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Introduction

We consider the following functional linear regression model where the functional output Y (.) is related to a random function X(.) through

Y (t) = 1 0 S(t, s) X(s)ds + ε(t). (1) 
Here S(., .) is an unknown integrable kernel:

1 0 1 0 |S(t, s)|dtds < ∞, to be estimated. ε is a noise random variable, independent of X. The functional variables X, Y and ε are random functions taking values on the interval I = [0, 1] of R. Considering this particular interval is equivalent to considering any other interval [a, b] in what follows. For the sake of clarity, we assume moreover that the random functions X and ε are centered. The case of non centered X and Y functions can be equivalently studied by adding an additive non random intercept function in model [START_REF] Johnson | Applied multivariate statistical analysis[END_REF].

In all the sequel we consider a sample (X i , Y i ) i=1,...,n of independent and identically distributed observations, following [START_REF] Johnson | Applied multivariate statistical analysis[END_REF] same Hilbert space H = L 2 ([0, 1]), the space of all real valued square integrable functions defined on [0, 1]. The objective of this paper is to estimate the unknown noise covariance operator Γ ε of ε and its trace σ 2 ε := tr(Γ ε ) from these data sets. The estimation of the noise covariance operator Γ ε is well known in the context of multivariate multiple regression models, see for example Johnson and Wichern [1, section 7.7]. The question is a little more tricky in the context of functional data. Answering it will then make possible the construction of hypothesis testing in connection with model [START_REF] Johnson | Applied multivariate statistical analysis[END_REF].

Functional data analysis has given rise to many theoretical results applied in various domains (economics, biology, finance, etc...). The monograph by Ramsay & Silverman [START_REF] Ramsay | Functional data analysis[END_REF] is a major reference that gives an overview on the subject and highlights the drawbacks of considering a multivariate point of view. Novel asymptotic developments and illustrations on simulated and real data sets are also provided in Horváth & Kokoszka [START_REF] Horváth | Inference for functional data with applications[END_REF]. We follow here the approach of Crambes & Mas [START_REF] Crambes | Asymptotics of prediction in functional linear regression with functional outputs[END_REF] that studied the prediction in the model ( 1) revisited as:

Y = S X + ε, (2) 
where S : H → H is a general linear integral operator defined by S(f )(t) = 1 0 S(t, s)f (s)ds for any function f in H. The authors showed that the trace σ 2 ε is an important constant involved in the square prediction error bound that participate to determine the convergence rate. The estimation of σ 2 ε will thus provide details on the prediction quality in model [START_REF] Johnson | Applied multivariate statistical analysis[END_REF].

In this context of functional linear regression, it is well known that the covariance operator of X cannot be inverted directly (see Cardot et al. [START_REF] Cardot | Functional linear model[END_REF]), thus a regularization is needed. In [START_REF] Crambes | Asymptotics of prediction in functional linear regression with functional outputs[END_REF], it is based on the Karhunen-Loève expansion and the functional principal component analysis of the (X i ). This approach is also often used in functional linear models with scalar output, see for example [START_REF] Cardot | Functional linear model[END_REF].

The construction of the estimator Ŝ is introduced in Section 2. Section 3 is devoted to the estimation of Γ ε and its trace. Two types of estimators are given. Convergence properties are established and discussed. The proofs are postponed in Section 5. The results are illustrated on simulation trials in Section 4.

Estimation of S

Preliminaries

We denote respectively < ., . > H and . H the inner product and the corresponding norm in the Hilbert space H. We shall recall that < f, g > H = We assume that X and ε have a second moment, that is:

E[ X 2 H ] < ∞ and E[ ε 2 H ] < ∞.
The covariance operator of X is the linear operator defined on H as follows: Γ := E[X ⊗ X]. The cross covariance operator of X and Y is defined as ∆ := E[Y ⊗ X]. The empirical counterparts of these operators are:

Γn := 1 n n i=1 X i ⊗ X i and ∆n := 1 n n i=1 Y i ⊗ X i .
An objective of the paper is to study the trace σ 2 ε . We thus introduce the nuclear norm defined by A N = +∞ j=1 |µ j |, for any operator A such that +∞ j=1 |µ j | < +∞ where (µ j ) j≥1 is the sequence of the eigenvalues of A. We denote . ∞ the operator norm defined by A ∞ = sup u =1 Au .

Spectral decomposition of Γ

It is well known that Γ is a symmetric, positive trace-class operator, and thus diagonalizable in an orthonormal basis (see for instance [START_REF] Hsing | Theoretical foundations of functional data analysis with an introduction to linear operators[END_REF]). Let (λ j ) j≥1 be its non-increasing sequence of eigenvalues, and (v j ) j≥1 the corresponding eigenfunctions in H. Then Γ decomposes as follows:

Γ = ∞ j=1 λ j v j ⊗ v j ,
For any integer k, we define Π k := k j=1 v j ⊗ v j the projection operator on the sub-space v 1 , • • • , v k . By projecting Γ on this sub-space, we get :

Γ| v 1 ,••• ,v k := ΓΠ k = k j=1 λ j v j ⊗ v j .

Construction of the estimator of S

We start from the moment equation ∆ = S Γ.

(3)

On the sub-space v 1 , • • • , v k , the operator Γ is invertible, more precisely (ΓΠ k ) -1 = k j=1 λ -1 j v j ⊗ v j .
As a consequence, with equation (3) and the fact that Π k ΓΠ k = ΓΠ k we get, on the sub-space

v 1 , • • • , v k , ∆Π k = (S Π k ) (ΓΠ k ). We deduce that S Π k = ∆Π k (ΓΠ k ) -1 .
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Finally, the associated kernel of Ŝkn , estimating S, is

Ŝkn (t, s) = 1 n n i=1 kn j=1 1 λj 1 0 X i (r)v j (r)dr Y i (t)v j (s) . (5) 
3. Estimation of Γ ε and its trace

The plug-in estimator

The plug-in estimator of Γ ε is given by Γε,n := 1

n -k n n i=1 (Y i -Ŝkn X i ) ⊗ (Y i -Ŝkn X i ) = 1 n -k n n i=1 εi ⊗ εi . ( 6 
)
This estimator is biased, for a fixed n, as stated in the next theorem:

Theorem 3.1. Let (X i , Y i ) i=1,.
..,n be a sample of i.i.d. observations following model [START_REF] Johnson | Applied multivariate statistical analysis[END_REF]. Let k n < n be an integer. We have

E[ Γε,n ] = Γ ε + n n -k n S E   n i=kn+1 λi vi ⊗ vi   S . (7) 
The proof of Theorem 3.1 is postponed in Section 5.1. As Γkn = n i=1 λi vi ⊗ vi and Π(kn+1):n := n i=kn+1 vi ⊗ vi , we deduce the following result: Corollary 3.1. We have

E[ Γε,n ] = Γ ε + n n -k n S E Π(kn+1):n Γn S , (8) 
where Π(kn+1):n is the projection on the sub-space vkn+1 Under some additional assumptions, we prove that the plug-in estimator (6) of Γ ε is asymptotically unbiased. Let us consider the following assumptions:

(A.1) The operator S is a nuclear operator, in other words

S N < +∞. (A.2) The variable X satisfies E X 4 < +∞. (A.3) We have almost surely λ1 > λ2 > . . . > λkn > 0. (A.4) We have λ 1 > λ 2 > . . . > 0.
Our main result is then the following.

Theorem 3.2. Under assumptions (A.1)-(A.4), if (k n ) n≥1 is a sequence such that lim n→+∞ k n = +∞ and lim n→+∞ k n /n = 0, we have lim n→+∞ E Γε,n -Γ ε N = 0. ( 9 
)
The proof is postponed in Section 5.2. From the definition of the nuclear norm, we immediately get the following corollary:

Corollary 3.2.
Under the assumptions of Theorem 3.2, we have

lim n→+∞ E tr Γε,n = tr (Γ ε ) . (10) 

Other estimation of Γ ε

Without loss of generality, we assume in this section that n is a multiple of 3. In formula [START_REF] Ash | Topics in stochastic processes[END_REF], the bias of the plug-in estimator is related to S E Π(kn+1):n Γn S . Another way of estimating Γ ε is thus to subtract an estimator of the bias to the plug-in estimator Γε,n . To achieve this, we split the n-sample into three sub-samples with size m = n/3 to keep good theoretical properties thanks to the independence of the sub-samples. As a consequence, we define

Bn := Ŝ[2] 2km Π[1] (km+1):m Γ[1] m Ŝ[3] 2km , (11) 
where the quantities with superscripts [START_REF] Johnson | Applied multivariate statistical analysis[END_REF], [START_REF] Ramsay | Functional data analysis[END_REF] and [START_REF] Horváth | Inference for functional data with applications[END_REF] are respectively estimated with the first, second and third part of the sample. We use 2k m eigenvalues (where k m ≤ n/2) in the estimation of S with the second and third sub-sample in order to avoid orthogonality between

Ŝ[2] 2km , Ŝ[3] 2km and Π[1] (km+1):m Γ[1] m .
We are now in a position to define another estimator of Γ ε :

Γε,n := Γ[1] ε,m - m m -k m Bn . ( 12 
)
The following result is established. 

lim n→+∞ E Γε,n -Γ ε N = 0. ( 13 
)
The above result can also be written using the trace.

Corollary 3.3. Under the assumptions of Theorem 3.2, we have

lim n→+∞ E tr Γε,n = tr (Γ ε ) . (14) 

Comments on both estimators

Subtracting an estimator of the bias to the plug-in estimator Γε,n does not provide an unbiased estimator of Γ ε,n . The situation is completely different to that of multivariate multiple regression models, see [START_REF] Johnson | Applied multivariate statistical analysis[END_REF], where an unbiased estimator of the noise covariance is easily produced.

Both estimators Γε,n and Γε,n are consistent. We can see from the proofs of Theorems 3.2 and 3.

3 that E Γε,n -Γ ε N ≤ n n-kn S N S ∞ E λkn+1 , and E Γε,n -Γ ε N ≤ 2 n n-3km S N S ∞ E λkm+1 . Number 2 in
the estimation bound of Γε,n is due to the use of the triangle inequality. In this way, we cannot prove that subtracting the bias may improve the estimation of Γ ε , nor of its trace. We will study the behavior of both estimators by simulations in the next section.

Cross validation and Generalized cross validation

Whatever the estimator, we have to choose a dimension k n of principal components in order to compute the estimator. We chose to select it with cross validation and generalized cross validation. First, we define the usual cross validation criterion (in the framework of functional response)

CV (k n ) = 1 n n i=1 Y i - Ŷ [-i] i 2 H , where Ŷ [-i] i
is the predicted value of Y i using the whole sample except the

ith observation, namely Ŷ [-i] i = Ŝ[-i] kn X i , where Ŝ[-i]
kn is the estimator of the operator S using the whole sample except the ith observation. Note that the criterion is based on the residuals.

The following property allows to introduce the generalized cross validation criterion. Proposition 3.1. We denote X the matrix with size n × k n with general term X i , vj H for i = 1, . . . , n and j = 1, . . . , k n , and H = X (X X) -1 X . Then

Y i - Ŷ [-i] i = Y i -Ŷi 1 -H ii , ( 15 
)
where Ŷi is the predicted value of Y i using the whole sample and H ii is the ith diagonal term of the matrix H.

This proposition allows to write the expression

Y i - Ŷ [-i] i
without excluding the ith observation, and allows to get the generalized cross validation criterion, which is computationally faster than the cross validation criterion (see for example [START_REF] Wahba | Spline models for observational data[END_REF]). The term H ii can be replaced by the mean tr(H)/n. Then, after noticing that tr(H) = tr(I kn ) = k n , where I kn is the identity matrix with size k n , we get

GCV (k n ) = n (n -k n ) 2 n i=1 Y i -Ŷi 2 H .

Simulations

Setting

The variable X is simulated as a standard Brownian motion on [0, 1], with its Karhunen Loève expansion, given by Ash & Gardner [START_REF] Ash | Topics in stochastic processes[END_REF] 

X(t) = ∞ j=1 ξ j λ j v j (t), t ∈ [0, 1],
where the v j (t) := √ 2 sin((j -1/2)π t) and λ j = 1 (j-0.5) 2 π 2 are the the eigenfunctions and the eigenvalues of the covariance operator of X. In practice, X(t) has been simulated using a truncated version with 1 000 eigenfunctions. The considered observation times are [ 1 1000 , 2 1000 , • • • , 1000 1000 ]. We simulate a sample with sizes n = 300 and n = 1 500.

We simulate the noise ε as a Standard Brownian motion multiplied by 0.1 (ratio noise-signal = 10%). Thus the trace of the covariance operator of ε will be tr(Γ ε ) = 0.005. Simulation 1. The operator S is S = Π 20 := 20 j=1 v j ⊗ v j , where v j (t) := √ 2 sin((j -1/2)π t) are the the eigenfunctions of the covariance operator X. Simulation 2. The operator S is the integral operator defined by S X = 1 0 S(t, s)X(s)ds, where the kernel of S is S(t, s) = t 2 + s 2 .

Three estimators

We consider three different estimators of the trace of the covariance operator of ε: (i) the plug-in estimator given in ( 6), (ii) the corrected estimator given in ( 11) and (12), and (iii) the estimator Γε,n := Γε,nn n-kn Ŝn,2kn ( Π(kn+1):n Γn )( Ŝn,2kn ) . The third estimator uses the whole sample when trying to remove the bias term, so it is not possible to obtain an immediate consistency result for this estimator because we do not have anymore the independence between the terms Ŝn,2kn and Π(kn+1):n Γn , but we can see its practical behaviour.

Results

We present in table 1 (simulation 1) and table 2 (simulation 2) the mean values of the trace obtained for the three estimators on N = 100 simulations, as well as the CV and GCV criteria. The criteria have a convex form, that allows to choose a value for k. ). All values are given up to a factor of 10 -3 (the standard deviation is given in brackets up to a factor of 10 -4 ).

In simulation 1, the true value of k is known (k = 20) and the values chosen by CV and GCV are k = 22 or k = 24. For these values of k, the best estimator is tr( Γε,n ) for n = 300 and n = 1 500. The overestimation of tr( Γε,n ) seems to be well corrected by tr( Γε,n ), even if the usefulness of this bias removal cannot be theoretically proved. On this simulation, the estimator tr( Γε,n ) does not behave better than the others, especially for small sample sizes. 

n k CV (k) GCV (k) tr( Γε,n ) tr( Γε,n ) tr( Γε,n ) n=300 2 
Table 2: CV and GCV criteria for different values of k and mean values for the estimators of T r(Γε) (simulation 2 with n = 300 and n = 1500). All values are given up to a factor of 10 -3 (the standard deviation is given in brackets up to a factor of 10 -4 ).

In simulation 2, the true value of k is unknown and the value chosen by CV and GCV is k = 4 (for n = 300) or k = 6 (for n = 1 500). The estimator tr( Γε,n ) is slightly better than the two others for n = 300. For n = 1500, tr( Γε,n ) is slightly better.

On both simulations, tr( Γε,n ) and tr( Γε,n ) show a good estimation accuracy and are quite equivalent. From a practical point of view, tr( Γε,n ) may be preferred as it is easy to implement. The bias removal of tr( Γε,n ) will give a more precise estimation.

Proofs

Proof of Theorem 3.1

We begin with preliminary lemmas.

Lemma 5.1.

Ŝkn = S Πkn + 1 n n i=1 ε i ⊗ ( Γ+ kn X i ) .
Proof : From the definition of the estimator Ŝkn := ∆n Γ+ kn , we get

Ŝkn = 1 n n i=1 Y i ⊗ X i Γ+ kn = S 1 n n i=1 X i ⊗ X i + 1 n n i=1 ε i ⊗ X i Γ+ kn ,
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and the result comes from the fact that Γn Γ+ kn = Πkn . Lemma 5.2. We have

n i=1 n j=1 Γ+ kn X j , X i 2 H = n 2 k n and n i=1 Γ+ kn X i , X i H = n k n .
Proof : We denote A the n × n matrix defined, for r, s ∈ 1, • • • , n, by

A (r,s) := Γ+ kn X r , X s H = kn l=1 λ-1 l X r , vl H X s , vl H .
Let us remark that A = X Λ -1 X , where X is introduced in Proposition 3.1 and Λ is the diagonal matrix Λ := diag( λ1 , • • • , λkn ). We obtain

n i,j=1 Γ+ kn X j , X i 2 H = tr(A A) = tr XΛ -1 (nI n )X = n tr (X X)Λ -1 = n 2 k n .
The second part of the lemma can be obtained in a similar way. Now, coming back to the proof of Theorem 3.1, we can write Γε,n =

1 n-kn n i=1 [(S -Ŝkn )(X i ) + ε i ] ⊗ [(S -Ŝkn )(X i ) + ε i ],
hence we have E( Γε,n ) = E[P I + P II + P III + P IV ] with

P I := 1 n-kn n i=1 (S -Ŝkn )(X i ) ⊗ (S -Ŝkn )(X i ), P II := 1 n-kn n i=1 (S -Ŝkn )(X i ) ⊗ ε i , P III := 1 n-kn n i=1 ε i ⊗ (S -Ŝkn )(X i ), P IV := 1 n-kn n i=1 ε i ⊗ ε i .
We start with P I . Using Lemma 5.1, we have, for i = 1, . . . , n, (S -Ŝkn )

X i = S(I -Πkn )X i - 1 n n j=1 Γ+ kn X j , X i H ε j , (16) 
and we can decompose P I = P

(1)

I + P (2) 
I + P

(3)

I + P (4) 
I , where 

P (1) I = 1 n-kn n i=1 S(I -Πkn )X i ⊗ S(I -Πkn )X i , P (2) I = 1 n-kn n i=1 [-1 n n j=1 Γ+ kn X j , X i H ε j ] ⊗ S(I -Πkn )X i , P (3) I = 1 n-kn n i=1 S(I -Πkn )X i ⊗ [-1 n n j=1 Γ+ kn X j , X i H ε j ], P (4) I = 1 n-kn n i=1 [-1 n n j=1 Γ+ kn X j , X i H ε j ] ⊗ [-1 n n j=1 Γ+ kn X j , X i H ε j ].
I ] = E[P (3) 
I ] = 0. Finally, we get

P (4) I = 1 n-kn n i=1 1 n 2 n j,l=1 Γ+ kn X j , X i H Γ+ kn X l , X i H ε j ⊗ ε l , hence E[P (4) 
I ] = 1 n-kn n i=1 1 n 2 n j=1 E[ Γ+ kn X j , X i 2 
H ] E(ε j ⊗ ε j ) = 1 n 2 (n-kn) E n i=1 n j=1 Γ+ kn X j , X i 2 H Γ ε ,
and Lemma 5.2 gives E[P

I ] = kn n-kn Γ ε . So, we have shown that

E[P I ] = n n -k n S E   n i=kn+1 λi vi ⊗ vi   S + k n n -k n Γ ε . (17) 
Now, we decompose P II in the following way

P II = 1 n -k n n i=1 [S(I-Πk )(X i )]⊗ε i + 1 n -k n n i=1   - 1 n n j=1 Γ + kn X j , X i H ε j ⊗ ε i   .
By the independence between X and ε, the result of Lemma 5.2, and a similar computation for P III , we obtain

E[P II ] = E[P III ] = - k n n -k n Γ ε . (18) 
Finally, coming back to the computation of E( Γε,n ), Theorem 3.1 is a direct consequence of (17) and (18).

Proof of Theorem 3.2

The proof is based on the two following lemmas.

Lemma 5.3. Under the assumptions of Theorem 3.2, we have

lim n→+∞ E λkn = 0. ( 19 
) Proof : We have E λkn 2 ≤ 2λ 2 kn + 2E λkn -λ kn 2 
. From Lemma 2.2 and Theorem 2.5 in [START_REF] Horváth | Inference for functional data with applications[END_REF] with assumption (A.2), we obtain

E λkn 2 ≤ 2λ 2 kn + 2 Γn -Γ 2 ∞ ≤ 2λ 2 kn + 2 n E X 4 ,
which concludes the proof of the lemma. 

Proof of Theorem 3.3

We begin with the following lemmas.

Lemma 5.5. Under the assumptions of Theorem 3.2, we have

E Γε,n = Γ ε + m m -k m SE Π[1] (km+1):m Γ[1] m S - m m -k m SE Π[2] 2km E Π[1] (km+1):m Γ[1] m E Π[3] 2km S .
Proof : We first note that

Ŝ2km = ∆m Γ+ 2km = S 1 m m i=1 X i ⊗ X i + 1 m m i=1 ε i ⊗ X i Γ + 2km = S Π2km + 1 m m i=1 ε i ⊗ Γ + 2km X i .
As X and ε are independent, we get that E Ŝ2km = SE Π2km , which, combined with Corollary 3.1 and the fact that the three sub-samples are independent, ends the proof.

Lemma 5.6. Under the assumptions of Theorem 3.2, we have

SE Π[2] 2km E Π[1] (km+1):m Γ[1] m E Π[3] 2km S N ≤ S N S ∞ E λkm+1 .
Proof : The proof is based on the same ideas as that used for proving Lemma 5.4. We remind that the infinite norm of projection operators are equal to one.

The proof of Theorem 3.3 is now a simple combination of Lemmas 5.3, 5.4, 5.5 and 5.6 and using the triangle inequality. 

Y(t) = Xα(t) + η,
where Y and η are the vectors with size n and respective general terms Y i and η i and α is the vector with size k n and general term α j . We can easily see that the associated mean square estimator is α(t) = X X -1 X Y(t) = Ŝkn (t, .), v1 H , . . . , Ŝkn (t, .), vkn H , (21)

where Ŝkn (t, s) is the estimator of S. Now, denoting Y the vector with size

n such that Y r = Y r for r = i, Y i = Ŷ [-i] i
, X [-i] the matrix X without the i th row and α[-i] (t) the estimator of α(t) using the whole sample except the ith observation, we have, for any vector a = (a 1 , . . . , a kn ) of functions of H and for any t

Y (t) -Xa(t) n ≥ Y [-i] (t) -X [-i] α[-i] (t) n-1 ≥ Y (t) -X α[-i] (t) n .
The fact that (X X)

-1 X Y (t) minimizes Y (t) -Xa(t) n leads to α[-i] (t) = (X X)

-1 X Y (t), hence X α[-i] (t) = HY (t). The end of the proof comes from

Y i - Ŷ [-i] i = Y i -(HY ) i = Y i - n r=1 r =i H ir Y r -H ii Ŷ [-i] i = Y i -Ŷi +H ii Y i - Ŷ [-i] i .

First

  vi ⊗ vi S . From the independence between X and ε, we have E[P[START_REF] Ramsay | Functional data analysis[END_REF] 

  and taking values in the
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Table 1 :

 1 CV and GCV criteria for different values of k and mean values for the estimators of T r(Γε) (simulation 1 with n = 300 and n = 1500

	n	k	CV (k)	GCV (k)	tr( Γε,n )	tr( Γε,n )	tr( Γε,n )
	n=300	16 18 20 22 5.5698 (3.7) 6.67 (3.5) 6.04 (3.5) 5.66 (3.7) 24 5.57 (3.7) 26 5.59 (3.8)	6.67 (3.5) 6.04 (3.5) 5.66 (3.7) 5.57 (3.6) 5.568 (3.7) 5.12 (3.4) 5.02 (7.1) 4.63 (3.4) 6.32 (3.3) 5.29 (7.1) 4.79 (3.3) 5.67 (3.3) 5.13 (7.2) 4.74 (3.4) 5.28 (3.4) 5.06 (7.1) 4.7 (3.4) 5.16 (3.4) 5.04 (7.1) 4.67 (3.4) 5.59 (3.8) 5.11 (3.4) 5.02 (7.2) 4.58 (3.4)
	n=1500 18 20 22 24 26 28	5.67 (1.7) 5.15 (1.7) 5.12 (1.7) 5.11 (1.7) 5.12 (1.7) 5.13 (1.7)	5.67 (1.7) 5.15 (1.7) 5.12 (1.7) 5.11 (1.7) 5.12 (1.7) 5.13 (1.7)	5.6 (1.7) 5.03 (2.5) 4.97 (1.7) 5.08 (1.7) 5.01 (2.5) 4.96 (1.7) 5.04 (1.7) 5.01 (2.6) 4.95 (1.7) 5.04 (1.7) 5.01 (2.6) 4.95 (1.7) 5.03 (1.7) 5 (2.6) 4.94 (1.7) 5.03 (1.7) 5 (2.6) 4.93 (1.7)
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