasing on R
+, we also deduce from (2.9) that hx

cannot vanish at another point, and therefore that the maximum of h is attained at a unique point
xmax, and further, that h has to be monotonous on both sides of xmax. The fact that it is decaying
on x > xmax follows from the condition that h → H0 < hmax at infinity. Finally, the fact that h is
symmetric with respect to xmax follows from the simple observation that if h solves (2.8) for x ≥ xmax

with boundary conditions h(xmax) = hmax and hx(xmax) = 0 then x 7→ h(2xmax − x) furnishes a
solution for x ≤ xmax.

Step 3. Existence of a solitary wave of speed c = c or c = −c. If cH2
0 − v♯∞h2max 6= 0, then the

Cauchy-Lipschitz theorem furnishes a local solution with boundary condition h(xmax) = hmax and

hx(xmax) = 0. If moreover c(cH2
0 − v♯∞h2max) > 0, then it is easy to deduce from (2.8) that this local

solution satisfies h′′(xmax) < 0 and therefore that the solution attains a local maximum at xmax. Pro-
ceeding as in Step 2, one gets that this local solution is symmetric with respect to xmax and decaying
on x > xmax. Moreover, one always has h > H0; indeed, if one had h(x0) = H0 for some x0 ∈ R, then
one would have hx(x0) = 0 by (2.9), and by uniqueness, one would have h ≡ H0, which is absurd.
Therefore h decays to some limit as x → ∞, and this limit is necessarily H0 by (2.9). The identity
(2.9) also shows that hx remains bounded, so that no blow up of h nor hx can occur and the solution
of the ODE (2.8) is global.

Step 4. Non existence of a solitary wave of speed c = c or c = −c. If c(cH2
0 − v♯∞h2max) < 0, then it is

easy to deduce from (2.9) that no solitary wave can exist. The only case left to investigate is therefore

the critical case cH2
0 − v♯∞h2max = 0. In this case, one gets from (2.8) that

c2

3
H2

0

h′(xmax)

h(xmax)
=
hmax −H0

2hmax
(ghmax(hmax +H0)− 2c2H0) + (

h3max

H3
0

− 1)E∞

> 0

which contradicts the assumption that h is a C1-function attaining its maximum at xmax.

Remark 2.3. If in addition to the assumption F∞ = 0 we take E∞ = v♯∞ = 0 in the statement of
Proposition 2.2, then one has v♯ = E = F = 0 in Definition 2.1 so that the solitary waves are the
same as in the irrotational setting for which it is well known that explicit solitary waves exist. More
precisely, for any maximal amplitude hmax > H0, there exists two (up to translations) solitary waves
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Irrotational Green−Naghdi

Figure 2. Influence of E∞ on the solitary wave profile for H0 = 1m, hmax = 2m,

v♯∞ = 0, F∞ = 0.

of speed c = ±
√
ghmax and with the same profile h+ = h− given by the resolution of (2.8) and which

can in this particular case be computed explicitly,

h(x) = H0 + εH0(sech(
x

λ
))2 with λ =

2√
3

√

1 + ε

ε
H0,

and where we denoted hmax = H0(1 + ε).

Remark 2.4. If in addition to the assumption F∞ = 0 we take v♯∞ = 0 but consider the case E∞ > 0,
the situation is qualitatively the same as in Remark 2.3: for any maximal amplitude hmax = H0(1+ε) >
H0, there exists two solitary waves of same shape and of opposite speed c = ±c. The only difference
is that the speed c is larger than in the irrotational case,

c =
(

ghmax +
hmax(hmax + 2H0)

H3
0

E∞
)1/2

, (2.10)

and that the solitary waves becomes narrower as E∞ increases (this follows easily from the comparison
principle for ODEs); see Fig. 2.

Remark 2.5. If we assume that F∞ = 0 but E∞ > 0 and v♯∞ > 0 (the case v♯∞ < 0 can be treated in
a similar way) in the statement of Proposition 2.2 then there are two major qualitative changes with
respect to the situation considered in Remark 2.4. The first one is that right going solitary waves do
not exist for any maximal amplitude hmax > H0. Indeed, the criterion given in the second point of
the proposition is always satisfied for the left-going solitary wave, but requires for the right-going one
that

cH2
0 − v♯∞h

2
max > 0.

or equivalently, using the explicit expression of c given in Proposition 2.2,

(

gH0 + (h̃+ 2)
E∞
H0

)

> (v♯∞)2h̃3 with h̃ =
hmax

H0
.

In the case where v♯∞ > 0, the criterion given in the statement of Proposition 2.2 for the existence
of solitary waves can therefore be restated as: left-going solitary waves always exist, but right-going
solitary waves exist if and only if hmax < hcrit where the critical height hcrit is given by hcrit = H0h̃crit
with h̃crit the only positive root of the polynomial

P (X) = (v♯∞)2X3 −
(

gH0 + (X + 2)
E∞
H0

)

.
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Figure 3. Influence of v♯∞ > 0 on the profiles for H0 = 1m, E∞ = 1m3.s−2 and

F∞ = 0. (a) Right-going solitary waves of nearly critical amplitudes for v♯∞ = 1m.s−1

and therefore hcrit ≈ 2.42m. (b) Left going solitary waves for the same amplitudes. (c)

Right-going solitary waves for hmax = 2m and increasing values of v♯∞. (d) Left-going

solitary waves for hmax = 2m and increasing values of v♯∞.

The second qualitative change with respect to the situation previously considered is that the shape
of the two solitary waves of speed c = ±c are not the same since the ODE in Definition 2.1 does no
longer depend on c through c2 only. We refer to Fig. 3 for an illustration of this behavior, in which
we show the right and left-going waves profiles for increasing values of hmax in the vicinity of hcrit,

for v♯∞ = 1m.s−1. We also highlight the influence of increasing values of v♯∞ on the left-going waves
profiles for a given value of hmax.

We recall that we assumed in Proposition 2.2 that F∞ = 0. Let us now give a brief discussion about

the general case E∞ > 0, v♯∞ > 0 and F∞ > 0 (one can treat the case v♯∞ < 0 and/or F∞ < 0 in a
similar way). The presence of F∞ 6= 0 implies that the possible speeds for solitary waves of maximal
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amplitude hmax are found by solving the third order polynomial

X3+pX+q with p = −
(

ghmax+hmax(hmax+2H0)
E∞
H3

0

)

q = −h2max(hmax+H0)
2F∞
H5

0

, (2.11)

(this is a simple consequence of (2.9)). Defining as previously ε by

hmax

H0
= 1 + ε

the discriminent ∆ = −(4p3 + 27q2) of this polynomial is always positive provided that the following
smallness condition holds for F∞

F 2
∞ <

27

4

H5
0

(1 + ε)(2 + ε)4
(

g + (3 + ε)
E∞
H2

0

)3
(2.12)

(this condition is satisfied for all realistic configurations). The polynomial (2.11) has then three distinct
roots. Since the coefficient of X2 is equal to zero, the sum of the three roots is necessarily equal to
zero; moreover, their product has the sign of −q, and therefore the sign of F∞. If F∞ > 0, then one has
one positive root 0 < c+ and two negative roots −c−,2 < −c−,1 < 0. There are therefore possibly two
left going solitary waves, and a right going one. The right-going wave is subject to the same constraint

hmax < hcrit as in the case E∞ > 0, v♯∞ > 0 and F∞ = 0. In addition, (2.9) shows that the function

ϕc : h 7→ c2 − h− ε2µh(h+ 2)E∞ − ε3µ3/2h2(h+ 1)2
F∞
c

(2.13)

must be positive for all H0 ≤ h < hmax. We can now state the following proposition where for the

sake of simplicity, we considered only the case v♯∞ > 0 and F∞ > 0. The cases where these quantities
are negative can be treated similarly.

Proposition 2.6. Let E∞ > 0, v♯∞ > 0 and F∞ > 0. Let also hmax = H0(1 + ε) with ε > 0 and
assume that (2.12) is satisfied.
i. Up to translations, there can be at most three solitary waves of maximal height hmax for (2.1) and
corresponding speeds −c−,2 < −c−,1 < 0 < c+ given by the roots of (2.11).
ii. The solitary wave of speed c+ exists if and only if the following conditions hold

c+H
2
0 − v♯∞h

2
max > 0 and ∀h ∈ [H0, hmax), ϕc+(h) > 0, (2.14)

where ϕc is as defined in (2.13).
iii. The solitary wave of speed c−,j (j = 1, 2) exists if and only ϕ−c−,j > 0 on [H0, hmax).

Remark 2.7. Though there could be in principle a third solitary wave arising in the case F∞ > 0,
we could not exhibit any configuration where this is the case because the condition ϕ−c−,1 > 0 on
[H0, hmax) is never fulfilled. In practice, there are as in the case F∞ = 0 one left going and one
right going solitary wave, of different shape and of respective speed −c−,2 and c+. The profiles of the
corresponding solitary waves are shown on Fig. 4. Note that smaller values of F∞ have to be taken
to obtain the profiles of the left-going waves (Fig. 4 (b)) in order to fulfill the condition ϕ−c−,2 > 0
on [H0, hmax). Note also that additional solitary waves profiles can be observed, for both the constant
vorticity model (1.7) and the general model (1.12), in §4.
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Figure 4. Influence of F∞ on the solitary waves profiles. (a) Shape of the left and right
going solitary waves, and comparison with the usual Green-Naghdi solitary wave, for
H0 = 1m, hmax = 2m, E∞ = 1m3.s−2, v∞ = 1m.s−1, F∞ = 1m4.s−3. (b) Influence
of the value of F∞ on the left-going wave’s profile. (c) Influence of the value of F∞ on
the right-going wave’s profile.

2.3. Existence of peaked solitary waves

As seen in the previous section, when E∞ > 0, v♯∞ > 0 and F∞ = 0, solitary waves have speed ±c,
with

c = c(hmax) =
(

ghmax +
hmax(hmax + 2H0)

H3
0

E∞
)1/2

and the maximal amplitude hmax of the right-going solitary wave cannot exceed a critical value hcrit
corresponding to the only positive root of the equation

c(hcrit)H
2
0 − v♯∞h

2
crit = 0.

Figure 3 suggests that the shape of the solitary waves tend to form an angle at their crest as their
amplitude become close to the maximal amplitude. A byproduct of the analysis of the previous section
is that there cannot exist any smooth solitary wave of maximal amplitude hcrit. However, we show
here that it is possible to obtain a peaked solitary wave of maximal amplitude in the following sense.

Definition 2.8. A peaked solitary wave of speed c, centered at x0 ∈ R, for (2.1), is a mapping

(t, x) ∈ R
2 7→ (ζ, v, v♯, E, F )(x− ct− x0)

13
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such that there exists h ∈ C(R), with h|
R+

∈ C2([0,∞)), h|
R−

∈ C2((−∞, 0]), and E∞ > 0, v♯∞ ∈ R

and F∞ ∈ R such that

ζ = h−H0, v = c
h−H0

h
, v♯ =

h

H0
v♯∞, E =

h3

H3
0

E∞ + 2
F∞
c

(h2 −H2
0 )h

3

H5
0

, F =
h4

H4
0

F∞,

and such that h solves the ODE (2.8) on R
+ and R

−, and satisfies lim±∞ h = H0.

The proposition below proves the existence of peaked solitary waves in the case F∞ = 0. Such a
property could also be established for F∞ 6= 0 (according to Proposition 2.6 there is also a critical
maximal wave in some cases when F∞ 6= 0), but the proof would be more technical and since no new
phenomena arises in this case, we decide not to treat it. Some examples of peaked solitary waves are

plotted on Fig. 5, on which we highlight the influence of the value of v♯∞ > 0 on the critical amplitude
hcrit.

Proposition 2.9. Let E∞ > 0, v♯∞ > 0 and F∞ = 0. For all x0 ∈ R, there exists a unique peaked
solitary wave centered at x0 of critical maximal amplitude hcrit and speed c = c(hcrit). It is even,
decaying on both sides of the crest, and its angle at the crest is 2θ, with

tan θ =
(3

2

E∞

cH3
0v

♯
∞
(hcrit −H0)

2
(

1 +
(v♯∞)2

E∞

h2crit
H0

)

)−1/2
.

Proof. We focus here on the case x ≥ 0; the case of negative values of x can be treated similarly.
Without loss of generality, we also assume that x0 = 0. By definition of hcrit, one can write, for all h,

cH2
0 − v♯∞h

2 = −v♯∞(h− hcrit)(h + hcrit)

and

c2 − gh− h(h+ 2H0)

H3
0

E∞ = −E∞
H3

0

(h− hcrit)(h+
(v♯∞)2

E∞

h3crit
H0

).

On can therefore rewrite (2.9) under the form

c

3
v♯∞(h− hcrit)(h+ hcrit)h

2
x =

E∞
H3

0

(h−H0)
2(h− hcrit)(h+

(v♯∞)2

E∞

h3crit
H0

)

or equivalently

c

3
v♯∞(h+ hcrit)h

2
x =

E∞
H3

0

(h−H0)
2(h+

(v♯∞)2

E∞

h3crit
H0

).

Since hcrit is by definition the maximal value of h and since h cannot reach the value H0 (otherwise it
would be identically equal to H0), this ODE is equivalent to

hx = −
(

3
E∞

cH3
0v

♯
∞
(h−H0)

2
h+ (v♯∞)2

E∞

h3
crit

H0

h+ hcrit

)1/2
.

Existence of a local solution is therefore given by the standard Cauchy-Lipschitz theorem; the fact
that the solution is global and tends to H0 at infinity is then easily established as in Step 3 of the
proof of Proposition 2.2. When evaluated at the origin (i.e replacing h by hcrit) in the above formula
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3. Numerical method

We introduce now a simple numerical method to approximate the solutions of system (1.12) and
illustrate the propagation of some of the various wave profiles exhibited in section 2. This approach is
inspired by some of our previous works [5, 10, 31], and we mostly detail the new ingredients introduced
to account for the specificities of (1.12).

3.1. Splitting

To build our numerical method, denoting E = h2Ẽ et F = h3F̃ and using the mass conservation
equation, we rewrite system (1.12) in the equivalent form:































ht + (hv̄)x = 0,

(1 + T)
(

(hv)t + (hv2)x

)

+ ghζx + (h2Ẽ)x + hQ1(v) + hC(v, v♯) = 0,

v♯t + (vv♯)x = 0,

Ẽt + (vẼ)x + 3F̃ hx + hF̃x = 0,

F̃t + (vF̃ )x = 0.

(3.1)

Then, in the spirit of [5, 10, 31], we decompose the solution operator S(·) associated to the formulation
(3.1), at each time step by the second order splitting scheme

S(δt) = S1(δt/2)S2(δt)S1(δt/2), (3.2)

where S1 and S2 are respectively associated to the transport part and dispersive perturbation of the
Green-Naghdi equations (3.1). More precisely:

• S1(t) is the solution operator associated to the conservative propagation step







































ht + (hv)x = 0,

(hv)t + (hv2)x + ghζx + (h2Ẽ)x = 0,

v♯t + (vv♯)x = 0,

Ẽt + (vẼ)x = 0,

F̃t + (vF̃ )x = 0.

(3.3)
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• S2(t) is the solution operator associated to the dispersive correction,






































ht = 0,

(hv)t − ghζx − (h2Ẽ)x + (1 + T)−1
[

ghζx + (h2Ẽ)x + hQ1(v) + hC(v, v♯)
]

= 0,

v♯t = 0,

Ẽt + 3F̃ hx + hF̃x = 0,

F̃t = 0.

(3.4)

As detailed in the next subsection, S1(t) is discretized using a finite-volume approach. As far as the
operator S2(t) is concerned, we use a finite-difference approach, briefly detailed in §3.3.
Remark 3.1. Even if the terms 3F̃ hx + hF̃x occurring in the evolution equation for Ẽ are of first
order, we choose not to include them in S1. Indeed, this would lead to a non-conservative equation for
Ẽ and introduce additional difficulties. As shown in the following, the study of the hyperbolicity of
system (3.3) is straightforward and the computation of the associated algebra lead to simple expres-
sions for the system’s eigenvalues. On the contrary, there is no closed expressions for the eigenvalues
of the system obtained considering the equation on Ẽ with the non-conservative terms.
Actually, approximated eigenvalues for this non-conservative system have been computed, up to the
O(µ2) model’s accuracy, and some numerical investigations have been performed to compare both
numerical approaches, without highlighting noticeable differences on the numerical results. Note how-
ever that further investigations are needed on these issues, especially considering the study of possibly
breaking waves, in the spirit of [53].

We use the following notations in the following:

• the numerical one-dimensional domain Ω is uniformly divided into Nx cells (Ci)1≤i≤Nx such
that Ci = [xi− 1

2

, xi+ 1

2

], where (xi+ 1

2

)0≤i≤Nx are the Nx+1 nodes of the regular grid. We denote

by xi the center of Ci,

• we denote by δx the cell size (constant in this work) and by δt the chosen time step (to be
specified according to a relevant CFL-like condition),

• we denote by w̄i
n the averaged value of an arbitrary quantity w on the ith cell Ci at time

tn = nδt.

3.2. Discretization of the conservative step

We focus on the discretization of system (3.3) which can be written in compact form as follows

∂tW + ∂xF(W) = S(W, b), (3.5)

with W = (h, hv, v♯, Ẽ, F̃ ) and

F(W) =













hv

hv2 + p(h, Ẽ)
vv♯

vẼ

vF̃













, S(W, b) =













0
−ghbx

0
0
0













, (3.6)

with p(h, Ẽ) =
g

2
h2 + h2Ẽ. The state vector W is assumed to take values in a convex and open set U

defined as
U = {(h, hv, v♯, Ẽ, F̃ ) ∈ R

5, h ≥ 0, Ẽ ≥ 0}. (3.7)
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Neglecting the bottom variations, the study of the associated algebra shows that the system is hyper-
bolic with the following eigenvalues:

λ1 = v −
√

gh+
3E

h
, λ2 = v +

√

gh+
3E

h
, λ3 = λ4 = λ5 = v. (3.8)

3.2.1. 1st-order FV discretization of the homogeneous system

We first study a first order conservative spatial discretization of the homogeneous system associated
with (3.5):

W̄n+1
i − W̄n

i +
δt

δx

(

F
(

W̄n
i , W̄n

i+1

)

−F
(

W̄n
i−1, W̄n

i

)

)

= 0 (3.9)

where (u, v) 7→ F(u, v) is a numerical flux function consistent with the physical flux w 7→ F(w). For the
numerical validations shown in §4, we have implemented a simple HLLC-type Riemann solver, see for
instance [3, 7]. We consider an approximate Riemann solver consisting of 2 finite external wave-speeds
λL, λR and an additional intermediate wave λ⋄. We denote by W⋄

L and W⋄
R the intermediate states

to the left and to the right of the wave λ⋄ respectively. The 3 wave speeds are therefore separating 4
constant states WL, W⋄

L, W⋄
R and WR, leading to the following approximate solver:

Ŵ(
x

t
,WL,WR) =



















WL if x
t ≤ λL,

W⋄
L if λL ≤ x

t ≤ λ⋄,

W⋄
R if λ⋄ ≤ x

t ≤ λR,

WR if λR ≤ x
t .

(3.10)

Assuming that λL and λR are given by some estimates, we need to define the 10 components of the 2
unknown intermediate states W⋄

L and W⋄
R, and the intermediate wave speed λ⋄. To achieve this, we

use the consistency condition for the discharge hv, with the notation ∆pLR = p(hR, ẼR)− p(hL, ẼL),

together with the jump conditions across each wave for the variables h, v♯, Ẽ and F̃ , leading to the
following system:















































λL(h
⋄
L − hL) = h⋄Lv

⋄
L − hLvL, λ⋄(h⋄R − h⋄L) = h⋄Rv

⋄
R − h⋄Lv

⋄
L, λR(hR − h⋄R) = hRvR − h⋄Rv

⋄
R,

λL((hv)
⋄
L − (hv)L) + λ⋄((hv)⋄R − (hv)⋄L) + λR((hv)R − (hv)⋄R) = hRv

2
R − hLv

2
L +∆pLR,

λL(v
♯,⋄
L − v♯L) = v⋄Lv

♯,⋄
L − vLv

♯
L, λ⋄(v♯,⋄R − v♯,⋄L ) = v⋄Rv

♯,⋄
R − v⋄Lv

♯,⋄
L , λR(v

♯
R − v♯,⋄R ) = vRv

♯
R − v⋄Rv

♯,⋄
R ,

λL(Ẽ
⋄
L − ẼL) = v⋄LẼ

⋄
L − vLẼL, λ⋄(Ẽ⋄

R − Ẽ⋄
L) = v⋄RẼ

⋄
R − v⋄LẼ

⋄
L, λR(ẼR − Ẽ⋄

R) = vRẼR − v⋄RẼ
⋄
R,

λL(F̃
⋄
L − F̃L) = v⋄LF̃

⋄
L − vLF̃L, λ⋄(F̃ ⋄

R − F̃ ⋄
L) = v⋄RF̃

⋄
R − v⋄LF̃

⋄
L, λR(F̃R − F̃ ⋄

R) = vRF̃R − v⋄RF̃
⋄
R,
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whose solution is given by

λ⋄ =
hLvL(λL − vL)− hRvR(λR − vR) + ∆pLR

hL(λL − vL)− hR(λR − vR)
, (3.11)

v⋄L = v⋄R = λ⋄, (3.12)

h⋄L =
hL(λL − vL)

λL − λ⋄
, h⋄R =

hR(λR − vR)

λR − λ⋄
, (3.13)

v♯,⋄L = v♯L, v♯,⋄R = v♯R, (3.14)

Ẽ⋄
L = ẼL, Ẽ⋄

R = ẼR, (3.15)

F̃ ⋄
L = F̃L, F̃ ⋄

R = F̃R. (3.16)

Once the intermediate states are known, the corresponding fluxes can be computed as usual

F(WL,WR) =



















F(WL) if x
t ≤ λL,

F(WL) + λL(W⋄
L −WL) if λL ≤ x

t ≤ λ⋄,

F(WR) + λR(W⋄
R −WR) if λ⋄ ≤ x

t ≤ λR,

F(WR) if λR ≤ x
t .

(3.17)

Remark 3.2. Introducing the following wave speed estimates:

λL = vL − sL
hL
, λR = vR +

sR
hR

, (3.18)

where sL and sR are 2 positive values which definition is temporarily postponed to §3.2.3, (3.11)-(3.13)
may be reformulated as follows:

λ⋄ =
sLvL + sRvR −∆pLR

sL + sR
, (3.19)

1

h⋄L
=

1

hL
+
sR(vR − vL)−∆pLR

sL(sL + sR)
,

1

h⋄R
=

1

hR
+
sL(vR − vL) + ∆pLR

sR(sL + sR)
. (3.20)

3.2.2. Discretization of the topography

The discretization of the topography source term occurring in (3.5) is done following the well-balanced
approach for the Saint-Venant equations described in [2], allowing to preserve the motionless steady
states corresponding to

ζ = 0, v = 0, v♯ = 0, E = 0, F = 0. (3.21)

We choose not to recall the details of this reconstruction as it has been extensively applied and
validated in recent years, including some variants like the reconstructions proposed in [34] relying on
a pre-balanced formulation. We just recall that one of the main properties of this approach is that
whenever the initial solver satisfies some classical stability properties, it yields a simple and fast well-
balanced scheme that preserves the positivity of the water height and satisfies a semi-discrete entropy
inequality.

3.2.3. Robustness

We show here that a suitable choice of the external wave speed estimates λL and λR ensures that the
intermediate water heights h⋄L and h⋄R remains positive.

18



Proposition 3.3. The numerical scheme (3.9) based on the Riemann solver (3.10) and the definitions
(3.12)-(3.20) with sL and sR defined as follows:

if ∆pLR ≥ 0,























sL
hL

=

√

hL(g + 2ẼL) +
3

2

( ∆pLR

hR

√

hR(g + 2ẼR)
+ vL − vR

)

+
,

sR
hR

=

√

hR(g + 2ẼR) +
3

2

(−∆pLR
sL

+ vL − vR

)

+
.

(3.22)

if ∆pLR ≤ 0,























sR
hR

=

√

hR(g + 2ẼR) +
3

2

( −∆pLR

hL

√

hL(g + 2ẼL)
+ vL − vR

)

+
,

sL
hL

=

√

hL(g + 2ẼL) +
3

2

(∆pLR
sR

+ vL − vR

)

+
.

(3.23)

preserves the positivity of h.

Proof. We adapt the ideas of [7], initially introduced for the Suliciu relaxation schemes.

Step 1. We remark first that (h, Ẽ) → p(h, Ẽ) =
g

2
h2 + h2Ẽ satisfies the following properties:

∀h, Ẽ > 0, ∂h(h

√

∂hp(h, Ẽ)) > 0, (3.24)

h

√

∂hp(h, Ẽ) →
h→∞

∞, (3.25)

∂h(h

√

∂hp(h, Ẽ)) ≤ 3

2

√

∂hp(h, Ẽ), (3.26)

ensuring that there exists, for each value of Ẽ, an inverse function ψ(., Ẽ) : (0,∞) → (0,∞) such
that

h

√

∂hp(h, Ẽ) = s ⇔ h = ψ(s, Ẽ).

Note also that (3.26) entails ∂sψ(s, Ẽ) ≥ 2ψ(s, Ẽ)

3s
, and as ∂s(ψ(s, Ẽ)s−

2

3 ) ≥ 0, we have:

ψ(λs; Ẽ) ≥ λ
2

3ψ(s, Ẽ), ∀λ ≥ 1. (3.27)

Step 2. We show in this step that for any given sR > 0, the choice

sL
hL

=

√

∂hp(hL, ẼL) +
3

2

(∆pLR
sR

+ vL − vR

)

+
,

ensures that
1

h⋄L
=

1

hL
+
sR(vR − vL)−∆pLR

sL(sL + sR)
≥ 1

ψ(sL, ẼL)
> 0.

Indeed, if sR(vR − vL) −∆pLR ≥ 0, we have sL = hL

√

∂hp(hL, ẼL) and hL = ψ(sL, ẼL), giving the

expected result. If sR(vR − vL)−∆pLR < 0, it is equivalent to show that

1− sR
sL + sR

X
√

∂hp(hL, ẼL) +
3
2X

≥ hL

ψ(sL, ẼL)
,

with X = ∆pLR
sR

+ vL − vR. Introducing θ =

√

∂hp(hL, ẼL)
√

∂hp(hL, ẼL) +
3
2X

, a sufficient condition is
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1− 2(1− θ)

3
− hL

ψ
(

hL(
√

∂hp(hL, ẼL) +
3
2X), ẼL

)
≥ 0. (3.28)

Using (3.27), we see that (3.28) holds if we have 1− 2(1−θ)
3 −θ 2

3 ≥ 0, which is always true for 0 < θ ≤ 1.

Note that the symmetric result holds: for all sL > 0, the choice

sR
hR

=

√

∂hp(hR, ẼR) +
3

2

(−∆pLR
sL

+ vL − vR

)

+
,

ensures that

1

h⋄R
=

1

hR
+
sL(vR − vL) + ∆pLR

sL(sL + sR)
≥ 1

ψ(sR, ẼR)
> 0,

Step 3. Let us assume in this step ∆pLR ≥ 0 and define sL, sL following (3.22). As sL ≥ 0, the
symmetric result of the previous step directly ensures that 1/h⋄R > 0. Additionally, if sR(vR − vL) −
∆pLR ≥ 0, we obviously have

1

h⋄L
=

1

hL
+
sR(vR − vL)−∆pLR

sL(sL + sR)
≥ 1

hL
> 0.

Now, if sR(vR − vL)−∆pLR ≤ 0, as sR ≥ hR

√

∂hp(hR, ẼR), we have sL ≥ s̃L, with

s̃L
hL

=

√

∂hp(hL, ẼL) +
3

2

(∆pLR
sR

+ vL − vR

)

+
.

Using Step 2, we obtain

1

hL
+
sR(vR − vL)−∆pLR

s̃L(s̃L + sR)
≥ 1

ψ(s̃L, ẼL)
.

As −1
s(s+sR) is an increasing function of s > 0, we show that

1

h⋄L
=

1

hL
+
sR(vR − vL)−∆pLR

sL(sL + sR)
≥ 1

hL
+
sR(vR − vL)−∆pLR

s̃L(s̃L + sR)
≥ 1

ψ(s̃L, ẼL)
> 0.

Step 4. Assuming that W̄n
i ∈ U for each cell Ci, the previous step ensures that the associated

approximate Riemann solver (3.10) satisfies at each interface xi+ 1

2

:

∀(t, x) ∈ (tn, tn+1]× (xi, xi+1), Ŵ(
x− xi+ 1

2

t− tn
, W̄n

i , W̄n
i+1) ∈ U .

Then, it is a classical result to show that W̄n+1
i ∈ U for each cell Ci under the CFL-like condition

δt

δx
max

i
max

(

|λi+ 1

2
,L|, |λi+ 1

2
,R|

)

≤ 1

2
,

in which λi+ 1

2
,L and λi+ 1

2
,R are the speed estimates obtained from (3.18)-(3.22)-(3.23) at the interface

xi+ 1

2

. This final result is based on the fact that the numerical scheme (3.9) updates values from a

convex averaging of the states that appear in the approximate Riemann problem, see for instance
[3, 7].
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Remark 3.4. The previous positivity result can be straightforwardly extended from equations (3.3)
to the constant vorticity model (1.7), the medium amplitude model (1.16) and the reduced model
with F = 0 (1.17). Indeed, adapting the splitting approach (3.3)-(3.4) to these simplified models, we

observe that the positivity preservation property on h and Ẽ obtained in Proposition 3.3 for S1(δt/2)
is preserved by the dispersive step S2(δt).

However, showing that S2(δt) preserves the positivity of Ẽ for the general vorticity model (3.1) is a

non trivial task, due to the occurrence of source terms in the equation on Ẽ. However, in practice, we
did not observe any loss of positivity for Ẽ in our numerical investigations. Indeed, coming back to the
non-dimensionalized equations as introduced in [9], we can observe that the scaling of the additional

terms 3F̃ hx + hF̃x is ε
√
µ. Consequently, these terms may usually be small enough to preserve the

robustness of the whole method. Some practical examples of the orders of magnitude for these various
quantities can be observed in §5, on Fig. 24 and Fig. 26.

3.2.4. High-order extension

As shown in previous studies [10, 5, 16, 31], the use of high-order schemes is mandatory for the study
of dispersive water waves, to avoid as much as possible to pollute the dispersive properties of the
model with some dispersive truncation errors associated with 2nd order schemes. Based on discrete
finite-volume cell averaging W̄n

i at time tn = nδt we use in this work 3rd and 5th-order accuracy
WENO reconstructions, following [22], together with the weight splitting method [47]. Considering a
cell Ci, this approach provides, for all tn, interpolated quantities W̄i,l, and W̄i,r, respectively at the
left and right boundaries of the cell. Classically, for well-balancing requirements when the topography
is not flat, we also build reconstruction for the additional quantity h + b and deduce reconstructed
values for the topography bi,l and bi,r. Again, we chose not to develop the details of this classical step
as no further difficulties are introduced when considering the new models with vorticity. We rather
refer to our previous studies [10, 5, 16, 31] for implementation details.
Note that the positivity result issued from Proposition 3.3 can be extended to the high-order schemes
using the recent WENO polynomials limitations from [59, 56], with a more restricting CFL-like con-
dition. We also refer to [31] for some details concerning the implementation for the Green-Naghdi
equations.
Note also that when the topography is not flat, we use the quadrature rule of [37] for the topography
source term discretization, which leads to a high-order well-balanced scheme for the motionless steady
states (3.21) and relies on additional high-order WENO reconstructed values W̄i,c at each cell centers.

3.3. Spatial discretization of S2(·), time discretization and boundary conditions

Following the approach developed in [5], system (3.4) is discretized using 4th finite-differences. The
resulting matrix, for the discretization of the linear operator T is the same as in [5].

As far as time discretization is concerned, we choose to use explicit methods. The systems correspond-
ing to S1 and S2 are integrated in time using third or fourth-order SSP-Runge-Kutta scheme [20].
For the sake of simplicity, we only use periodic and Neumann boundary conditions here, adapting the
ghost-cells methods detailed in [5].

Remark 3.5. The whole numerical strategy described here can be straightforwardly applied to the
constant vorticity model (1.7), the medium amplitude equations (1.16) and the reduced model with
F = 0 (1.17), adapting the approximate Riemann solvers to the corresponding hyperbolic part.
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Figure 6. Propagation of a right-going solitary wave solution for the constant vorticity
model - ε = 0.2 and ω0 = 0.3 s−1. Initial profile (on the left) and snapshots at different
locations along the channel (on the right). The solitary wave solution of the classical
Green-Naghdi equations is plotted in black solid line at t = 0 s.

4. Numerical validation

In this section, we use the analysis of solitary waves performed in Section 2 to validate our numerical
scheme. All the various kinds of smooth solitary waves exhibited in Section 2 are numerically observed
in §4.1 and used to evaluate the convergence rate. As shown in §4.2, our code is accurate enough to
capture also the extremal peaked solitary waves exhibited in §2.3. We then treat in §4.3 an example
with a non trivial topography which allows us to show that vorticity may have a considerable influence
on the shoaling phase.

4.1. Solitary waves propagation

A common test for Green-Naghdi models is the propagation of solitary waves in a long, frictionless
channel of constant depth. The numerical model must handle the equilibrium between amplitude and
frequency dispersion to propagate the wave profile at constant shape and speed. Typical problems
during propagation involve trailing edge dispersion consequently causing reduction in wave height
and celerity. Those phenomena arise generally from a combination of numerical errors from poorly
balanced schemes and truncation of numerical approximations.
In the next test cases of these section, we consider H0 = 1 and we compute the propagation of several
solitary waves in a computational domain of 200m long. We consider several set of values for the wave
amplitude εH0 and the triplet (E∞, v♯∞, F∞), allowing to cover the various configurations detailed in
§2. Unless stated otherwise, we use WENO3 reconstructions, a SSP-RK3 scheme and we set the CFL
number to 0.8.

4.1.1. Constant vorticity model

We consider here the Green-Naghdi model (1.7) with constant vorticity. We consequently have

curl U = (0, ω, 0)T with ω(t, x, z) = ω0 = cst.

The analysis of the existence of solitary waves solutions for the constant vorticity equations (1.7)
is provided in Proposition 2.2. Indeed, we recall that in the case of flat bottom, the Green-Naghdi
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Figure 7. Propagation of a right-going solitary wave solution for the constant vorticity
model - ε = 0.2 and ω0 = 0.3 s−1. Convergence curves in logarithmic scales on the left
and L2 error values at t = 3 s for ζ and hv on the right.

model with constant vorticity can be obtained from the general equations (1.12), setting E = 1
12h

3ω2
0,

v♯ = hω0, F = 0, and consequently neglecting the equations on Ẽ and v♯ which are equivalent to the
continuity equation. Solitary wave solutions for (1.7) belong to the situation depicted in Remark 2.5.
In the present test case, we first set ω0 = 0.3 s−1 and we study the propagation of a solitary wave of
relative amplitude ε = 0.2, initially centred at x0 = 25m. The initial water height h0(x) = h(0, x) is
computed as a solution of equation (2.9) and the corresponding velocity is initialized as

v0(x) = c(1− H0

h0(x)
),

where c is obtained from (2.10):

c2 = ghmax +
hmax(hmax + 2H0)

12
ω2
0 . (4.1)

Remark 4.1. From Proposition 2.2, we observe that with the choice ω0 > 0, we have existence of
right-going solitary waves (propagating at speed c > 0) for all amplitudes a. On the contrary, the
existence of left-going waves is ruled by the additional compatibility condition

cH0 − ω0h
2
max > 0.

We only focus here on the right-going wave, and we show on Fig. 6 the corresponding profile
h0, together with the usual profile for the classical Green-Naghdi equations. We also compute the
propagation of this solitary wave on the time interval ]0, T ], with T = 50 s and show the corresponding
profiles at several locations along the channel. For these pictures, we set δx = 0.125m.

In order to perform some numerical convergence analysis, we compute L2 errors at T = 3 s for ζ
and hv on a sequence of refined meshes. The results are reported on Fig. 7, where we observe mean
orders of convergence, obtained with linear regressions, of 3.26 and 3.3 respectively for ζ and hv.
In a second time, we increase the wave amplitude, together with the magnitude of the vorticity field.
We set ε = 0.3 and ω0 = 1 s−1. The influence of the increased vorticity on the wave profile can
be observed on the left side of Fig. 8. The propagating wave shown on the right side is obtained
setting δx = 0.07m. The convergence study results are reported on Fig.9, and we can observe similar
magnitudes for the numerical errors, but very slightly decreased convergence rates.
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Figure 8. Propagation of a right-going solitary wave solution for the constant vorticity
model - ε = 0.3 and ω0 = 1 s−1. Initial profile (on the left) and snapshots at different
locations along the channel (on the right). The solitary wave solution of the classical
Green-Naghdi equations is plotted in black solid line at t = 0 s.
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Figure 9. Propagation of a right-going solitary wave solution for the constant vorticity
model - ε = 0.3 and ω0 = 1 s−1. Convergence curves in logarithmic scales on the left
and L2 error values at t = 3 s for ζ and hv on the right.

4.1.2. General vorticity model - Case E∞ > 0, v♯∞ > 0, F∞ = 0

In this second case, we consider the propagation of a solitary wave for non-constant vorticity in the
case F∞ = 0. The third order tensor F remains uniformly equal to 0 during the propagation, and
we can therefore consider the reduced model (1.17). The existence of solitary waves solutions is still
ruled by Proposition 2.2. There are 2 solitary waves of opposite velocities given by (2.10), but with

different profiles. We choose here E∞ = 0.2m3.s−2, v♯∞ = 1.6m.s−1 and again, we set successively
ε = 0.2 and ε = 0.3. Such choices ensure the existence of both left and right-going waves, leading to
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Figure 10. Case E∞ > 0, v∞ > 0, F∞ = 0 - Right-going wave with ε = 0.3. Initial
profile (on the left) and snapshots at different locations along the channel (on the right).

the profiles shown on the left of Fig.10 and Fig.11 respectively for the right-going and the left-going
waves in the case ε = 0.3. The right-going wave is initially centred at x = 20m and the left-going wave
at x = 170m. Again, we also plot the classical solitary wave profile of same amplitude for comparison
purpose. The time evolutions of both right and left going waves are shown on the right of Fig.10 and
Fig.11. For these computations, we have set δx = 0.07m. We observe the preservation of the initial
profiles, together with a very low numerical dissipation for the considered time interval.
Again, we perform a numerical convergence analysis on a sequence of refined meshes for both cases.
The L2 numerical errors obtained at t = 3 s for h, hv, Ẽ and v♯ in the cases ε = 0.2 and ε = 0.3 are
reported on Fig. 12-right and Fig. 13-right respectively. The corresponding convergence curves are
shown on Fig. 12-left and Fig. 13-left respectively. In the case ε = 0.2, we observe some convergence
rates of 2.9 for hv and 2.88 for ζ, Ẽ and v♯. Similar results are obtained in the case ε = 0.3, with
convergence rates of 2.88 for hv and 2.87 for ζ, Ẽ and v♯. Note that the obtained L2 errors for Ẽ and
v♯ are almost identical to the one on ζ and are therefore not plotted. Although not reported here, we
obtain a very similar behavior for the left going wave.

4.1.3. General vorticity model - Case E∞ > 0, v♯∞ > 0, F∞ > 0

Let us now focus on the case F∞ > 0 and consider the general vorticity model (1.12). The existence
of solitary wave solutions is now ruled by Proposition 2.6 and we have existence of 2 solitary waves,
provided that conditions (2.14) are fulfilled. We also recall that the waves speeds are now obtained as
the minimum and maximum roots of the 3rd order polynomial (2.11). We consider the following set of

parameters E∞ = 1/12m3.s−2, v♯∞ = 1m.s−1, F∞ = 1/12m4.s−3 and ε = 0.5, ensuring the existence
of both left and right going waves and leading to the following wave speeds:

c− ≈ −3.852m.s−1 and c+ ≈ 3.93m.s−1.

The corresponding profiles for ζ are shown on Fig.14 and Fig.15, together with some snapshots of
the corresponding time evolutions. For these computations, we set δx = 0.05m. The corresponding
convergence analysis is provided in Fig.16. The L2 errors for ζ, hv, Ẽ, v♯ and F̃ obtained at t = 3 s are
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Figure 11. Case E∞ > 0, v∞ > 0, F∞ = 0 - Left-going wave with ε = 0.3. Initial
profile (on the left) and snapshots at different locations along the channel (on the right).
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Nx ζ hv

12 800 8.00·10−7 3.27·10−5

6 400 4.99·10−6 2.02·10−4

3 200 3.99·10−5 1.63·10−3

1 600 3.13·10−4 1.33·10−2

800 1.41·10−3 6.27·10−2

Nx Ẽ v♯

12 800 8.03·10−7 8.07·10−7

6 400 4.94·10−6 5.03·10−6

3 200 3.88·10−5 4.03·10−5

1 600 3.06·10−4 3.14·10−4

800 1.40·10−3 1.41·10−3

Figure 12. Case E∞ > 0, v∞ > 0, F∞ = 0 - Right-going wave with ε = 0.2. Con-
vergence curves in logarithmic scales for ζ and hv on the left and L2 error values at
t = 3 s for ζ, hv, v♯ and Ẽ on the right.

reported on Table 1, and the corresponding convergence curves are plotted on Fig.16. Note that when
F∞ 6= 0, we observe a slight increase of the L2-errors for Ẽ when compared with those obtained for
v♯, F̃ and ζ. However the convergence rates obtained for both v♯, F̃ , Ẽ and ζ are almost identical.
Note also that as the L2-errors computed for both v♯ and F̃ are similar to those obtained for ζ, we
only show the convergence curves for ζ, hv and Ẽ. We obtain the same behavior for the left going wave.
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Figure 13. Case E∞ > 0, v∞ > 0, F∞ = 0 - Right-going wave with ε = 0.3. Con-
vergence curves in logarithmic scales for ζ and hv on the left and L2 error values at
t = 3 s for ζ, hv, v♯ and Ẽ on the right.
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Figure 14. Case E∞ > 0, v∞ > 0, F∞ > 0 - Right-going wave with ε = 0.5. Initial
profile (on the left) and snapshots at different locations along the channel (on the right).

Nx ζ hv Ẽ v♯ F̃

12 800 7.92·10−6 1.42·10−4 2.78·10−5 7.94·10−6 7.89·10−6

6 400 5.42·10−5 9.77·10−4 1.95·10−4 5.43·10−5 5.32·10−5

3 200 3.55·10−4 6.69·10−3 1.20·10−3 3.56·10−4 3.46·10−4

1 600 1.81·10−3 3.58·10−2 6.12·10−3 1.81·10−3 1.78·10−3

800 5.95·10−3 1.22·10−1 1.94·10−2 5.94·10−3 5.91·10−3

Table 1. Case E∞ > 0, v∞ > 0, F∞ > 0 - Right-going wave with ε = 0.5. L2

numerical errors obtained at t = 3 s for ζ, hv, Ẽ, v♯ and F̃ .

27



D.Lannes & F.Marche

150 155 160 165 170 175 180 185 190
0.9

1

1.1

1.2

1.3

1.4

1.5

ζ 
(m

)

x (m)

Wave profile

 

 
vorticity wave
irrotational wave

0 20 40 60 80 100 120 140 160 180 200

1

1.1

1.2

1.3

1.4

1.5

ζ 
(m

)

t=0s

Time evolution

0 20 40 60 80 100 120 140 160 180 200

1

1.1

1.2

1.3

1.4

1.5
t=18s

ζ 
(m

)

0 20 40 60 80 100 120 140 160 180 200

1

1.1

1.2

1.3

1.4

1.5
t=36s

ζ 
(m

)

x (m)

Figure 15. Case E∞ > 0, v∞ > 0, F∞ > 0 - Left-going wave with ε = 0.5. Initial
profile (on the left) and snapshots at different locations along the channel (on the right).
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Figure 16. Case E∞ > 0, v♯∞ > 0, F∞ > 0 - Right-going wave with ε = 0.5. Conver-
gence curves in logarithmic scales for ζ, hv and Ẽ.

4.2. Peaked solitary waves

Let us now briefly illustrate the propagation of peaked solitary waves, exhibited in Proposition 2.9.
The numerical simulation of such waves with singularities is a difficult problem as the solution is not
smooth. Indeed, the damping introduced by the numerical methods rapidly smooth out the peak and
thereby deform and delay the wave. These issues may be avoided by locally refining the mesh (h-
adaptivity) or increasing the scheme order (p-adaptivity) in the vicinity of the waves crest. However,
our goal here is not to extensively study the dynamic and interactions of peaked waves, but simply to
numerically confirm their existence and stability. The development of a more involved discrete formu-
lation allowing for h/p-adaptivity, based on the recently introduced discontinuous-Galerkin method
for the Green-Naghdi equations [16], is left for future work.
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Figure 17. Case E∞ > 0, v∞ > 0, F∞ = 0 - Right-going peaked wave with ε = 0.1044.
We also show in black solid line the shape of the solitary wave for the irrotational
Green-Naghdi equations.

To achieve this, we consider the simplified case F∞ = 0, neglecting the third order tensor F , and

still set H0 = 1m. Choosing the following values v♯∞ = 3m.s−1 and E∞ = 9/12m3.s−2, we set the
relative amplitude in order to be very close to the critical case. In this particular configuration, we have
existence of a right-propagating wave only for hmax < hcrit = 1.1045m. Consequently, we consider
here a wave of amplitude 0.1044m, initially centered at x = 11m. We show the corresponding initial
profile on the left side of Fig.17. The corresponding propagation is shown on the right side. For this
simulation, in order to minimize the numerical diffusion in the vicinity of the singularity we increase
the numerical resolution, setting δx = 2.5 10−3m and use WENO5 reconstructions with a SSP-RK4
time marching scheme.

4.3. Influence of vorticity on wave shoaling

In the following test case, we assess the topography terms discretization, and aim at giving a brief
insight into the important study of the impact of the vorticity on wave shoaling. We still consider a
200m channel with H0 = 1m but now, we the topography is varying and defined as follows:

b(x) =
H0

10
(1 + tanh

(x− x1
λ

)

),

with λ = 20m, and x1 = 100m. We follow successively the propagation of 3 solitary waves over this
uneven bottom. The first one is a classical solitary wave (E∞ = v♯∞ = F∞ = 0) associated with
the irrotational Green-Naghdi equations. In this case, the model (3.1) and the associated numerical
approach reduces to the extensively validated framework of [5, 10, 4]. This wave may therefore be used
as a reference solution to highlight the influence of the additional vorticity terms.

The second and third ones are solitary wave solutions of (3.1) defined with F∞ = 0 and (E∞, v
♯
∞)

respectively set to (8.33 10−2,−1) and (0.18,−1.5). The corresponding celerities are given by c0 ≈
3.43m.s−1 for the irrotational wave and respectively c0 ≈ 3.47m.s−1 and c0 ≈ 3.53m.s−1 for the
second and third vorticity waves. The corresponding initial profiles are shown on Fig. 18-left. We also
show on Fig. 19 some snapshots of the waves evolution along the channel, and particularly as the
waves propagates over the smooth step located in the vicinity of x1. The computation is performed
with δx = 0.1m. We can observe the increasing influence of the vorticity on the waves shoaling
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Figure 18. Influence of vorticity on wave shoaling: initial wave profiles (t = 0 s) on
the left and propagated profiles at t = 35 s on the right. In the legend, ’Wave 1’ refers
to the irrotational solitary wave, while ’Wave 2’ and ’Wave 3’ respectively refers to the
cases (E∞ = 8.33 10−2, v♯∞ = −1) and (E∞ = 0.18, v♯∞ = −1.5)

processes, as the waves amplitude increase with respect to the vorticity magnitude, as well as on the
stretching area at the rear of the waves and on the mean level at the front. A zoom on the profiles
at t = 35 s is shown on Fig. 19-right. Of course, extensive studies are still needed to systematically
analyze and accurately quantify this influence.

5. Evolution of the velocity field inside the fluid domain

In the previous numerical computations we computed the surface elevation ζ, the average velocity v
as well as v♯, E and F from their initial value through the resolution of the one-dimensional equations
(1.12). We show here how this system of equations can be used to describe the dynamics of the (1+1)-
dimensional velocity field U = (v,w) and of the surface elevation in terms of their initial value U0 and
ζ0.

5.1. The initial condition

Denoting by v0 the vertical average of the horizontal velocity at t = 0 and by v∗,0 its fluctuation, one
can write

{

v0 = v0 + v⋆,0,

w0 = −∂x
(

(H0 + z − b)v0
)

− ∂x
∫ z
−H0+b v

⋆,0;
(5.1)

the expression for w0 is deduced from the expression for v0 thanks to the incompressibility condition
and the non penetration condition at the bottom. We also recall that the initial vorticity ω0 is defined
as

ω0 = ∂zu
0 − ∂xw

0.

We shall consider here initial conditions that correspond to shallow water configurations (i.e. µ =

H2
0/L

2 ≪ 1). Denoting by v0sh the shear velocity induced by the vorticity field ω0 and by v⋆,0sh its
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Figure 19. Influence of vorticity on wave shoaling: evolution of the waves profiles
along the channel at times t = 20, 30 and 35 s.

fluctuation around its vertical mean value,

v⋆,0sh = −
∫ ζ0

z
ω0 +

1

h0

∫ ζ0

−H0+b

∫ ζ0

z
ω0 (h0 = H0 + ζ0 − b), (5.2)

it is shown in [9], Eq. (2.30), that up to O(µ3/2) terms, one has

v∗,0 = v⋆,0sh + T ∗v0 (5.3)

where T ∗v0 accounts for the fluctuations due to dispersion and is given by

T ⋆v0 = −1

2

(

(z +H0 − b)2 − 1

3
(h0)2

)

∂2xv +
(

z − ζ0 +
1

2
h0

)(

∂xb∂xv
0 + ∂x(v

0∂xb)
)

.

Since our main goal here is to comment on the effects of the vorticity on the propagation of waves, it
is convenient to consider an initial vorticity field ω0 and to construct the corresponding approximate
velocity field U0 given by (5.1), (5.2) and (5.3).
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5.2. Reconstruction methodology

Let us now briefly recall the procedure described in [9] to recover U at all times from ζ0 and U0. It is
of course sufficient to compute U on each level line θ ∈ [0, 1], that is,

vθ(t, x) = v
(

t, x,−H0 + b(x) + θh(t, x)
)

,

wθ(t, x) = w
(

t, x,−H0 + b(x) + θh(t, x)
)

.

Remark 5.1. One can also define the vorticity on the level lines by ωθ(t, x) = ω
(

t, x,−H0 + b(x) +

θh(t, x)
)

. It can be computed in terms of vθ and wθ by the formula

ωθ =
1

h
∂θvθ − ∂xwθ +

∂x(b+ θh)

h
∂θwθ.

It is shown in [9] that the velocity fields conserves its initial structure (5.1)-(5.3) and that one has

vθ = v + v⋆sh,θ + T ⋆
θ v (5.4)

wθ = −∂x
(

h(θv +Qθ +

∫ θ

0
T ⋆
θ′vdθ

′)
)

+ ∂x(−H0 + b+ θh)vθ. (5.5)

with

T ⋆
θ v = −1

2
(θ2 − 1

3
)h2∂2xv + (θ − 1

2
)h
(

∂xb∂xv + ∂x(∂xbv)
)

.

The computation of the different quantities involved in these expressions must be performed as
follows:

(1) From the initial datas ζ0, v0 and v⋆,0sh compute the initial values E0, F 0 and v♯,0 from their
definitions (1.13), (1.14) and (1.15).

(2) Compute ζ, v, v♯, E and F on the time interval [0, T ] by solving the Green-Naghdi equations
(1.12).

(3) Compute the quantities qθ and Qθ on the same time interval by solving

∂tqθ + ∂x(vqθ) = 0, ∂tQθ + ∂x(vQθ) = 0

with initial conditions q0θ = ∂θv
⋆,0
sh,θ and Q0

θ(x) =
∫ θ
0 v

⋆,0
sh,θ′dθ

′, where we use the notation

v⋆,0sh,θ(x) = v⋆,0sh

(

t, x,−H0 + b(x) + θh0(t, x)
)

.

(4) Compute v⋆sh,θ by solving on [0, T ] the equation

∂tv
⋆
sh,θ + ∂x

(

v⋆sh,θ(v +
1

2
v⋆sh,θ)

)

=
1

h
∂xE +

qθ
h
∂x(hQθ),

with initial data v⋆,0sh,θ.

(5) Use (5.4) and (5.5) to get vθ and wθ.

5.3. Implementation hints

From a practical point of view, we aim at computing the velocity field U on some given Nz level lines
along the vertical layer of fluid. We introduce the discrete increments

θj =
δz + (j − 1)δz

H0
, 1 ≤ j ≤ Nz, with δz =

H0

Nz
,
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Figure 20. An example of a curvilinear mesh generated from Nz = 12 level lines and
Nx = 100 horizontal cells.

such that, for some given time t and horizontal coordinate x, the jth level line is located at the vertical
coordinate z = −H0+ b(x)+θjh(t, x). An example of the resulting 2d meshes is plotted on Fig. 20. To
compute the velocity field on each of these level lines, we supplement the Green-Naghdi model with
general vorticity (3.1) with a set of equations describing the time evolution of the auxiliary quantities
qθj , Qθj and v⋆θj :































































∂th+ ∂x(hv̄) = 0,

(1 + T)[∂t(hv) + ∂x(hv
2)] + gh∂xζ + hQ1(v) + ∂x(h

2Ẽ) + hC(v, v♯) = 0,

∂tv
♯ + ∂x(vṽ

♯) = 0,

∂tẼ + (vẼ)x + 3F̃ ∂xh+ h∂xF̃ = 0,

∂tF̃ + ∂x(vF̃ ) = 0,

∂tqθj + ∂x(vqθj ) = 0, 1 ≤ j ≤ Nz,

∂tQθj + ∂x(vQθj) = 0, 1 ≤ j ≤ Nz,

∂tv
⋆
θj
+ ∂x

(

v⋆θj(v +
1
2v

⋆
θj
)
)

=
1

h
∂x(h

2Ẽ) +
qθj
h
∂x(hQθj ), 1 ≤ j ≤ Nz.

(5.6)

Considering the numerical method introduced in §3, the easiest way to account for these additional
equations, from a discrete point of view, is to incorporate the auxiliary quantities qθj , Qθj and v⋆θj
into our splitting approach, and into the approximate Riemann solver for the transport part of the
equations.

Remark 5.2. As these new equations are decoupled from the equations on mass and momentum,
we choose to keep the simple 3 waves structure of the approximate solver (3.10). Such a choice may
appear as surprising for the quantities v⋆θj , considering the particular form of the associated non-linear

evolution equations. However, our numerical investigations have shown that considering each scalar
equations separately, the corresponding wave speeds associated with the values of v+ 1

2v
⋆
θj

at interfaces

are very close to v (which is in accordance with the vorticity scaling studied here, see [9]), and always
lie between the external wave speed estimates (3.18).

To simplify the notations, let us consider the case of one level line, located at the vertical coordinate
z = −H0 + b(x) + θh(t, x), with θ ∈]0, 1], and denote by qθ, Qθ and v⋆θ the associated quantities. The
splitting scheme (3.3)-(3.4) is modified as follows:

• S1(t) is the solution operator associated to the conservative propagation step, which may be
written in the following conservative form

∂tWθ + ∂xF(Wθ) = S(Wθ, b), (5.7)
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with Wθ = (h, hv, v♯, Ẽ, F̃ , qθ, Qθ, v
⋆
θ ) and

F(Wθ) =

























hv

hv2 + p(h, Ẽ)
vv♯

vẼ

vF̃
vqθ
vQθ

v⋆θ(v +
1
2v

⋆
θ)

























, S(Wθ, b) =

























0
−ghbx

0
0
0
0
0
0

























. (5.8)

The associated semi-discrete conservative scheme now reads

d

dt
¯(Wθ)i(t) +

1

δx

(

F
(

(W̄θ)i, (W̄θ)i+1

)

−F
(

(W̄θ)i−1, (W̄θ)i
)

)

= 0, (5.9)

with

F((Wθ)L, (Wθ)R) =



















F((Wθ)L) if x
t ≤ λL,

F((Wθ)L) + λL((Wθ)
⋄
L − (Wθ)L) if λL ≤ x

t ≤ λ⋄,

F((Wθ)R) + λR((Wθ)
⋄
R − (Wθ)R) if λ⋄ ≤ x

t ≤ λR,

F((Wθ)R) if λR ≤ x
t ,

(5.10)

with λL, λR and λ⋄ defined with (3.22), (3.23) and (3.19) and the 2 intermediate states (Wθ)
⋄
L

and (Wθ)
⋄
R defined with formulae (3.11)-(3.16), supplemented with

(qθ)
⋄
L = (qθ)L, (qθ)

⋄
R = (qθ)R, (5.11)

(Qθ)
⋄
L = (Qθ)L, (Qθ)

⋄
R = (Qθ)R, (5.12)

(v⋆θ)
⋄
L = (v⋆θ)

⋄
R =

1

λR − λL

(

λR(v
⋆
θ)R − λL(v

⋆
θ )L (5.13)

− (v⋆θ)R(vR +
1

2
(v⋆θ)R) + (v⋆θ)L(vL +

1

2
(v⋆θ)L)

)

, (5.14)

traducing the facts that qθ and Qθ are essentially transported at speed v, and that we use a
HLL average to obtain the intermediate state for v⋆θ . Note that the high-order WENO recon-

structions of §3.2.4 are also used for the auxiliary variables qθ, Qθ and v⋆θ , providing 3rd-order
reconstructed values at each element face.

• S2(t) is the solution operator associated to the non-conservative and dispersive correction,


































































∂th = 0,

∂t(hv)− gh∂xζ − ∂x(h
2Ẽ) + (1 + T)−1

[

gh∂xζ + ∂x(h
2Ẽ) + hQ1(v) + hC(v, v♯)

]

= 0,

∂tv
♯ = 0,

∂tẼ + 3F̃ ∂xh+ h∂xF̃ = 0,

∂tF̃ = 0,

∂tqθ = 0,

∂tQθ = 0,

∂tv
⋆
θ −

1

h
∂x(h

2Ẽ)− qθ
h
∂x(hQθ) = 0.

(5.15)
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Note that when compared with (3.4), the second step is only modified with the introduction
of a source term in the equation on v⋆θ .

Remark 5.3. Embedding this splitting approach into a Runge-Kutta scheme and coming back to the
general case of Nz level lines, the quantities

(

(qθj )
n
i , (Qθj )

n
i , (v

⋆
θj
)ni
)

1≤i≤Nx
,

which stand for some averaged approximations of (qθj , Qθj , v
⋆
θj
) on cell Ci at the discrete time tn, are

used to post-process, at each time step, some approximations
(

(vθj )
n
i , (wθj )

n
i

)

1≤i≤Nx

of the velocity field vθj and wθj following the method given in the previous section. The resulting

discrete velocity Un
θj

=
(

(vθj )
n
i , (wθj )

n
i

)

is an approximated value of U(tn, xi,−H0 + b+ θjh).

5.4. A solitary wave propagating in a constant vorticity field

To illustrate the previous reconstructions, we show here the velocity fields associated with some of
the new solitary wave solutions exhibited in §2.1. We choose the simplest case of a constant vorticity
field, described by model (1.7) and we set

curl U = (0, ω, 0)T with ω(t, x, z) = ω0.

Using (5.2), we obtain the initial horizontal shear velocity field

v⋆,0sh (x, z) = −ω0(ζ
0 − z) +

ω0

2
h0,

and the initial velocity field v0θ et w0
θ are obtained with straightforward computations using (5.4) and

(5.5). This initial velocity field is shown on Fig. 21 for the values ω0 = 0.3 s−1 and ω0 = 1.5 s−1. For
comparison purpose, we also show the velocity field corresponding to the irrotational solitary wave
of similar amplitude. We can observe the vertical decreasing of the velocity’s horizontal component
magnitude for the rotational solitary wave, while this is left unchanged for the irrotational wave.

5.5. A solitary wave arriving in a vorticity region

We consider now an initial vorticity field with vertical and horizontal dependencies, defined as follows:

ω0(x, z) = −2πω cos
(

2π
ζ − z

H0

)

exp
(

− (x− x1)
2

λ2
)

(5.16)

with ω = ε
√
gH0

λ (this scaling of the vorticity corresponds to the regime studied in [8, 9] where the
Green-Naghdi models with vorticity have been derived and justified).
With this definition, we observe that the vorticity vanishes as x → ±∞. Additionally, its strongest
variations of amplitude along the horizontal dimension are located near some point of abscissa x1 (see
Fig. 22).
In the following, we aim at qualitatively observing the behavior of an irrotational solitary wave arriving
from afar (where the vorticity is therefore negligible). We consider a channel of 50m long, setH0 = 1m,
x1 = 25m and take as initial surface elevation the profile of an irrotational solitary wave centred at
x0 = 12.5m, namely

ζ0(x) = εH0

(

sech(
x− x0
λ

)
)2

with λ =
2√
3

√

1 + ε

ε
H0
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Figure 21. Velocity fields in solitary waves with constant vorticity: influence of the
vorticity magnitude.

with ε = 0.25, and we correspondingly take for the initial value of the mean velocity

v0(x) = c
ζ0

H0 + ζ0(x)
with c =

√

gH0(1 + ε).

We highlight that x0 is chosen far enough from x1 to ensure that the vorticity in initially negligible in
the vicinity of the solitary wave. The choice (5.16) for the initial vorticity field leads to the following
initial horizontal shear velocity

v⋆,0sh (x, z) = ωH0

[

sin
(

2π
ζ0 − z

H0

)

− H0

2π

1− cos(2π h0

H0
)

h0
]

exp
(

− (x− x1)
2

λ2
)

so that the full initial velocity field can again be constructed3 through (5.1) (see Figure 23). This
initial shear velocity field’s structure is also plotted on Fig. 22.

3The two integrals in the expression for w0 can be computed explicitly,

∫ z

−H0

v
∗,0
sh

=
ωH2

0

6π

[

cos
(

2π
ζ − z

H0

)

− cos
(

2π
h0

H0

)

−
z +H0

h0
(1− cos(2π

h0

H0

))
]

exp
(

−
(x− x1)

2

λ2

)

∫ z

−H0

T
⋆
v
0 = −

1

6
(z +H0)

(

(z +H0)
2
− (h0)2

)

∂
2
xv

0
.
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Figure 22. A solitary wave arriving on a vorticity region: snapshot of the free surface
profile at times t = 0, with the corresponding fluctuation velocity field v⋆,0sh plotted
with black arrows. The corresponding initial vorticity is shown according to the left
colorbar.

We now follow the procedure described in the previous sections. From simple computations, one gets

v♯,0 =
2H2

0ω

π3(h0)3
[

(h0)2π2(1 + 2c2)− 3H2
0s

2
]

exp(−(x− x1)
2

λ2
)

E0 =
3H2

0ω
2

2π2h0
[

H0h
0π(s2 − c2)sc− 2H2

0s
4 + π2(h0)2

]

exp(−2
(x− x1)

2

λ2
)

F 0 =
3H4

0ω
3

2π3(h0)2
s2
[

4π2(h0)2(1− 2c2)c2 − 9πH0h
0(1− 2c2)cs

+ 12H2
0 (1− c2)2 − 5π2(h0)2

]

exp(−3
(x− x1)

2

λ2
)

where we used the notations s = sin(π ζ0

H0
) and c = cos(π ζ0

H0
). These functions are shown on Figure

24. Note in particular that the function F almost identically vanishes (its sup norm does not exceed
2.10−9), and it is therefore possible to work with the reduced model (1.17).
For the computation, we set Nx = 500, leading to δx = 0.1m, and Nz = 30. The corresponding results
are shown on Fig. 23, where we plot the free surfaces at several times during the propagation, together
with the reconstructed velocity fields and the corresponding vorticity. We can observe the impact of
the current on the initial velocity field and the free surface profile, and that the initial vorticity area
is slightly dragged along and stretched as the wave propagates.

5.6. Influence of vorticity on shoaling

We consider here the same configuration as in §5.5 but with the vorticity region now located in an
area where the topography varies. More precisely, instead of a flat bottom (b = 0) we now consider a
bottom parametrized by z = −H0 + b(x), with

b(x) =
H0

6
(1 + tanh

(x− x1
λ

)

).

One could derive as in §5.5 explicit expressions for the initial values of E, F and v♯, but they can also
easily be numerically computed; they are represented in Figure 26. Note that in this configuration, F
is still small (of order 10−3) but not as much as in the previous configuration with a flat bottom. For
this kind of configurations, it is therefore suitable to work with the full system (1.12). We show the
corresponding results for the velocity fields on Fig. 25.
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Figure 23. A solitary wave arriving on a vorticity region: snapshot of the free surface
profile at times t = 0, 2, 3, 4, 4.5 and 5 s. The velocity fields structures are plotted with
black arrows and the corresponding vorticity is shown according to the left colorbar.
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