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Département CITI, UMR-CNRS 5157,
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9.1 Introduction

There is considerable literature about second-order statistics-based algorithms for estimating directions
of arrival (DOA) of narrowband sources impinging on an array of sensors. These algorithms, however,
have been examined under the complex circular Gaussian assumption only. The interest in these algo-
rithms stems from a large number of applications including mobile communications systems [1]. In this
application, after frequency down-shifting the sensor signals to baseband, the in-phase and quadrature
components are paired to obtain complex signals. Complex noncircular signals [2], such as, binary phase
shift keying (BPSK) and offset quadrature phase shift keying (OQPSK) modulated signals, are often
used. Naturally, the second-order algorithms devoted to complex circular signals relying on the positive
definite Hermitian covariance matrix E(yty

H
t ) can be used in this context. But because the second-order

statistical characteristics are also contained in the complex symmetric unconjugated spatial covariance
matrix E(yty

T
t ) for noncircular signals, a potentially performance improvement ought to be obtained if

these two covariance matrices are used. However, only a few contributions (among them, [3, 4, 5]) have
been devoted to noncircular signals in DOA estimation in the last years.

The aim of this chapter is to present an overview of algorithms and performance bounds of DOA
estimates of noncircular signals. This chapter is organized as follows. The array signal model with
some notations and the statement of the problem are given in Section 2. The potential benefit due
to the noncircularity property is underscored by the help of subspace-based algorithms built from the
unconjugated spatial covariance matrix only. Three attractive multiple signal classification (MUSIC)-like
algorithms and an optimally weighted MUSIC algorithm built from the two covariance matrices are then
presented with their asymptotic performances in Section 3. To assess the performance and efficiency of
these algorithms, asymptotically (in the number of measurements) minimum variance (AMV) algorithms
in the class of consistent algorithms based on the two covariance matrices or on their associated orthogonal
projectors and AMV bounds are described in Section 4. Because the Gaussian stochastic Cramer-Rao
bound (CRB) matrix is, under rather general conditions, the largest of all CRB matrices among the class
of arbitrary distributions with given mean and covariance (see e.g., [6, p. 293]), the noncircular Gaussian
stochastic CRB is derived in Section 5 as a tight upper bound of the stochastic CRB under discrete
distributions. The case of BPSK sources is specifically treated in Section 6. Finally, this chapter ends by
illustrative exemples and conclusion.

9.2 Array signal model

Let an array of M sensors receive the signals emitted by K narrowband sources. The observation vectors
are modelled as

yt = Axt + nt, t = 1, . . . , T,
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where (yt)t=1,...,T are independent and identically distributed. A(θ) = [a1, . . . ,aK ] is the steering
matrix where each vector ak = a(θk) is parameterized by the real scalar parameter θk to avoid un-
necessary notational complexity, but the results presented here apply to a general parameterization.
xt = (xt,1, . . . , xt,K)T and nt model the source signals and additive measurement noise respectively. xt

and nt are multivariate independent and zero-mean. nt is assumed Gaussian complex circular, spatially
uniformly uncorrelated with E(ntn

H
t ) = σ2nIM or spatially correlated with unknown covariance matrix

E(ntn
H
t ) = Qn(σ) parameterized by the vector of real unknown coefficients σ

def
= (σ1 . . . , σN )T . This

general noise model was introduced in [7] and used in [8] and [9]. xt is complex noncircular, not nec-
essarily Gaussian, and possibly spatially correlated or even coherent with spatial covariance matrices

Rx
def
= E(xtx

H
t ) and R′

x
def
= E(xtx

T
t ). Consequently, this leads to two covariance matrices of yt that

contain information about θ
def
= (θ1, . . . , θK)T :

Ry = ARxA
H +Qn and R′

y = AR′
xA

T 6= O. (9.1)

If no a priori information is available concerning the spatial covariance of the
sources, Rx and R′

x are generically parameterized by the real parameters ρ =
((ℜ([Rx]i,j),ℑ([Rx]i,j),ℜ([R′

x]i,j),ℑ([R′
x]i,j))1≤j<i≤K , ([Rx]i,i,ℜ([R′

x]i,i),ℑ([R′
x]i,i))i=1,...,K)T . Thus

the couple (Ry,R
′
y) is parameterized by the real parameter α

def
= (θT ,ρT ,σT )T ∈ R

L. This parameter
is assumed identifiable from

(

Ry(α),R′
y(α)

)

, in the following sense:

Ry(α) = Ry(α
′) and R′

y(α) = R′
y(α

′) ⇒ α = α′.

These covariance matrices are traditionally estimated by Ry,T = 1
T

∑T
t=1 yty

H
t and R′

y,T = 1
T

∑T
t=1 yty

T
t ,

respectively.
For a performance analysis, some extra hypotheses are needed. We suppose that the signal waveforms

stem from K̄ independent signals x̄t,k, with K̄ ≤ K, with strict inequality implying linear dependence
among the signal waveforms emanating from, e.g., specular multipath or smart jamming in communication
applications. We suppose that the signal waveforms have finite fourth-order moments. The noncircularity
rate ρk of the kth source is defined by E(x2t,k) = ρke

iφkσ2sk where φk is its circularity phase that satisfies

0 ≤ ρk ≤ 1 and σ2sk
def
= E|s2t,k|.

The problem of interest in this work concerns estimating θ from the two sample covariance matrices
Ry,T and R′

y,T . The number K of sources is assumed to be known.

9.3 MUSIC-like algorithms

We suppose in this section that Qn = σ2nIM , A is full column rank and Rx and R′
x are nonsingular.

To prove the potential benefit due to the noncircularity of the sources, we first propose MUSIC-like
algorithms built from the unconjugated spatial covariance matrix only.

9.3.1 MUSIC-like algorithms built from R′
y,T only

Because R′
y and Ry have a common noise subspace (see (9.1)) with associated orthogonal projection

matrices Π′ = Π, the first idea for estimating θ from R′
y,T alone is to apply the following steps: Estimate

the projection matrix Π′
T associated with the noise subspace of R′

y,T by the singular value decomposition
of the symmetric complex-valued matrix R′

y,T and then, use the standard MUSIC algorithm based on Π′
T

where the DOA (θk,T )k=1,...,K are estimated as the locations of the K smallest minima of the function:

θAlg0
k,T = argmin

θ
aH(θ)Π′

Ta(θ). (9.2)

Compared to the standard MUSIC algorithm based on ΠT associated with the noise subspace of Ry,T ,
we prove in [10] the following
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Theorem 1 The sequences
√
T (θT − θ), where θT is the DOA estimate given by these two standard

MUSIC algorithms, converge in distribution to the zero-mean Gaussian distribution of covariance matrix
of the similar structure

(Cθ)k,l =
2

αkαl
ℜ
(

(

aHl Uak
)

(a
′H

k Πa
′

l)
)

(9.3)

with a
′

k
def
= dak

dθk
and αk

def
= 2a

′
H

k Πa
′

k, where U
def
= σ2nS

#RyS
# with S

def
= ARxA

H and U
def
= σ2nS

′#RT
y S

′∗#

with S′ def= AR′
xA

T for the MUSIC algorithms built on Ry,T and R′
y,T respectively.

As a result, the asymptotic performance of the estimates given by these two standard MUSIC algorithms
can be very similar. In particular, for only one source, it is proved in [10] that these asymptotic variances
are respectively given by:

Cθ1 =
1

α1r1

(

1 +
1

‖a1‖2r1

)

and Cθ1 =
1

α1r1ρ21

(

1 +
1

‖a1‖2r1

)

,

with r1
def
=

σ2
s1
σ2
n
. We note that for ρ1 = 1 (e.g., for an unfiltered BPSK modulated source), these two

variances are equal. Naturally when ρ1 approaches zero, Cθ1 is unbounded and the unconjugated spatial
covariance matrix R′

y conveys no information about θ1. This result raises the following query: how does
one combine the statistics ΠT and Π′

T to improve the estimate of θ? A possible solution is proposed in
the following subsection.

9.3.2 MUSIC-like algorithms built from both Ry,T and R′
y,T

To devise simple subspace-based algorithms built from both Ry,T and R′
y,T , we consider the extended

covariance matrix Rỹ
def
= E(ỹtỹ

H
t ) where ỹt

def
=
(

yT
t ,yt

H
)T

for which:

Rỹ = ÃRx̃Ã
H + σ2nI2M (9.4)

with Ã
def
=

(

A O
O A∗

)

and Rx̃
def
=

(

Rx R
′

x

R
′∗
x R∗

x

)

. From the assumptions of Section 3, K ≤

rank(Rx̃) ≤ 2K and, depending on this rank, many situations may be considered. We concentrate first
on a particular case (case (1)) for which the sources are uncorrelated and with noncircularity rate ρk
equal to 1 because very attractive algorithms have been devised for this case [3],[4]. This corresponds,
for example, to unfiltered BPSK or OQPSK uncorrelated modulated signals. In this case, Rx = ∆σ and

R
′

x = ∆σ∆φ with ∆σ
def
= Diag(σ2s1 , . . . , σ

2
sK

) and ∆φ
def
= Diag(eiφ1 , . . . , eiφK ). Consequently

Rx̃ =

(

∆σ ∆σ∆φ

∆σ∆
∗
φ ∆σ

)

=

(

IK
∆∗

φ

)

∆σ

(

IK
∆∗

φ

)H

and rank(Rx̃) = K. Then subsequently, we consider the general case for which rank(Rx̃) = 2K (case
(2)). This case corresponds for example to filtered BPSK or OQPSK modulated signals. In these two
cases, the orthogonal projector matrix onto the noise subspace is structured as Ã and Rx̃. More precisely,
the following lemma is proved in [10]

Lemma 1 In cases (1) and (2), the orthogonal projector matrix Π̃ onto the noise subspace is structured
as

Π̃ =

(

Π1 Π2

Π∗
2 Π∗

1

)
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where Π1 and Π2 are Hermitian and complex symmetric, respectively, and where Π1 is the orthogonal
projector onto the column space of A and Π2 = O in case (2) 1. Furthermore, the orthogonal projector
onto the noise subspace Π̃T associated with the sample estimate Rỹ,T of Rỹ has the same structure

Π̃T =

(

Π1,T Π2,T

Π∗
2,T Π∗

1,T

)

(9.5)

where Π1,T and Π2,T are Hermitian and complex symmetric respectively.

Case (1): Uncorrelated sources with ρk = 1
Consider now three MUSIC-like algorithms for which (9.4) becomes

Rỹ =

(

A
A∗∆∗

φ

)

∆σ

(

A
A∗∆∗

φ

)H

+ σ2nI2M , (9.6)

an algorithm (denoted Alg1) devised in [3] has been derived from the standard MUSIC algorithm. Specif-
ically, the estimated DOA (θk,T )k=1,...,K are obtained as the locations of the K smallest minima of the
following function:

θAlg1
k,T = argmin

θ
[min

φ
ãH(θ, φ)Π̃T ã(θ, φ)] = argmin

θ

(

aH(θ)Π1,Ta(θ)− |aT (θ)Π∗
2,Ta(θ)|

)

, (9.7)

with the extended steering vector ã(θ, φ)
def
=

(

a(θ)
a∗(θ)e−iφ

)

.

Because
(

aH(θ) eiφaT (θ)
)

Π̃

(

a(θ)
a∗(θ)e−iφ

)

=
(

1 eiφ
)

M

(

1
e−iφ

)

= 0 with M
def
=

(

aH(θ) 0T

0T aT (θ)

)

Π̃

(

a(θ) 0
0 a∗(θ)

)

, the matrix MT
def
=

(

aH(θ) 0T

0T aT (θ)

)

Π̃T

(

a(θ) 0
0 a∗(θ)

)

is

positive definite and a consistent estimate of the rank deficient 2 × 2 matrix M. Using this property, a
subspace-based algorithm (denoted Alg2) is proposed in [10] defined by

θAlg2
k,T = argmin

θ
g2,T (θ)

with
g2,T (θ)

def
= Det(MT ) =

(

aH(θ)Π1,Ta(θ)
)2 −

(

aT (θ)Π∗
2,Ta(θ)

) (

aH(θ)Π2,Ta
∗(θ)

)

. (9.8)

In the particular case of a uniform linear array, replacing the generic steering vector a(θ) =

(1, eiθ , . . . , ei(M−1)θ)T by a(z)
def
= (1, z, . . . , zM−1)T in (9.8), [4] proposed a root-MUSIC-like algorithm

(denoted Alg3) defined by

θAlg3
k,T = arg(zk) with zk K roots|z|<1 of g3,T (z) closest to the unit circle (9.9)

where g3,T (z) is the following polynomial2 of degree 4(M −1) whose roots appear in reciprocal conjugate
pairs zk and (z∗k)

−1:

g3,T (z)
def
=
(

aT (z−1)Π1,Ta(z)
)2 −

(

aT (z)Π∗
2,Ta(z)

) (

aT (z−1)Π2,Ta(z
−1)
)

.

Considering the performance of these three algorithms, the following is proved in [10]:

1We note that Π1 is not a projection matrix in case (1).
2We note that this procedure allows one to estimate up to 2(M − 1) possible DOA.
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Theorem 2 The sequences
√
T (θT − θ), where θT are the DOA estimates given by these three MUSIC-

like algorithms [resp., first two MUSIC-like algorithms] for a uniform linear array [resp., arbitrary array],
converge in distribution to the same zero-mean Gaussian distribution3 of covariance matrix

(Cθ)k,l =
1

γkγl

(

α
(k)
φ,φ −α(k)

θ,φ

)

B(k,l)

(

α
(l)
φ,φ

−α(l)
θ,φ

)

(9.10)

with
(

B(k,l)
)

i,j

def
= 4ℜ

(

(ãTk Ũ
∗ã∗l )(ã

′H
i,kΠ̃ã′j,l)

)

, i, j = θ, φ where ãk
def
=

(

ak
a∗ke

−iφk

)

, ã′θ,k
def
= dãk

dθk
, ã′φ,k

def
=

dãk
dφk

, Ũ
def
= σ2nS̃

#RỹS̃
# with S̃

def
= ÃRx̃Ã

H , and with
(

α
(k)
i,j

)

i,j=θ,φ
and γk are the purely geometric factors:

α
(k)
i,j

def
= ℜ(ã′Hi,kΠ̃ã′j,k) and γk

def
= α

(k)
θ,θα

(k)
φ,φ − (α

(k)
θ,φ)

2. In particular:

(Cθ)k,k =
2α

(k)
φ,φ

γk
(ãHk Ũãk), k = 1, . . . ,K (9.11)

which gives in the case of a single source:

Cθ1 =
1

α1r1

(

1 +
1

2‖a1‖2r1

)

. (9.12)

Remark: If the case of a single noncircular complex Gaussian distributed source of maximum circularity
rate (ρ1 = 1), asymptotic variance (9.12) attains the noncircular Gaussian Cramer-Rao bound (9.23).
Consequently, these three MUSIC-like algorithms previously described are efficient for a single source.

Case (2): Arbitrary full rank spatial extended covariance matrix

In that case, based on Π̃Ã =

(

Π1 Π2

Π∗
2 Π∗

1

)(

A O
O A∗

)

= O, different MUSIC-like algorithms can

be proposed. Using Π2 = O, the simplest one4 (denoted Alg4) is the following

θAlg4
k,T = argmin

θ
aH(θ)Π1,Ta(θ). (9.13)

Because this algorithm is always outperformed by the standard MUSIC algorithm based on Ry,T only
(see [10]), the following column weighting5 MUSIC (denoted Alg5) was proposed in [10] by using the
ideas of the weighted MUSIC algorithm introduced for DOA estimation [11], then applied for frequency
estimation in [12],[13]:

θAlg5
k,T = argmin

θ
g5,T (θ) with g5,T (θ)

def
= Tr

(

WĀH(θ)Π̃T Ā(θ)
)

,

where W is a 2 × 2 non-negative definite weighting matrix, and Ā(θ) is the steering matrix
(

a(θ) 0
0 a∗(θ)

)

. To derive the optimal weighting matrix W =

(

w1,1 w1,2

w∗
1,2 w2,2

)

in the next section,

the weighted MUSIC cost function can be written as

g5,T (θ) = (w1,1 + w2,2)
(

aH(θ)Π1,Ta(θ) + ℜ(zaT (θ)Π2,Ta(θ))
)

, (9.14)

with z
def
=

2w∗

1,2

w1,1+w2,2
. Consequently the performance of this algorithm depends only on z. By choosing

W diagonal, we have z = 0 and this algorithm reduces to Alg4. Considering the performance of this
algorithm, the following is proved in [10]:

3These three algorithms have different behavior outside the asymptotic regime, as will be stressed in Section 9.7.
4We note that unlike Π1, Π1,T is not a projection matrix.
5Because Π̃T is an orthogonal projector, the cost function g5,T (θ) reduces to ‖Π̃T Ā(θ)W1/2‖2Fro.
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Theorem 3 The sequence
√
T (θT − θ), where θT is the DOA estimate given by this weighted MUSIC

algorithm, converges in distribution to the zero-mean Gaussian distribution of covariance matrix

(Cθ)k,l =
1

2αkαl
(1 z∗ z 1)

(

(ĀT
k Ũ

∗Ā∗
l )⊗ (Ā

′H
k Π̃Ā

′

l) + (Ā
′T
k Π̃

∗Ā′∗
l )⊗ (ĀH

k ŨĀl)
)

(1 z∗ z 1)H , (9.15)

with Āk
def
= Ā(θk) and Ā

′

k
def
= dĀk

dθk
. Furthermore, the value zoptk that minimizes (Cθ)k,k is given by

zoptk = − aTkU
∗
2ak

aHk U1ak
, (9.16)

with Ũ =

(

U1 U2

U∗
2 U∗

1

)

, for which the minimum value of (Cθ)k,k is

min
z

(Cθ)k,k =
Det(ĀH

k ŨĀk)

2(aHk U1ak)(a
′H
k Π1a

′

k)
. (9.17)

For a single source, we have [10]:

Corollary 1 The asymptotic variance of the DOA estimate given by this optimal weighting MUSIC
algorithm attains the noncircular Gaussian Cramer Rao bound (9.22) for all values of the noncircularity
rate in the single source case.

Remark 1: The optimal value of the weight previously derived depends on the specific DOA whose
variance is to be minimized, which means that the optimal weight is not the same for all DOAs. This,
however, might have been expected as MUSIC estimates the DOAs one by one. In addition, it should
be noted that zoptk is sample dependent. Consequently, this value ought to be replaced by a consistent
estimate in the implementation of the optimal weighting MUSIC algorithm. We note that this replace-
ment of zoptk by a consistent estimate has no effect on the asymptotic variance of the weighting MUSIC
algorithm as proved in [10].
Remark 2: For circular sources, Rỹ is block diagonal. This successively implies that S̃, S̃# and Ũ are
block diagonal. Consequently, U2 = O, zoptk = 0, Wopt is diagonal and the optimal weighting MUSIC

algorithm reduces to the standard MUSIC algorithm. Then (9.17) becomes minz (Cθ)k,k =
aH
k Uak

2a
′H
k Π1a

′

k

,

which is the asymptotic variance given by (9.3).
Remark 3: All the performance results presented until now depend on the distribution of the sources
through their second-order moments only. These results can be extended. Following a functional analysis
(see [14]) and assuming some regularity conditions, the following is proved in [10, 15]:

Theorem 4 The asymptotic performance given by an arbitrary subspace-based algorithm built from Π̃T

[resp. (ΠT ,Π
′
T )] associated with the noise subspace of Rỹ,T [resp. (Ry,T ,R

′
y,T )] depends on the distri-

bution of the sources through their second-order moments only.

Furthermore, using the same approach, it is proved in [10] that the noncircularity of the sources does
not change the asymptotic performance of the standard second-order algorithms; more precisely:

Theorem 5 All DOA consistent estimates given by second-order algorithms based on Ry,T only, that do
not suppose explicitly the sources to be spatially uncorrelated, are robust to the distribution and to the
noncircularity of the sources; i.e., the asymptotic performances are those of the standard complex circular
Gaussian case.

6



9.4 Asymptotically minimum variance estimation

To assess the performance and the efficiency of the previous MUSIC-like algorithms, their performances
are compared in this section to those of the AMV estimators in the class of consistent estimators based on
Rỹ,T , i.e., on (Ry,T ,R

′

y,T ) [16], then on (ΠT ,Π
′
T ) and on Π̃T [15]. Considering the statistic (Ry,T ,R

′

y,T ),
the following theorem is proved in [15]:

Theorem 6 The covariance matrix Cα of the asymptotic distribution of an estimator of α given by
an arbitrary consistent algorithm based on (Ry,T ,R

′

y,T ) is bounded below by the real symmetric matrix

C
AMV(R,R′)
α = (SHC−1

s (α)S)−1

Cα ≥ (SHC−1
s (α)S)−1 (9.18)

where S def
= ds(α)

dα , s(α)
def
= [vecT (Ry(α)), vT (R

′

y(α)), vH (R
′

y(α))]T 6 and where Cs(α) is the first covari-

ance matrix of the asymptotic distribution of sT
def
= [vecT (Ry,T ), v

T (R
′

y,T ), v
H(R

′

y,T )]
T .

Remark: A priori knowledge on the spatial correlation of the sources may be be introduced in the
bound (9.18) by using adapted parameterization of Rx and R′

x. For example, if the sources are supposed
to be spatially uncorrelated, Rx will be parameterized by ([Rx]k,k)k=1,...,K and if, moreover, they are

independent, Rx and R′
x will be parameterized by ([Rx]k,k,ℜ([R′

x]k,k),ℑ([R′
x]k,k))k=1,...,K only.

Furthermore, it is proved in [15] that this lowest bound is asymptotically tight, i.e., there exists an
algorithm whose covariance of the asymptotic distribution of αT satisfies (9.18) with equality:

Theorem 7 The following nonlinear least square algorithm is an AMV second-order algorithm:

αT = arg min
α∈RL

[sT − s(α)]HC−1
s (α)[sT − s(α)] (9.19)

and this lowest bound (9.18) is also obtained if an arbitrary consistent estimate Cs,T of Cs(α) is used in
(9.19).

To reduce the computational complexity due to the nonlinear minimization required by this matching
approach, the covariance matching estimation techniques (COMET) can be included to simplify this
algorithm if the parameterization of Qn is linear in σ because in this case there exists a matrix Ψ(θ) such
that s(α) = Ψ(θ)(ρT ,σT )T . Using the approach introduced in [17] and then in [16] with the following

consistent estimate W
def
= 1

T

∑T
t=1

[

(

s(t)− 1
T

∑T
t=1 s(t)

)(

s(t)− 1
T

∑T
t=1 s(t)

)H
]

of Cs(α) where s(t)
def
=

(

y∗
t ⊗ yt

yt ⊗ yt

)

, the proof given in [16] can be extended, and θT is obtained by

θT = arg min
θ∈RK

sHT WΨ(θ)[ΨH(θ)WΨ(θ)]−1ΨH(θ)WsT . (9.20)

Furthermore the top left K ×K “DOA corner” of C
AMV(R,R′)
α is given by:

C
AMV(R,R′)
θ

=
(

SH
1 C−1/2

s (α)Π⊥
C

−1
s (α)Ψ

C−1/2
s (α)S1

)−1
. (9.21)

with S = [S1,Ψ] and where Π⊥
C

−1/2
s (α)Ψ

denotes the projector onto the orthogonal complement of the

columns of C
−1/2
s (α)Ψ.

In the particular case where Qn = σ2nIM , Theorems 6 and 7 are extended in [15] to the statistics
sT = (ΠT ,Π

′
T ) and sT = Π̃T where θ alone is identifiable from (Π,Π′) and Π̃, and where the inverse

of the matrix Cs (which is here singular) is replaced by its Moore Penrose inverse. Furthermore, the
following is proved in [18]:

6vec(·) is the “vectorization” operator that turns a matrix into a vector by stacking the columns of the matrix one below
another and v(.) denotes the operator obtained from vec(.) by eliminating all supradiagonal elements of the matrix.
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Theorem 8 For Gaussian distributed signals, if no a priori information is available on Rx and R′
x, the

previous different AMV bounds coincide with the normalized7 Gaussian CRB given by Theorem 9 (case
(UW)):

C
AMV(Π,Π′)
θ

= C
AMV(Π̃)
θ

= C
AMV(R,R′)
θ

= CRBNCG
AU (θ).

This proves the efficiency of the AMV estimator based on orthogonal projectors, with respect to CRB.
Naturally this result extends to the AMV estimator based on Ry,T only for circular Gaussian signals and
explains the good performances of the standard DOA subspace-based algorithms.

9.5 Stochastic Cramer-Rao bound for noncircular Gaussian signals

In this section, the sources are assumed Gaussian distributed. In such a case, expression (9.21) gives
the stochastic CRB for the parameter θ alone. But this expression lacks engineering insight and applies
only for a linearly parameterized noise covariance matrix Qn. Deriving such an interpretable expression
for circular Gaussian signals has been an intensive research field. Among them, Stoica and Nehorai
[19], Ottersten et al [20], Weiss and Friedlander [21] derived this bound indirectly as the asymptotic
covariance matrix of the maximum likelihood (ML) estimator for uniform white noise. Ten years later,
Stoica et al [22], Pesavento and Gershman [23] and Gershman et al [8] derived directly this bound from
the Slepian-Bangs formula [24, 25] for uniform white, nonuniform white and arbitrary unknown noise
field respectively. Using these two approaches, these results are extended in [26] and [9] for noncircular
Gaussian sources. The following result is proved in [26] and [9]:

Theorem 9 The normalized DOA-related block of CRB for noncircular complex Gaussian (NCG)
sources in the presence of an arbitrary unknown (AU), nonuniform white (NU) or uniform white (UW)
noise field is given by the following explicit expression:

CRBNCG
X (θ) =

1

2

{

ℜ
[

(

D̆HΠ⊥
Ă
D̆
)

⊙
(

[RsĂ
H ,R′

sĂ
T ]R̄−1

ỹ

[

ĂRs

Ă∗R
′∗
s

])T
]

−MXT
−1
X MT

X

}−1

where Ă
def
= Q

−1/2
n A, D̆

def
= dĂ

dθ , R̄ỹ
def
= Q

−1/2
ñ RỹQ

−1/2
ñ with Qñ

def
=

(

Qn O
O Q∗

n

)

and where the expres-

sions of MX and TX are given for the (X = AU) and (X = NU) noise field cases in [9] and MUW = O
and TUW = O [26].

In the particular case of one source, the following is proved in [9]:

Theorem 10 The normalized CRB of θ1 for a noncircular complex Gaussian source corrupted by nonuni-
form or uniform white noise field decreases monotonically as the noncircularity rate ρ1 increases and is
given by

CRBNCG
X (θ1) =

1

α1

[

2r−1
1 + ‖a1‖−2r−2

1 + ‖a1‖2 − ‖a1‖2ρ21
‖a1‖2r1 + 1 + (1− ‖a1‖2r1)ρ21

]

(9.22)

where the SNR is defined here by r1
def
=

σ2
s1
M

∑M
m=1

1
σ2
m

where σ2m
def
= E|n2t,m|, m = 1, ...,M and α1 is the

noise dependent factor 2M
(

∑M
m=1

1
σ2
m

)−1
ă′

H

1 Π
⊥
ă1
ă′1 (2a′H1 Π⊥

a1
a′1 for uniform white noise) with ă1

def
=

Q
−1/2
n a1 and ă′1

def
= dă1

dθ1
.

Consequently, for one source, the CRB decreases from CRBCG
NU(θ1) =

1
α1r1

(

1 + 1
‖a1‖2r1

)

(ρ1 = 0, circular

case) to

CRBNCG
NU (θ1) =

1

α1r1

(

1 +
1

2‖a1‖2r1

)

(ρ1 = 1). (9.23)

7(i.e., for T = 1 throughout this chapter).

8



Furthermore, this bound has also been compared to the CRB for circular Gaussian sources and to the
deterministic CRB in [9], where the following results are proved

Theorem 11 The DOA-related block of CRB for noncircular complex Gaussian sources is upper bounded
by the associated CRB for circular complex Gaussian sources corresponding to the same first covariance
matrix Rs and the same arbitrary noise covariance matrix Qn.

CRBNCG
Qn

(θ) ≤ CRBCG
Qn

(θ).

Compared to the asymptotic deterministic CRB: CRBDET
Qn

(θ) = 1
2

{

ℜ
[

(D̆HΠ⊥
Ă
D̆)⊙RT

s

]}−1
which is

unchanged with respect to the circular case,

CRBDET
Qn

(θ) ≤ CRBNCG
Qn

(θ).

This result proves that for noncircular sources, a potential performance improvement of any second-order
algorithm can be expected with respect to a second-order algorithms based on the standard covariance
only. Furthermore, compared to the circular case, the deterministic CRB approaches the stochastic
noncircular Gaussian CRB.

9.6 Stochastic Cramer-Rao bound for BPSK signals

In the case of noncircular discrete distributed sources, the stochastic CRB appears to be prohibitive
to compute. However, for independent BPSK modulated sources in uniform or nonuniform white noise
field with ‖a(θ)‖2 = M , interpretable closed-form expressions of the stochastic CRB can be derived.
Compared to those associated with QPSK modulated sources, it is proved in [27] for uniform white noise,
then extended to nonuniform white noise in [28] by simple whitening of the noise covariance matrix with
α = (θ1, φ1, σs1 ,σ

T )T .

Theorem 12 For a single BPSK or QPSK modulated source, the normalized stochastic CRB of the DOA
alone are given by the closed-form expressions

CRBBPSK
NU (θ1) =

1

α1r1

(

1

1− f(Mr1)

)

CRBQPSK
NU (θ1) =

1

α1r1

(

1

1− f(Mr1
2 )

)

where α1 and r1 are given in Theorem 10 and with f(ρ) is the following decreasing function of ρ: f(ρ)
def
=

e−ρ√
2π

∫ +∞
−∞

e−
u2

2

cosh(u
√
2ρ)
du.

We note that CRBBPSK
NU (θ1) < CRBQPSK

NU (θ1) and that compared to the stochastic complex Gaussian
CRB (see Theorem 10) associated with the same noncircularity rate (1 and 0 for a BPSK and QPSK
modulated source respectively):

CRBBPSK
NU (θ1)

CRBNCG
NU (θ1)

=
1

(1− f(Mr1))(1 +
1

2Mr1
)

and
CRBQPSK

NU (θ1)

CRBCG
NU(θ1)

=
1

(1− f(Mr1
2 ))(1 + 1

Mr1
)
.

We note that these ratios depend on Mr1 only and tend to 1 when Mr1 tends to ∞.

For two independent BPSK or QPSK modulated sources, we prove [27, 28] that for large SNRs (i.e.,
∑M

m=1

σ2
s1

σ2
m

≫ 1 and
∑M

m=1

σ2
s2

σ2
m

≫ 1) the CRB for the DOA of one source is independent of the parameters

of the other source and

CRBBPSK
NU (θ1, θ2) ≈ CRBQPSK

NU (θ1, θ2) ≈
[ 1

α1r1
0

0 1
α2r2

]

(9.24)
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We note that this property is quite different from the behavior of the CRB under the circular Gaussian
distribution and the deterministic CRB, for which the normalized CRB for the DOA of one source depends
on the DOA separation. More precisely, it is proved [19, result R9] that these latter two CRBs tend to
the same limit as all SNRs increase. For independent sources, they are given by (from, e.g., [19, rel.
(2.13)])

CRBDET
UW (θ1, θ2) = CRBCG

UW(θ1, θ2) =

[

1
β1r1

0

0 1
β2r2

]

with βk
def
= 2

(

‖a′

k‖2 − γk(θ1, θ2)
)

, k = 1, 2,

where γk(θ1, θ2), k = 1, 2 depends on the source separation. This strange property of the stochastic
CRB for independent BPSK sources is illustrated in the next section with the performance of the EM
algorithm.

As a consequence, the behavior of the resolution threshold for two equipowered (r
def
= r1 = r2 et

α
def
= α1 = α2) closely spaced independent sources is also quite different. Despite the CRB does not

directly indicate the best resolution achievable by an unbiased estimator, it can be used to define an
absolute limit of resolution. Following the criterium described in [29], two sources are meaningfully
resolved if the root mean square of the CRB of the estimated DOA separation (θ1,T − θ2,T ) is less than
the DOA separation, i.e.,

√

CRBPSK(θ1 − θ2) =

√

2

T

1

αr
< ∆θ,

because θ1 and θ2 are decoupled in (9.24). This resolution bounds the resolution of all unbiased

DOA estimates in the regimes SNR ≫ 1, where the CRB holds. For a ULA, αr = 2σ2[
∑M−1

m=1
m2

σ2
m

−
(
∑M−1

m=1
m
σ2
m
)2(
∑M

m=1
1
σ2
m
)−1] which is an extended SNR re (re = M(M2−1)

6
σ2

σ2
n
for the specific case of uni-

form white noise) and we get:

re >
2

T (∆θ)2
and

σ2

σ2n
>

12

TM(M2 − 1)(∆θ)2
for uniform white noise,

which compared to Gaussian distributed sources for which the SNR threshold varies as (∆θ)−4 or (∆θ)−3

according to the domain of T (see [30, (35)] for the MUSIC algorithm which is asymptotically efficient
as the SNR tends to infinity) is quite different.

9.7 Illustrative examples

In this section, we provide numerical illustrations and Monte Carlo simulations of the performance of
the different algorithms presented in Section 9.3, numerical comparisons of the variances of these DOA
estimates to the asymptotic variance of AMV estimators based on Rỹ,T (i.e., Ry,T and R′

y,T ) and on
Ry,T alone [16] and numerical illustrations of the AMV bounds and of the CRBs given in Sections 9.5 and
9.6, respectively. Finally Monte Carlo simulations of the EM algorithm illustrate some strange properties
presented in Section 9.6.

We consider throughout this section two equipowered (σ2
def
= σ2s1 = σ2s2) filtered or unfiltered BPSK

modulated signals with identical noncircularity rate (ρnc
def
= ρ1 = ρ2) with phases of circularity φ1 and

φ2. These signals consist of two equipowered multipaths issued from the DOAs θ1 and θ2. Referenced on
the first sensor and from the DOA θ1, we have equivalently: xt,1 = x̄t,1 and xt,2 = cos(α)x̄t,1 + sin(α)x̄t,2

with Rx̄ = σ2I2 and R′
x̄ = σ2ρnc

(

eiφ1 0
0 eiφ2

)

. Consequently,

Rx = σ2
(

1 cos(α)
cos(α) 1

)

and R′
x = σ2ρnc

(

eiφ1 cos(α)eiφ1

cos(α)e2iφ1 cos2(α)eiφ1 + sin2(α)eiφ2

)

.
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These signals impinge on a uniform linear array with M = 6 sensors separated by a half-wavelength for
which ak = (1, eiθk , . . . , ei(M−1)θk )T where θk = π sin(ψk), with ψk the DOAs relative to the normal of
the array. 1000 independent simulation runs have been performed to obtain the estimated variances and
the number of independent snapshots is T = 500 (unless explicitly stated otherwise).

The first experiment illustrates Theorem 2 for which ρnc = 1 and α = π/2. Figs.9.1, 9.2 and 9.3 exhibit
the dependence of var(θ1,T ) given by algorithms 1, 2 and 3, and by the AMV algorithm based onRỹ,T (i.e.,
on Ry,T and R

′

y,T ), with the SNR, the DOA separation ∆θ = θ2−θ1 and the circularity phase separation

∆φ = φ2 − φ1
8. Figs.9.1 and 9.2 shows that the domain of validity of our asymptotic analysis depends

on the algorithm. Below a SNR threshold that is algorithm-dependent, algorithm 3 (root-MUSIC-like
algorithm) outperforms algorithm 2 which outperforms algorithm 1, and naturally all three algorithms
clearly outperform the standard MUSIC and the AMV algorithm based on Ry,T alone. In Fig.9.2, we
note that the asymptotic variances given by algorithms 1, 2 and 3 and the AMV algorithm tend to a
finite limit when the DOA separation decreases to zero. For algorithms 1, 2 and 3, this strange behavior

is explained by the two non-zero eigenvalues (λk)k=1,2 of S̃ which interact in Ũ
def
= σ2nS̃

#RỹS̃
# given in

rel. (9.11) of Theorem 2. With λk = 2Mσ2s1

(

1 + (−1)k cos((M − 1)∆θ
2 −∆φ)

sin(M ∆θ
2
)

M sin(∆θ
2
)

)

k = 1, 2, we see

that one of these eigenvalues approaches zero and consequently the asymptotic variances increase without

limit only if both ∆θ and ∆φ tend to zero. For the AMV algorithm, Cθ =
[

(SHC#
s S)−1

]

(1:K,1:K)
and S

is column rank deficient only if both ∆θ and ∆φ tend to zero as well. Fig.9.3 illustrates the sensitivity
of the performance to the circularity phase separation ∆φ, which is particularly prominent for low DOA
separations. Figs.9.1 and 9.2 show the favorable efficiency of these three algorithms compared to the
AMV estimator based on Rỹ,T , particularly for large DOA separations. To specify this point, Fig.9.4

exhibits the ratio r1
def
= Var

AMV(R,R′)
θ1

/Var
Alg1,2,3
θ1

as a function of the SNR for different DOA separations.
It shows that algorithms 1, 2 and 3 are very efficient, except for low DOA separations and low SNRs.
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Fig.9.1 Theoretical (solid line) and empirical asymptotic
variances given by algorithms 1, 2, 3 and AMV algorithms
based on (Ry,T ,R

′

y,T ) as a function of the SNR for ∆θ =
0.05rd, ∆φ = π/6rd.
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Fig.9.2 Theoretical (solid line) and empirical asymptotic
variances given by algorithms 1, 2, 3, standard MUSIC and
AMV algorithm based on Ry,T only and on (Ry,T ,R

′

y,T ) as a
function of the DOA separation for SNR=20dB, ∆φ = π/6rd.

8Note that one finds, by numerical examples, for two equipowered sources with identical noncircularity rates, that the
different theoretical variances depend on θ1, θ2, φ1, φ2 by only ∆θ = θ2−θ1 and ∆φ = φ2−φ1 in case (1) [only ∆θ = θ2−θ1
in case (2)] .
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Fig.9.3 Theoretical asymptotic variances given by algo-
rithms 1, 2, 3 (1) and by the AMV algorithm based on

(Ry,T ,R
′

y,T ) (2) as a function of the circularity phase sepa-
ration for two DOA separations and SNR=20dB.
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Fig.9.4 Ratio r1
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AMV(R,R′)
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as a function
of the SNR for different DOA separations, ∆φ = π/6rd.

The second experiment illustrates Theorem 3. The noncircularity rate ρnc is arbitrary and α = π/2.
Compared to the standard MUSIC algorithm based on Ry,T , Figs.9.5 and 9.6 shows that algorithm 5
outperforms this MUSIC algorithm, particularly for low SNRs and DOA separations when the circularity
rate ρ increases.
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Fig.9.5 Ratio r2
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as a function
of the noncircularity rate for different DOA separations for
SNR=5dB.
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Fig.9.6 Ratio r2
def
= VarAlg5

θ1
/Var

MUSIC(R)
θ1

as a func-
tion of the noncircularity rate for different SNRs for ∆θ =
0.1rd.

To implement the optimal weighted MUSIC algorithm, the following multistep procedure described in
[13, Section 7] has been proposed in [10]:

1. Determine standard MUSIC estimates of (θk)k=1,...,K from Ry,T .

2. For k = 1, ...,K, perform the following: Let θ0k,T denote the estimates obtained in step 1. Use

(θ0k,T )k=1,...,K and the estimate U1,T and U2,T of U1 and U2 derived from R̃y,T to obtain consistent

12



estimates zk,T of zoptk . Then determine improved estimates θ1k,T by locally minimizing the weighted

MUSIC cost function (9.13) associated with zk,T around θ0k,T .

The following table compares our theoretical asymptotic variance expressions with empirical mean square
errors (MSEs) obtained from Monte Carlo simulations for the standard MUSIC and the optimal weighted
MUSIC algorithms for ρ = 0.9, ∆θ = 0.2rd. We see that there is an agreement between the theoretical
and empirical results beyond a SNR threshold. Below this threshold, the optimal weighted MUSIC
algorithm largely outperforms the standard MUSIC algorithm.

Standard MUSIC Optimal weighted MUSIC
SNR(dB) empirical MSE theoretical variance empirical MSE theoretical variance

6 4.452.10−3 4.589.10−4 3.154.10−4 4.151.10−4

8 1.600.10−3 2.604.10−4 2.344.10−4 2.449.10−4

10 2.899.10−4 1.527.10−4 1.561.10−4 1.474.10−4

20 1.338.10−5 1.348.10−5 1.337.10−5 1.347.10−5

The third experiment exhibits the benefits due to the second covariance matrix R′
y,T through the

comparisons between the AMV bounds based on (Ry,T ,R
′
y,T ) and those based on Ry,T only. Figs.9.7

and 9.8 show the ratio var
AMV(R,R′)
θ1

/var
AMV(R)
θ1

as a function of the noncircularity rate for α = π/2rd
[resp. ∆θ = 0.1rd] fixed for different values of ∆θ [resp. α] when no a priori information is taken into
account. We see that for large DOA separations and/or large spatial correlation between the sources, the
second covariance matrix contributes almost no additional information beyond the information in the first
covariance matrix. If this spatial uncorrelation a priori information (α = π/2rd) is taken into account,
Fig.9.9 shows the anticipated benefits due to the noncircularity, particularly for low DOA separations.
Consequently, the subspace-based algorithms lose their efficiency in these circumstances.
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Fig.9.7 Ratio r3
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as a function
of the noncircularity rate for different DOA separations for
SNR=5dB, α = π/2rd and ∆φ = π/6rd.
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Fig.9.8 Ratio r3
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= var

AMV(R,R′)
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as a function
of the noncircularity rate for different spatial correlation α
for SNR=5dB, ∆θ = 0.1rd and ∆φ = π/6rd.

The fourth experiment considers a non white noise field modelled by the two following covariance

matrices Q
(1)
n (k, l) = σ2n exp(−(k−l)2ζ) andQ

(2)
n (k, l) = σ2n exp(−|k−l|ζ) introduced in [8]. In these noise

field models, σT = (σ2n, ζ) where ζ is the ‘color’ parameter and the SNR is defined by
σ2
s1
σ2
n
. Fig.9.10 shows

the bounds CRBNCG
AU (θ1), CRB

CG
AU(θ1) and CRBDET

AU (θ1)
9 plotted against ζ for ∆θ = θ2− θ1 = 0.1rd and

SNR = 0dB. We note that when ζ decreases all the CRBs approach zero because Qn becomes singular.
When ζ ≫ 1, the two noise models tend to a uniform white noise model and the two CRBs associated
with the models merge. We see that the stochastic CRB under noncircular complex Gaussian distributed
sources is visibly larger than the deterministic CRB.

9Note that you find by simulation that the different CRBs depend on θ1, θ2, φ1, φ2 by only ∆θ = θ2−θ1 and ∆φ = φ2−φ1

for two equipowered sources with identical noncircularity rates.
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function of ζ for the first and second models with ∆θ = 0.2rd,
SNR= 0dB and ∆φ = π/6rd.

The last experiment illustrates the stochastic CRB for BPSK sources for uniform white noise. Fig.9.11

shows the ratios CRBBPSK(θ1)
CRBNCG(θ1)

and
CRBQPSK(θ1)
CRBCG(θ1)

as a function of ρ
def
= Mr1 for a single source. We see from

that figure that the CRB’s under the noncircular [resp., circular] complex Gaussian distribution are tight
upper bounds on the CRB’s under the BPSK [resp., QPSK] distribution at very low and very high SNRs
only. The last three figures are devoted to two BPSK independent sources and uniform white noise.
Fig.9.12 exhibits the domain of validity of the high SNR approximation10. We see from this figure that
this domain depends not only on M , SNR and DOA separation, but also on the distributed sources. It
is shown that this domain reduces for QPSK sources compared to BPSK sources. The larger the DOA
separation is or the larger M is, the larger the domain of validity of the approximation is.

Since the CRB under the noncircular [resp., circular] Gaussian distribution is a very loose upper
bound on the CRB under the discrete BPSK [resp., QPSK] distribution, specifically for small DOA or
phase separation, the ML estimators that take these discrete distributions into account outperform the
stochastic ML estimator under the circular Gaussian distribution (see e.g., [19]) and the weighted subspace
fitting estimator (see e.g., [20]) which both reach CRBCG(θ1). Consequently, the EM approaches [31]
that are iterative procedures capable of implementing the stochastic ML estimator under these discrete
distributions outperform the ML estimator under noncircular or circular Gaussian distribution.
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as a function of ρ
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Fig.9.12 Approximate and exact value of CRBBPSK(θ1) and
CRBQPSK(θ1) as a function of the SNR for different values
of the DOA separation.
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Fig.9.13 CRBBPSK(θ1) and estimated MSE E(θ1,T − θ1)
2

given by the deterministic EM algorithm (10 iterations) as a
function of the DOA separation for ∆φ = 0.1rd.

10Because closed-form expressions of this stochastic CRB appears to be prohibitive to compute, a numerical approximation
of the Fisher information matrix derived from the strong law of large numbers is used as a reference.
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Fig.9.13 exhibits CRBBPSK(θ1) and the estimated mean square error (MSE) E(θ1,T − θ1)
2 given by

the deterministic EM algorithm initialized by the estimate given by MUSIC-like algorithm 1 described
in Section 9.3, as a function of the DOA separation for two SNR’s. We see that contrary to CRBNCG(θ1)
(see Figs.9.7 and 9.9), CRBBPSK(θ1) does not increase significantly when decreasing the DOA separation.
Fig.9.14 compares the MSE E(θ1,T − θ1)

2 given by the deterministic EM algorithm (initialized as in
Fig.9.13) to CRBBPSK(θ1) and CRBNCG(θ1), as a function of the SNR. We see from this figure, that the
EM estimate reaches CRBBPSK(θ1) which largely outperforms CRBNCG(θ1).

9.8 Conclusion

This chapter has presented an overview of DOA estimation for noncircular signals by considering algo-
rithms and performance bounds. From the viewpoint of algorithms, we have proved that three specific
MUSIC-like algorithms built under uncorrelated sources with maximum noncircularity rate, largely out-
perform the standard MUSIC algorithm. In the general case of nonsingular extended spatial covariance
of the sources, the optimal weighted MUSIC that we have introduced outperforms the standard MUSIC
algorithm as well, but the performance gain is prominent for low SNRs and DOA separations only. Fur-
thermore, this optimal weighted MUSIC is computationally more demanding than the standard MUSIC
algorithm. Consequently, from an application viewpoint, this performance gain might not justify the
extra computational load. In this general case, only a multidimensional non-linear optimization algo-
rithm such as the AMV estimator is able to totally benefit from the noncircular property. From the
viewpoint of performance bounds, through the stochastic Gaussian CRBs and the AMV bounds, it is
proved that the benefits due to the second covariance matrix occurs primarily for low SNRs and DOA
separations, particularly when the sources are uncorrelated with maximum noncircularity rates if this a
priori knowledge is taken into account. In the specific case of BPSK modulated sources, it is proved that
the stochastic CRB for the DOA of one source is independent of the parameters of the other source over
wide SNR ranges. Consequently, ML implementations such as the EM approaches outperform the ML
estimator under the circular Gaussian distribution, especially for small DOA or phase separations.
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University, Paris, France in 2001 respectively, and Master’s degree in Statistics from Pierre et Marie Curie
university, Paris, France, in 2002. He is currently pursuing the Ph.D. degree in applied mathematics and
digital communications in the Institut National des Télécommunications, Evry, France. His research
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