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Abstract

This work deals with the estimation of the noise in functional linear regres-
sion when both the response and the covariate are functional. Namely, we
propose two estimators of the covariance operator of the noise. We give some
asymptotic properties of these estimators, and we study their behaviour on
simulations.
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1. Introduction

We consider the following functional linear regression model where the
functional output Y (.) is related to a random function X(.) through

Y (t) =
∫ 1

0
S(t, s)X(s)ds+ ε(t). (1)

Here S(., .) is an unknown integrable kernel:
∫ 1
0

∫ 1
0 |S(t, s)|dtds < ∞, to be

estimated. ε is a noise random variable, independent of X. The functional
variables X, Y and ε are random functions taking values on the interval I =
[0, 1] of R. Considering this particular interval is equivalent to considering
any other interval [a, b] in what follows. For the sake of clarity, we assume
moreover that the random functions X and ε are centered. The case of
non centered X and Y functions can be equivalently studied by adding an
additive non random intercept function in model (1).

In all the sequel we consider a sample (Xi, Yi)i=1,...,n of independent and
identically distributed observations, following (1) and taking values in the
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same Hilbert space H = L2([0, 1]), the space of all real valued square inte-
grable functions defined on [0, 1]. The objective of this paper is to estimate
the unknown noise covariance operator Γε of ε and its trace σ2

ε := tr(Γε)
from these data sets. The estimation of the noise covariance operator Γε
is well known in the context of multivariate multiple regression models, see
for example Johnson and Wichern [1, section 7.7]. The question is a little
more tricky in the context of functional data. Answering it will then make
possible the construction of hypothesis testing in connection with model (1).

Functional data analysis has given rise to many theoretical results ap-
plied in various domains (economics, biology, finance, etc...). The mono-
graph by Ramsay & Silverman [2] is a major reference that gives an overview
on the subject and highlights the drawbacks of considering a multivariate
point of view. Novel asymptotic developments and illustrations on simu-
lated and real data sets are also provided in Horváth & Kokoszka [3]. We
follow here the approach of Crambes & Mas [4] that studied the prediction
in the model (1) revisited as:

Y = S X + ε, (2)

where S : H → H is a general linear integral operator defined by S(f)(t) =∫ 1
0 S(t, s)f(s)ds for any function f in H. The authors showed that the trace
σ2
ε is an important constant involved in the square prediction error bound

that participate to determine the convergence rate. The estimation of σ2
ε

will thus provide details on the prediction quality in model (1).
In this context of functional linear regression, it is well known that the

covariance operator of X cannot be inverted directly (see Cardot et al. [5]),
thus a regularization is needed. In [4], it is based on the Karhunen-Loève
expansion and the functional principal component analysis of the (Xi). This
approach is also often used in functional linear models with scalar output,
see for example [5].

The construction of the estimator Ŝ is introduced in Section 2. Section
3 is devoted to the estimation of Γε and its trace. Two types of estimators
are given. Convergence properties are established and discussed. The proofs
are postponed in Section 5. The results are illustrated on simulation trials
in Section 4.

2. Estimation of S

2.1. Preliminaries
We denote respectively < ., . >H and ‖.‖H the inner product and the

corresponding norm in the Hilbert space H. We shall recall that < f, g >H=

2
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∫ 1
0 f(t)g(t)dt, for all functions f and g in L2([0, 1]). In contrast, < ., . >n

and ‖.‖n stand for the inner product and the Euclidean norm in Rn. The
tensor product is denoted ⊗ and defined by f ⊗ g =< g, . >H f for any
functions f, g ∈ H.

We assume that X and ε have a second moment, that is: E[‖X‖2H ] <∞
and E[‖ε‖2H ] < ∞. The covariance operator of X is the linear operator
defined on H as follows: Γ := E[X ⊗X]. The cross covariance operator of
X and Y is defined as ∆ := E[Y ⊗X]. The empirical counterparts of these
operators are: Γ̂n := 1

n

∑n
i=1Xi ⊗Xi and ∆̂n := 1

n

∑n
i=1 Yi ⊗Xi.

An objective of the paper is to study the trace σ2
ε . We thus introduce

the nuclear norm defined by ‖A‖N =
∑+∞

j=1 |µj |, for any operator A such
that

∑+∞
j=1 |µj | < +∞ where (µj)j≥1 is the sequence of the eigenvalues of A.

We denote ‖.‖∞ the operator norm defined by ‖A‖∞ = sup‖u‖=1 ‖Au‖.

2.2. Spectral decomposition of Γ
It is well known that Γ is a symmetric, positive trace-class operator, and

thus diagonalizable in an orthonormal basis (see for instance [6]). Let (λj)j≥1

be its non-increasing sequence of eigenvalues, and (vj)j≥1 the corresponding
eigenfunctions in H. Then Γ decomposes as follows:

Γ =
∞∑

j=1

λjvj ⊗ vj ,

For any integer k, we define Πk :=
∑k

j=1 vj ⊗ vj the projection operator
on the sub-space 〈v1, · · · , vk〉. By projecting Γ on this sub-space, we get :

Γ|〈v1,··· ,vk〉 := ΓΠk =
k∑

j=1

λjvj ⊗ vj .

2.3. Construction of the estimator of S
We start from the moment equation

∆ = S Γ. (3)

On the sub-space 〈v1, · · · , vk〉, the operator Γ is invertible, more precisely
(ΓΠk)−1 =

∑k
j=1 λ

−1
j vj ⊗ vj . As a consequence, with equation (3) and

the fact that ΠkΓΠk = ΓΠk we get, on the sub-space 〈v1, · · · , vk〉, ∆Πk =
(SΠk) (ΓΠk). We deduce that SΠk = ∆Πk (ΓΠk)−1.

3
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Now, taking k = kn, denoting Π̂kn :=
∑kn

j=1 v̂j ⊗ v̂j and the generalized
inverse Γ̂+

kn
:= (Γ̂nΠ̂kn)−1, we are able to define the estimator of S. We have

Γ̂n =
∞∑

j=1

λ̂j v̂j ⊗ v̂j =
n∑

j=1

λ̂j v̂j ⊗ v̂j ,

with eigenvalues λ̂1 ≥ · · · ≥ λ̂n ≥ 0 = λ̂n+1 = λ̂n+2 = · · · ∈ R1 and or-
thonormal eigenfunctions v̂1, v̂2, · · · ∈ H. By taking λ̂kn > 0, with kn < n,
we define the operator Γ̂kn =

∑kn
j=1 λ̂j v̂j⊗v̂j and we get Γ̂+

kn
=
∑kn

j=1(λ̂j)−1v̂j⊗
v̂j . Hence we define the estimator of S as follows

Ŝkn = ∆̂n Γ̂+
kn
. (4)

Finally, the associated kernel of Ŝkn , estimating S, is

Ŝkn(t, s) =
1
n

n∑

i=1

kn∑

j=1

[(
1

λ̂j

∫ 1

0
Xi(r)v̂j(r)dr

)
Yi(t)v̂j(s)

]
. (5)

3. Estimation of Γε and its trace

3.1. The plug-in estimator
The plug-in estimator of Γε is given by

Γ̂ε,n :=
1

n− kn

n∑

i=1

(Yi − ŜknXi)⊗ (Yi − ŜknXi) =
1

n− kn

n∑

i=1

ε̂i ⊗ ε̂i. (6)

This estimator is biased, for a fixed n, as stated in the next theorem:

Theorem 3.1. Let (Xi, Yi)i=1,...,n be a sample of i.i.d. observations follow-
ing model (1). Let kn < n be an integer. We have

E[Γ̂ε,n] = Γε +
(

n

n− kn

)
S E




n∑

i=kn+1

λ̂iv̂i ⊗ v̂i


S′. (7)

The proof of Theorem 3.1 is postponed in Section 5.1. As Γ̂kn =
∑n

i=1 λ̂iv̂i⊗
v̂i and Π̂(kn+1):n :=

∑n
i=kn+1 v̂i ⊗ v̂i, we deduce the following result:

Corollary 3.1. We have

E[Γ̂ε,n] = Γε +
(

n

n− kn

)
S E

(
Π̂(kn+1):nΓ̂n

)
S′, (8)

where Π̂(kn+1):n is the projection on the sub-space 〈v̂kn+1, · · · , v̂n〉.

4
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Under some additional assumptions, we prove that the plug-in estimator
(6) of Γε is asymptotically unbiased. Let us consider the following assump-
tions:

(A.1) The operator S is a nuclear operator, in other words ‖S‖N < +∞.
(A.2) The variable X satisfies E ‖X‖4 < +∞.
(A.3) We have almost surely λ̂1 > λ̂2 > . . . > λ̂kn > 0.
(A.4) We have λ1 > λ2 > . . . > 0.

Our main result is then the following.

Theorem 3.2. Under assumptions (A.1)-(A.4), if (kn)n≥1 is a sequence
such that limn→+∞ kn = +∞ and limn→+∞ kn/n = 0, we have

lim
n→+∞

∥∥∥E
(

Γ̂ε,n
)
− Γε

∥∥∥
N

= 0. (9)

The proof is postponed in Section 5.2. From the definition of the nuclear
norm, we immediately get the following corollary:

Corollary 3.2. Under the assumptions of Theorem 3.2, we have

lim
n→+∞

E
[
tr
(

Γ̂ε,n
)]

= tr (Γε) . (10)

3.2. Other estimation of Γε
Without loss of generality, we assume in this section that n is a mul-

tiple of 3. In formula (8), the bias of the plug-in estimator is related to
S E

(
Π̂(kn+1):nΓ̂n

)
S′. Another way of estimating Γε is thus to subtract

an estimator of the bias to the plug-in estimator Γ̂ε,n. To achieve this, we
split the n-sample into three sub-samples with size m = n/3 to keep good
theoretical properties thanks to the independence of the sub-samples. As a
consequence, we define

B̌n := Ŝ
[2]
2km

(
Π̂[1]

(km+1):mΓ̂[1]
m

)(
Ŝ

[3]
2km

)′
, (11)

where the quantities with superscripts [1], [2] and [3] are respectively es-
timated with the first, second and third part of the sample. We use 2km
eigenvalues (where km ≤ n/2) in the estimation of S with the second and
third sub-sample in order to avoid orthogonality between Ŝ

[2]
2km

, Ŝ[3]
2km

and

Π̂[1]
(km+1):mΓ̂[1]

m .
We are now in a position to define another estimator of Γε:

Γ̌ε,n := Γ̂[1]
ε,m −

m

m− km
B̌n. (12)

The following result is established.

5
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Theorem 3.3. Under the assumptions of Theorem 3.2, we have

lim
n→+∞

∥∥E
(
Γ̌ε,n

)
− Γε

∥∥
N = 0. (13)

The above result can also be written using the trace.

Corollary 3.3. Under the assumptions of Theorem 3.2, we have

lim
n→+∞

E
[
tr
(
Γ̌ε,n

)]
= tr (Γε) . (14)

3.3. Comments on both estimators
Subtracting an estimator of the bias to the plug-in estimator Γ̂ε,n does

not provide an unbiased estimator of Γε,n. The situation is completely dif-
ferent to that of multivariate multiple regression models, see [1], where an
unbiased estimator of the noise covariance is easily produced.

Both estimators Γ̂ε,n and Γ̌ε,n are consistent. We can see from the proofs

of Theorems 3.2 and 3.3 that
∥∥∥E
(

Γ̂ε,n
)
− Γε

∥∥∥
N
≤ n

n−kn
‖S‖N ‖S′‖∞ E

∣∣∣λ̂kn+1

∣∣∣ ,

and
∥∥E
(
Γ̌ε,n

)
− Γε

∥∥
N ≤ 2 n

n−3km
‖S‖N ‖S′‖∞ E

∣∣∣λ̂km+1

∣∣∣ .
Number 2 in the estimation bound of Γ̌ε,n is due to the use of the triangle

inequality. In this way, we cannot prove that subtracting the bias may
improve the estimation of Γε, nor of its trace. We will study the behavior
of both estimators by simulations in the next section.

3.4. Cross validation and Generalized cross validation
Whatever the estimator, we have to choose a dimension kn of principal

components in order to compute the estimator. We chose to select it with
cross validation and generalized cross validation. First, we define the usual
cross validation criterion (in the framework of functional response)

CV (kn) =
1
n

n∑

i=1

∥∥∥Yi − Ŷ [−i]
i

∥∥∥
2

H
,

where Ŷ [−i]
i is the predicted value of Yi using the whole sample except the

ith observation, namely Ŷ [−i]
i = Ŝ

[−i]
kn

Xi, where Ŝ[−i]
kn

is the estimator of the
operator S using the whole sample except the ith observation. Note that
the criterion is based on the residuals.

The following property allows to introduce the generalized cross valida-
tion criterion.

6
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Proposition 3.1. We denote X the matrix with size n × kn with general
term 〈Xi, v̂j〉H for i = 1, . . . , n and j = 1, . . . , kn, and H = X (X′X)−1

X′.
Then

Yi − Ŷ [−i]
i =

Yi − Ŷi
1−Hii

, (15)

where Ŷi is the predicted value of Yi using the whole sample and Hii is the
ith diagonal term of the matrix H.

This proposition allows to write the expression Yi−Ŷ [−i]
i without exclud-

ing the ith observation, and allows to get the generalized cross validation
criterion, which is computationally faster than the cross validation criterion
(see for example [7]). The term Hii can be replaced by the mean tr(H)/n.
Then, after noticing that tr(H) = tr(Ikn) = kn, where Ikn is the identity
matrix with size kn, we get

GCV (kn) =
n

(n− kn)2

n∑

i=1

∥∥∥Yi − Ŷi
∥∥∥

2

H
.

4. Simulations

4.1. Setting
The variable X is simulated as a standard Brownian motion on [0, 1],

with its Karhunen Loève expansion, given by Ash & Gardner [8]

X(t) =
∞∑

j=1

ξj
√
λj vj(t), t ∈ [0, 1],

where the vj(t) :=
√

2 sin((j−1/2)π t) and λj = 1
(j−0.5)2π2 are the the eigen-

functions and the eigenvalues of the covariance operator of X. In practice,
X(t) has been simulated using a truncated version with 1 000 eigenfunctions.
The considered observation times are [ 1

1000 ,
2

1000 , · · · , 1000
1000 ]. We simulate a

sample with sizes n = 300 and n = 1 500.
We simulate the noise ε as a Standard Brownian motion multiplied by

0.1 (ratio noise-signal = 10%). Thus the trace of the covariance operator of
ε will be tr(Γε) = 0.005.

Simulation 1. The operator S is S = Π20 :=
∑20

j=1 vj ⊗ vj , where vj(t) :=√
2 sin((j−1/2)π t) are the the eigenfunctions of the covariance operator X.

7
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Simulation 2. The operator S is the integral operator defined by S X =∫ 1
0 S(t, s)X(s)ds, where the kernel of S is S(t, s) = t2 + s2.

4.2. Three estimators
We consider three different estimators of the trace of the covariance

operator of ε: (i) the plug-in estimator given in (6), (ii) the corrected
estimator given in (11) and (12), and (iii) the estimator ˆ̌Γε,n := Γ̂ε,n −(

n
n−kn

) [
Ŝn,2kn(Π̂(kn+1):nΓ̂n)(Ŝn,2kn)′

]
. The third estimator uses the whole

sample when trying to remove the bias term, so it is not possible to obtain
an immediate consistency result for this estimator because we do not have
anymore the independence between the terms Ŝn,2kn and Π̂(kn+1):nΓ̂n, but
we can see its practical behaviour.

4.3. Results
We present in table 1 (simulation 1) and table 2 (simulation 2) the mean

values of the trace obtained for the three estimators on N = 100 simulations,
as well as the CV and GCV criteria. The criteria have a convex form, that
allows to choose a value for k.

n k CV (k) GCV (k) tr(Γ̂ε,n) tr(Γ̌ε,n) tr(ˆ̌Γε,n)
n=300 16 6.67 (3.5) 6.67 (3.5) 6.32 (3.3) 5.29 (7.1) 4.79 (3.3)

18 6.04 (3.5) 6.04 (3.5) 5.67 (3.3) 5.13 (7.2) 4.74 (3.4)
20 5.66 (3.7) 5.66 (3.7) 5.28 (3.4) 5.06 (7.1) 4.7 (3.4)
22 5.5698 (3.7) 5.57 (3.6) 5.16 (3.4) 5.04 (7.1) 4.67 (3.4)
24 5.57 (3.7) 5.568 (3.7) 5.12 (3.4) 5.02 (7.1) 4.63 (3.4)
26 5.59 (3.8) 5.59 (3.8) 5.11 (3.4) 5.02 (7.2) 4.58 (3.4)

n=1500 18 5.67 (1.7) 5.67 (1.7) 5.6 (1.7) 5.03 (2.5) 4.97 (1.7)
20 5.15 (1.7) 5.15 (1.7) 5.08 (1.7) 5.01 (2.5) 4.96 (1.7)
22 5.12 (1.7) 5.12 (1.7) 5.04 (1.7) 5.01 (2.6) 4.95 (1.7)
24 5.11 (1.7) 5.11 (1.7) 5.04 (1.7) 5.01 (2.6) 4.95 (1.7)
26 5.12 (1.7) 5.12 (1.7) 5.03 (1.7) 5 (2.6) 4.94 (1.7)
28 5.13 (1.7) 5.13 (1.7) 5.03 (1.7) 5 (2.6) 4.93 (1.7)

Table 1: CV and GCV criteria for different values of k and mean values for the estimators
of Tr(Γε) (simulation 1 with n = 300 and n = 1500). All values are given up to a factor
of 10−3 (the standard deviation is given in brackets up to a factor of 10−4).

In simulation 1, the true value of k is known (k = 20) and the values
chosen by CV and GCV are k = 22 or k = 24. For these values of k, the
best estimator is tr(Γ̌ε,n) for n = 300 and n = 1 500. The overestimation

8
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of tr(Γ̂ε,n) seems to be well corrected by tr(Γ̌ε,n), even if the usefulness of
this bias removal cannot be theoretically proved. On this simulation, the
estimator tr(ˆ̌Γε,n) does not behave better than the others, especially for
small sample sizes.

n k CV (k) GCV (k) tr(Γ̂ε,n) tr(Γ̌ε,n) tr(ˆ̌Γε,n)
n=300 2 5.37 (3.6) 5.37 (3.6) 5.34 (3.6) 5.03 (6.4) 5.07 (3.2)

4 5.17 (3.3) 5.17 (3.3) 5.11 (3.2) 5.02 (6.4) 5 (3.1)
6 5.18 (3.2) 5.18 (3.2) 5.08 (3.2) 5 (6.5) 4.96 (3.2)
8 5.21 (3.2) 5.21 (3.2) 5.07 (3.2) 5 (6.4) 4.93 (3.2)
10 5.25 (3.3) 5.25 (3.3) 5.07 (3.2) 5 (6.6) 4.89 (3.2)

n=1500 2 5.28 (1.7) 5.28 (1.7) 5.28 (1.7) 5.04 (2.8) 5.05 (1.7)
4 5.07 (1.7) 5.07 (1.7) 5.05 (1.7) 5.01 (2.6) 5.02 (1.7)
6 5.05 (1.7) 5.05 (1.7) 5.03 (1.7) 5 (2.6) 5.01 (1.7)
8 5.06 (1.7) 5.06 (1.7) 5.03 (1.7) 5 (2.5) 5 (1.7)
10 5.06 (1.7) 5.06 (1.7) 5.03 (1.7) 5 (2.5) 4.99 (1.7)

Table 2: CV and GCV criteria for different values of k and mean values for the estimators
of Tr(Γε) (simulation 2 with n = 300 and n = 1500). All values are given up to a factor
of 10−3 (the standard deviation is given in brackets up to a factor of 10−4).

In simulation 2, the true value of k is unknown and the value chosen by
CV and GCV is k = 4 (for n = 300) or k = 6 (for n = 1 500). The estimator
tr(ˆ̌Γε,n) is slightly better than the two others for n = 300. For n = 1500,
tr(Γ̌ε,n) is slightly better.

On both simulations, tr(Γ̂ε,n) and tr(Γ̌ε,n) show a good estimation accu-
racy and are quite equivalent. From a practical point of view, tr(Γ̂ε,n) may
be preferred as it is easy to implement. The bias removal of tr(Γ̌ε,n) will
give a more precise estimation.

5. Proofs

5.1. Proof of Theorem 3.1
We begin with preliminary lemmas.

Lemma 5.1. Ŝkn = S Π̂kn + 1
n

[∑n
i=1 εi ⊗ (Γ̂+

kn
Xi)
]
.

Proof : From the definition of the estimator Ŝkn := ∆̂n Γ̂+
kn

, we get

Ŝkn =

[
1
n

n∑

i=1

Yi ⊗Xi

]
Γ̂+
kn

=

{
S

[
1
n

n∑

i=1

Xi ⊗Xi

]
+

1
n

n∑

i=1

εi ⊗Xi

}
Γ̂+
kn
,
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and the result comes from the fact that Γ̂nΓ̂+
kn

= Π̂kn . �

Lemma 5.2. We have
n∑

i=1

n∑

j=1

〈Γ̂+
kn
Xj , Xi〉2H = n2 kn and

n∑

i=1

〈Γ̂+
kn
Xi, Xi〉H = nkn.

Proof : We denote A the n× n matrix defined, for r, s ∈ 1, · · · , n, by

A(r,s) := 〈Γ̂+
kn
Xr, Xs〉H =

kn∑

l=1

λ̂−1
l 〈Xr, v̂l〉H 〈Xs, v̂l〉H .

Let us remark that A = X Λ−1 X′, where X is introduced in Proposition 3.1
and Λ is the diagonal matrix Λ := diag(λ̂1, · · · , λ̂kn). We obtain

n∑

i,j=1

〈Γ̂+
kn
Xj , Xi〉2H = tr(A′A) = tr

[
XΛ−1(nIn)X′

]
= n tr

[
(X′X)Λ−1

]
= n2 kn.

The second part of the lemma can be obtained in a similar way. �

Now, coming back to the proof of Theorem 3.1, we can write

Γ̂ε,n = 1
n−kn

∑n
i=1[(S − Ŝkn)(Xi) + εi]⊗ [(S − Ŝkn)(Xi) + εi],

hence we have E(Γ̂ε,n) = E[PI + PII + PIII + PIV ] with

PI := 1
n−kn

∑n
i=1(S − Ŝkn)(Xi)⊗ (S − Ŝkn)(Xi),

PII := 1
n−kn

∑n
i=1(S − Ŝkn)(Xi)⊗ εi,

PIII := 1
n−kn

∑n
i=1 εi ⊗ (S − Ŝkn)(Xi),

PIV := 1
n−kn

∑n
i=1 εi ⊗ εi.

We start with PI . Using Lemma 5.1, we have, for i = 1, . . . , n,

(S − Ŝkn)Xi = S(I − Π̂kn)Xi −
1
n

n∑

j=1

〈Γ̂+
kn
Xj , Xi〉H εj , (16)

and we can decompose PI = P
(1)
I + P

(2)
I + P

(3)
I + P

(4)
I , where

P
(1)
I = 1

n−kn

∑n
i=1 S(I − Π̂kn)Xi ⊗ S(I − Π̂kn)Xi,

P
(2)
I = 1

n−kn

∑n
i=1[− 1

n

∑n
j=1〈Γ̂+

kn
Xj , Xi〉Hεj ]⊗ S(I − Π̂kn)Xi,

P
(3)
I = 1

n−kn

∑n
i=1 S(I − Π̂kn)Xi ⊗ [− 1

n

∑n
j=1〈Γ̂+

kn
Xj , Xi〉Hεj ],

P
(4)
I = 1

n−kn

∑n
i=1[− 1

n

∑n
j=1〈Γ̂+

kn
Xj , Xi〉Hεj ]⊗ [− 1

n

∑n
j=1〈Γ̂+

kn
Xj , Xi〉Hεj ].

10
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First we have P (1)
I = n

n−kn
S
[∑n

i=kn+1 λ̂iv̂i ⊗ v̂i
]
S′. From the independence

between X and ε, we have E[P (2)
I ] = E[P (3)

I ] = 0. Finally, we get

P
(4)
I = 1

n−kn

∑n
i=1

[
1
n2

∑n
j,l=1〈Γ̂+

kn
Xj , Xi〉H〈Γ̂+

kn
Xl, Xi〉H εj ⊗ εl

]
,

hence E[P (4)
I ] = 1

n−kn

∑n
i=1

[
1
n2

∑n
j=1 E[〈Γ̂+

kn
Xj , Xi〉2H ] E(εj ⊗ εj)

]

= 1
n2(n−kn)

E
[∑n

i=1

∑n
j=1〈Γ̂+

kn
Xj , Xi〉2H

]
Γε,

and Lemma 5.2 gives E[P (4)
I ] = kn

n−kn
Γε. So, we have shown that

E[PI ] =
n

n− kn
S E




n∑

i=kn+1

λ̂iv̂i ⊗ v̂i


S′ + kn

n− kn
Γε. (17)

Now, we decompose PII in the following way

PII =
1

n− kn

n∑

i=1

[S(I−Π̂k)(Xi)]⊗εi+
1

n− kn

n∑

i=1


− 1

n

n∑

j=1

〈Γ+
kn
Xj , Xi〉Hεj ⊗ εi


 .

By the independence between X and ε, the result of Lemma 5.2, and a
similar computation for PIII , we obtain

E[PII ] = E[PIII ] = − kn
n− kn

Γε. (18)

Finally, coming back to the computation of E(Γ̂ε,n), Theorem 3.1 is a direct
consequence of (17) and (18). �

5.2. Proof of Theorem 3.2
The proof is based on the two following lemmas.

Lemma 5.3. Under the assumptions of Theorem 3.2, we have

lim
n→+∞

E
∣∣∣λ̂kn

∣∣∣ = 0. (19)

Proof : We have
(
E
∣∣∣λ̂kn

∣∣∣
)2
≤ 2λ2

kn
+ 2E

∣∣∣λ̂kn − λkn

∣∣∣
2
.

From Lemma 2.2 and Theorem 2.5 in [3] with assumption (A.2), we obtain

(
E
∣∣∣λ̂kn

∣∣∣
)2
≤ 2λ2

kn
+ 2

∥∥∥Γ̂n − Γ
∥∥∥

2

∞
≤ 2λ2

kn
+

2
n

E ‖X‖4 ,
which concludes the proof of the lemma. �
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Lemma 5.4. Under the assumptions of Theorem 3.2, we have∥∥∥SE
(

Π̂(kn+1):nΓ̂n
)
S′
∥∥∥
N
≤ ‖S‖N

∥∥S′
∥∥
∞ E

∣∣∣λ̂kn+1

∣∣∣ . (20)

Proof : Immediate properties of norms ‖.‖∞ and ‖.‖N give
∥∥∥SE

(
Π̂(kn+1):nΓ̂n

)
S′
∥∥∥
N
≤ ‖S‖N

∥∥S′
∥∥
∞

∥∥∥E
(

Π̂(kn+1):nΓ̂n
)∥∥∥
∞
,

which yields (20) as the norm ‖.‖∞ corresponds to the largest eigenvalue of
the operator. �

Theorem 3.2 is proved by combining Corollary 3.1 with Lemmas 5.3 and
5.4, and taking assumption (A.1) into account.

5.3. Proof of Theorem 3.3
We begin with the following lemmas.

Lemma 5.5. Under the assumptions of Theorem 3.2, we have

E
(
Γ̌ε,n

)
= Γε +

(
m

m− km

)[
SE
(

Π̂[1]
(km+1):mΓ̂[1]

m

)
S′
]

−
(

m

m− km

)[
SE
(

Π̂[2]
2km

)
E
(

Π̂[1]
(km+1):mΓ̂[1]

m

)
E
(

Π̂[3]
2km

)′
S′
]
.

Proof : We first note that

Ŝ2km = ∆̂mΓ̂+
2km

=

[
S

(
1
m

m∑

i=1

Xi ⊗Xi

)
+

1
m

m∑

i=1

εi ⊗Xi

]
Γ+

2km

= SΠ̂2km +
1
m

m∑

i=1

εi ⊗ Γ+
2km

Xi.

As X and ε are independent, we get that E
(
Ŝ2km

)
= SE

(
Π̂2km

)
, which,

combined with Corollary 3.1 and the fact that the three sub-samples are
independent, ends the proof. �
Lemma 5.6. Under the assumptions of Theorem 3.2, we have∥∥∥∥SE

(
Π̂[2]

2km

)
E
(

Π̂[1]
(km+1):mΓ̂[1]

m

)
E
(

Π̂[3]
2km

)′
S′
∥∥∥∥
N
≤ ‖S‖N

∥∥S′
∥∥
∞ E

∣∣∣λ̂km+1

∣∣∣ .

Proof : The proof is based on the same ideas as that used for proving
Lemma 5.4. We remind that the infinite norm of projection operators are
equal to one. �

The proof of Theorem 3.3 is now a simple combination of Lemmas 5.3,
5.4, 5.5 and 5.6 and using the triangle inequality.
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5.4. Proof of Proposition 3.1
We consider the model Yi(t) =

∑kn
j=1〈Xi, v̂j〉Hαj(t) + ηi(t), for i =

1, . . . , n and for all t. Here ηi(t) = εi(t) +
∑∞

j=kn+1〈Xi, v̂j〉Hαj(t). Writ-
ing this model in a matrix form, we have

Y(t) = Xα(t) + η,

where Y and η are the vectors with size n and respective general terms Yi
and ηi and α is the vector with size kn and general term αj . We can easily
see that the associated mean square estimator is

α̂(t) =
(
X′X

)−1 X′Y(t) =
(
〈Ŝkn(t, .), v̂1〉H , . . . , 〈Ŝkn(t, .), v̂kn〉H

)′
, (21)

where Ŝkn(t, s) is the estimator of S. Now, denoting Y? the vector with size
n such that Y ?

r = Yr for r 6= i, Y ?
i = Ŷ

[−i]
i , X[−i] the matrix X without the

ith row and α̂[−i](t) the estimator of α(t) using the whole sample except the
ith observation, we have, for any vector a = (a1, . . . , akn)′ of functions of H
and for any t

‖Y?(t)−Xa(t)‖n ≥
∥∥∥Y[−i](t)−X[−i]α̂[−i](t)

∥∥∥
n−1
≥
∥∥∥Y?(t)−Xα̂[−i](t)

∥∥∥
n
.

The fact that (X′X)−1 X′Y?(t) minimizes ‖Y?(t)−Xa(t)‖n leads to α̂[−i](t) =
(X′X)−1 X′Y?(t), hence Xα̂[−i](t) = HY?(t). The end of the proof comes
from

Yi−Ŷ [−i]
i = Yi−(HY?)i = Yi−

n∑

r=1
r 6=i

HirYr−HiiŶ
[−i]
i = Yi−Ŷi+Hii

(
Yi − Ŷ [−i]

i

)
.
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