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Nuclear size effects in vibrational spectra

Adel Almoukhalalati,a Avijit Shee,a and Trond Saue∗a

We present a theoretical study of nuclear volume in the rovibrational spectra of diatomic
molecules which is an extension of a previous study restricted to rotational spectra [Chem. Phys.
401 (2012) 103]. We provide a new derivation for the electron-nucleus electrostatic interaction
energy which is basically independent of the choice of model for the nuclear charge distribution.
Starting from this expression we derive expressions for the electronic, rotational and vibrational
field shift parameters in terms of the effective electron density and its first- and second derivatives
with respect to internuclear distance. The effective density is often approximated by the contact
density, but we demonstrate that this leads to errors on the order of 10% and is furthermore
not necessary since the contact and effective densities can be obtained at the same computa-
tional cost. We calculate the field shift parameters at the 4-component relativistic coupled-cluster
singles-and-doubles level and find that our results confirm the experimental findings of Tiemann
and co-workers [Chem. Phys, 68 (1982) 21, 1982, Ber. Bunsenges. Phys. Chem., 86 (1982) 821],
whereas we find no theoretical justification for a scaling factor introduced in later work [Chem.
Phys. 93 (1985) 349]. For lead sulfide we study the effective density as a function of internuclear
distance and find a minimum some 0.2 Å inside the equilibrium bond distance. We also discuss
Bigeleisen–Goeppert-Mayer theory of isotope fractionation in light of our results.

1 Introduction
The concept of isotopes grew out of the work by Fajans and
Soddy on radioactive decay chains. Soddy coined the name iso-
tope for elements having different atomic mass, but identical
chemical properties, so that they should occupy the same place
(ίσvος+τόπος) in the periodic table1. There are in fact subtle
chemical differences between isotopes of the same element, af-
fecting both chemical rates and equilibria, which has been ex-
ploited for their separation and which explains the evolution of
relative isotope abundances in geochemical cycles2–5. The first
successful observation of isotope effects in spectroscopy was a
shift of 0.0043 Å of the 4058 Å line of neutral “radio-lead” with
respect to ordinary lead reported by Aronberg in 1918.6 Although
small, it was clearly larger than what could be expected from
atomic mass differences alone. Bohr in 1922 correctly suggested
that the shift was due to “a slight difference in the field of force
surrounding the nucleus, arising from the difference in the in-
ternal structure of the lead isotopes”.7–9 A crude, non-relativistic
estimate of the energy shift with a change of radius of the nucleus,
described as a charged conducting sphere, was given by Bartlett
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in 1931.10 Racah derived an expression for the energy shift in
terms of the non-relativistic density at the nuclear origin, but with
relativistic corrections.11 The formula is evidently only valid for
s1/2-orbitals since only non-relativistic s-orbitals have density at
the nucleus. Rosenthal and Breit confirmed the formula of Racah
and extended the analysis to relativistic orbitals other than s1/2,
in particular p1/2 orbitals that do have density at the nucleus (see
for instance the analysis in ref. 12). An estimate of the impor-
tance of p1/2 contributions, based on the work of Borch13 and
Bodmer14,15, was provided by Fradkin16, who concluded that
for mercury the np1/2 - contribution would be about 10% of the
ns1/2 one. Interestingly, none of the above theoretical studies
cites the pioneer experimental paper by Aronberg, rather the sub-
sequent experimental observations by Schüler, Kopfermann and
co-workers17,18. Historical reviews and further discussion of the
isotope field shift in atomic spectra are found in refs. 19 and 8.

A theoretical framework for the study of isotope effects on
chemical equilibria was provided by the seminal work of Urey and
co-workers20–22 as well as Bigeleisen and Goeppert-Mayer23 and
later extended to reaction rates by Bigeleisen.24 However, these
formulations only consider the isotopic mass effect and is there-
fore primarily appropriate for light elements. In 1996 Bigeleisen
took into account the isotope field effect on chemical equilibria25,
based on the observation by Fujii et al. of an anomalous isotope
effect of 235U in the U(IV)–U(VI) exchange reaction.26 Theoreti-
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cal studies along these lines have subsequently been reported by
Schauble, Abe, Liu, Wiederhold and co-workers.27–35 A review
on the nuclear field shift effect in chemical exchange reactions
has been given by Fujii et al..36

In the present contribution we focus on the nuclear volume
effect (NVE) in the rovibrational spectra of diatomic molecules.
Such effects were proposed by Knöckel and Tiemann37 in 1982
after anomalously large adiabatic correction factors appeared
in the Dunham analysis of the rotational spectrum of diatomic
molecules containing lead and thallium.38 The fact that the nu-
clear volume effect was first observed in these diatomic molecules
is perhaps not surprising since lead and thallium are the heaviest
elements having more than one stable isotope. Schlembach and
Tiemann subsequently derived expressions for the modification
of rotational and force constants due to nuclear volume effects39

and re-examined the spectra reported in ref. 38. Curiously, the
Tiemann group in 1995 revised their results by a factor ten40,
results that were corroborated by calculations (and experimen-
tal work) by Cooke and co-workers.41–43 However, Knecht and
Saue44 in 2012 provided an independent evaluation of both the-
oretical and experimental studies of the isotopic field shift in rota-
tional spectra using high-level relativistic 4-component electronic
structure methods. They concluded that there was no justification
for the scaling factor introduced by Tiemann and co-workers and
could show that the calculations of Cooke et al. were unwittingly
non-relativistic and therefore flawed. On the other hand, the re-
sults of Knecht and Saue were generally in good agreement with
the experimental predictions given by Schlembach and Tiemann
in 1982.39

In the present work we extend the previous study of isotopic
field shift by Knecht and Saue to vibrational spectra. We pro-
vide a new derivation of the nuclear volume effect on spectro-
scopic constants that is independent of the chosen model of the
nuclear charge distribution. We furthermore report 4-component
Hartree-Fock (HF) and Density Functional Theory (DFT) calcu-
lations of Pb-chalcogenides and Tl-halides and benchmark them
by our newly implemented module for the analytic calculation of
expectation values at the relativistic coupled cluster level.45 We
also investigate the density at the heavy nucleus as a function of
equilibrium bond length and discuss the impact of our results on
Bigeleisen–Goeppert-Mayer theory of isotopic fractionation.

2 Theory
The Dunham analysis of the rovibrational spectra of diatomic
molecules is based on the solution of the radial nuclear
Schrödinger equation for the rovibrational levels of the electronic
state (the rotating vibrator problem) of a (closed-shell) diatomic
molecule AB

[
−h̄2

2µ

d2

dR2 +
h̄2J (J+1)

2µR2 +V (R)

]
Ψν ,J (R) = Eν ,JΨν ,J (R) (1)

provided by Dunham46 in 1932 using the semiclassical Jeffreys-
Wentzel-Brillouin-Kramers (JWBK) approach.47–50 In the above
equation R is the internuclear distance, µ the reduced mass and

ν and J the vibrational and rotational quantum numbers, respec-
tively. Furthermore V (R) is the electronic potential, correspond-
ing to the total energy obtained upon solving the electronic prob-
lem within the Born–Oppenheimer (“clamped nuclei”) approxi-
mation. The Dunham expansion of the rovibrational energy is
given by

Eν ,J = h ∑
k,l=0

Ykl

(
ν +

1
2

)k
[J (J+1)]l (2)

where the Dunham coefficients Ykl are given in units of frequency.
To lowest order in ν and J we have

Y10 = νe

[
1+
(

B2
e

4ν2
e

)
(. . .)

]
' νe; 2πνe =

√
ke

µ
(3)

Y01 = Be

[
1+
(

B2
e

2ν2
e

)
(. . .)

]
' Be =

h̄
4πµR2

e
(4)

where νe, ke, Be and Re are the equilibrium harmonic frequency,
force constant, rotational constant and bond length, respectively.
The above Dunham coefficients have an explicit dependence on
reduced mass µ, specific to each isotopomer, which can be gener-
alized to

Ykl = µ
−(k/2+l)Ukl (5)

where Ukl are isotope-independent coefficients. However, fur-
ther isotope dependence of the Dunham coefficients arises by i)
switching from the clamped nucleus to the adiabatic approxima-
tion so that the internuclear potential Eel (R) becomes specific for
each isotopomer, ii) by taking into account the coupling of differ-
ent electronic states upon breakdown of the Born-Oppenheimer
approximation and iii) by correcting for the approximate nature
of the JWBK method. Ross et al., in an experimental study of iso-
topomers of CO,51 fitted their experimental data to the extended
expression

Ykl = µ
−( k

2 +l)Ukl

[
1+me

(
4A

kl
MA

+
4B

kl
MB

)]
(6)

where MX are atomic masses and 4X
kl are mass-independent cor-

rection factors for each atom A and B, and for which Bunker52

and Watson53 provided theoretical justification. The resulting
energy expression was criticized by Le Roy, in part because of the
non-linear appearance of fitting coefficients and that the precise
determination of the isotope-independent coefficients Ukl requires
data from several isotopomers.54 Le Roy suggested to use the
original Dunham expansion, eqn (2), for a reference isotopomer
and then obtain corresponding Dunham coefficients for other iso-
topomers by fitting correction factors. In the present contribution
we choose a middle way in that we recognize that the coefficients
Ukl of eqn (6) have no isotopic mass dependence, but do depend
on nuclear size (and possibly shape, which we shall not address
here). In the following we shall therefore consider the change of
coefficients

U10 ' νe and U10 ' µBe (7)
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upon isotopic substitution A→ A′ in a reference isotopomer AB.
In order to avoid a profusion of subscripts we in the following let
spectroscopic constants Re, ke, Be and f3 be those of the reference
isotopomer.

The nuclear volume effect arises from the modification of
the electrostatic interaction energy between electrons and nuclei
upon isotope substitution. We shall therefore start by deriving a
convenient expression for this interaction energy. Our approach
is inspired by Otten,19 but do not assume the electron density to
be constant in the nuclear region. A particular attractive feature
of the derivation is that it makes minimal assumptions concerning
the nuclear charge distribution. We start by writing the electro-
static interaction energy as

Een =−e∑
A

∫
ρe(re)φA (re)d3re, (8)

where we, in line with previous work, let ρe denote electronic
number density, rather than charge density. The scalar potential
associated with our target nucleus A is expressed as

φA (re) =
1

4πε0

∫ rn=rA

rn=0

ρA (rn)

|re− rn|
d3rn, (9)

where for convenience the origin of our coordinate system coin-
cide with the center of nucleus A and where rA is an effective
nuclear radius outside which the nuclear charge distribution ρA is
zero. From elementary electrodynamics it follows that the scalar
potential outside this radius is that of a equivalent point charge.
The interaction energy associated with nucleus A can thereby be
rearranged as

EA
en = −e

∫ re=rA

re=0
ρe(re)

[
φA (re)−φ

point
A (re)

]
d3re

− e
∫

ρe(re)φ
point
A (re)d3re (10)

The second term is the interaction energy associated with a point
nuclear charge, but it should be kept in mind that the electron
density ρe is the one associated with a molecular system of fi-
nite nuclear charge distributions. We now focus on the first term
and start by expanding the inverse electron-nucleus distance of
eqn (9) in Legendre polynomials. At this point we will assume
the nuclear charge distribution to be spherically symmetric. It is
then reasonable to assume that the electron density is spherically
symmetric as well in the nuclear region, that is, within the ra-
dius rA, even for a molecular system. This has two consequences
for the further derivation: i) The Legendre expansion will trun-
cate to lowest order (L = 0) and ii) Since the potential difference[
φA (re)−φ

point
A (re)

]
is negative (and does not change sign) on

the integration interval [0,rA] we can invoke the first mean value
theorem for definite integrals and write

EA
en;1 =−eρ̄

A
e

∫ re=rA

re=0

[
φA (re)−φ

point
A (re)

]
d3re; ρ̄

A
e = ρe(r̄); r̄∈ 〈0,rA〉

(11)
where the effective density ρ̄A

e corresponds to the value of the elec-
tron (number) density at some radius inside the nuclear volume

of atom A. Insertion of the Legendre expansion now leads to

EA
en;1 = −eρ̄

A
e

∫ rn=rA

rn=0
ρA(rn)

{
1
rn

∫ re=rn

re=0
+
∫ re=rA

re=rn

1
re

}
d3red3rn

+ eρ̄
A
e

∫ re=rA

re=0
φ

point
A (re)d3re. (12)

Further manipulation then leads to the final expression

EA
en =−e

∫
ρe(re)φ

point
A (re)d3re +

ZAe2

6ε0
ρ̄

A
e

〈
r2

n

〉
A

(13)

where appears the mean square radius of the nuclear charge dis-
tribution 〈

r2
n

〉
A
=

∫
ρA(rn)r2

nd3rn∫
ρA(rn)d3rn

(14)

which can for instance be obtained from scattering experi-
ments.55–57 It should be noted that the final expression makes
no reference to the effective nuclear radius rA. In the derivation
it provides a radius at which the finite and point charge potentials
coincide and furthermore furnishes a closed integration interval
for the application of the mean value theorem.

Let us now consider the energy shift associated with the change
of nuclear volume, as gauged by the mean square radius

〈
r2
n
〉

A,
upon isotopic substitution A→ A′. Following Filatov,58,59 we can
express the energy shift by a first-order Taylor expansion, that is

δEAA′
en = EA′

en−EA
en =V A

00δ

〈
r2

n

〉
AA′

; V A
00 =

dEX
en

d
〈
r2

n
〉 ∣∣∣∣∣
〈r2

n〉A

=
ZAe2

6ε0
ρ̄

A
e ,

(15)
where we use the notation δ

〈
r2

n
〉

AA′ =
〈
r2

n
〉

A′ −
〈
r2

n
〉

A. Notice that
this expression is valid not only for isotope field shifts, but also
for the isomer shift appearing in Mössbauer spectroscopy, where
the change of nuclear radius occurs upon change of the state of
the nucleus induced by absorption or emission of gamma radi-
ation.60,61 In both cases the effective density ρ̄A

e is typically ap-
proximated by the contact density ρA

0 , that is, the electron (num-
ber) density at the nuclear origin of atom A. For heavy ele-
ments, though, this is a quite severe approximation that may
lead to errors, albeit systematic for each element, on the order of
10%.12,44,62 It is also an unnecessary approximation since the ef-
fective density can be obtained at the same computational cost as
the contact density. In fact, eqn (15) serves as an operational def-
inition of the effective density with respect to any chosen model
for the nuclear charge distribution. In the present work we em-
ploy a Gaussian model

ρ
G
n (r) = ρ

G
0 exp

[
−ηr2

]
; ρ

G
0 = Ze

(
η

π

)3/2
(16)

where the exponent η is chosen such that the mean square radius〈
r2
〉
=

3
2η

(17)

reproduces the empirical formula63,64

〈
r2

n

〉1/2
=
[
0.836A1/3 +0.570

]
f m (18)

Journal Name, [year], [vol.],1–14 | 3



where A is the atomic mass number64. eqn 15 then leads to the
following definition of the effective density

ρ̄e =
1

Ze

∫
ρe (r)ρ

G
n (r)d3r =

1
Ze

〈
0
∣∣∣ρG

n

∣∣∣0〉 . (19)

An alternative to the use of the effective density is to Taylor-
expand the electronic density ρe(r) about the contact density, but
this will introduce higher-order momenta of the nuclear charge
distribution62,65 and lead to a more cumbersome formalism. An
approximation inherent in eqn (15) is that it is assumed that the
electronic density is assumed identical for both isotopes. The er-
ror introduced by this approximation was found to be on the or-
der of 0.2 - 0.4 % by Fricke and Waber,62 which is an acceptable
error for most purposes.

We are now in a position to consider the nuclear volume effect
on spectroscopic properties, in particular the equilibrium force
constant ke and the equilibrium rotational constant Be. The NVE
arises in part because of a minute change of the internuclear dis-
tance upon isotope substitution. In order to derive the desired
expressions we shall employ variational perturbation theory, as
defined by Helgaker and Jørgensen:66 We consider the electronic
energy as a function of both internuclear distance R and nuclear
mean square radius

〈
r2

n
〉

of atom A

Eel ≡ Eel
(

R,
〈

r2
n

〉)
(20)

and assume that the electronic energy has been optimized with
respect to bond length for any

〈
r2

n
〉
, that is

dEel

dR

∣∣∣∣
〈r2

n〉
= 0. (21)

In this manner the equilibrium distance becomes a function of
nuclear mean square radius Re ≡ Re

(〈
r2

n
〉)

. Since the variational
condition, eqn (21), is valid for any nuclear mean square radius,
its derivative with respect to nuclear mean square radius is zero
as well

d
d
〈
r2

n
〉 dEel

dR
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〈r2

n〉
= 0 (22)

which implies[
∂

∂
〈
r2

n
〉 (dEel

dR

)
+

d2Eel

dR2
dR

d
〈
r2

n
〉]
〈r2

n〉
= 0. (23)

Upon rearrangement we find that the first-order change of equi-
librium distance is

δRAA′
e =

[
dR

d
〈
r2

n
〉]
〈r2

n〉A

δ

〈
r2

n

〉
AA′

=− ZAe2

6ε0ke
ρ̄

A[1]
e δ

〈
r2

n

〉
AA′

(24)

where appears the equilibrium force constant ke as well as the
first geometric derivative of the effective density

ρ̄
A[1]
e =

[
dρ̄e

dR

]
A
. (25)

The first-order change in the rotational coefficient U01 is

δUAA′
01 =

[
dU01

d
〈
r2

n
〉]
〈r2

n〉A

δ

〈
r2

n

〉
AA′

(26)

=

[
U01

(
− 2

Re

)
dR

d
〈
r2
n
〉]
〈r2

n〉A

δ

〈
r2

n

〉
AA′

=U01V A
01δ

〈
r2

n

〉
AA′

where appears the field-shift parameter

V A
01 =

ZAe2

3ε0

1
keRe

ρ̄
A[1]
e . (27)

The expression for V A
01 is identical to Eq. (25) of both Schlembach

and Tiemann39 and Knecht and Saue,44 as well as Eq. (5) of
Tiemann et al..67 However, in the 1985 paper by Knöckel et al.40

Eq.(7) the parameter is scaled by almost a factor ten

V A
01→ π

2V A
01, (28)

for which we can see no justification.

The first-order change in the equilibrium force constant ke with
respect to nuclear mean square radius is

δkAA′
e =

dke

d
〈
r2

n
〉 ∣∣∣∣∣
〈r2

n〉A

δ

〈
r2

n

〉
AA′

=

[
∂ke

∂
〈
r2

n
〉 + ∂ke

∂R
dR

d
〈
r2

n
〉]
〈r2

n〉A

δ

〈
r2

n

〉
AA′

=
Ze2

6ε0

(
ρ̄

A[2]
e − f3

ke
ρ̄

A[1]
e

)
δ

〈
r2

n

〉
AA′

(29)

where appears the first- and second geometric derivatives of the
effective number density ρ̄A

e as well as the cubic force constant
f3. The final expression is equivalent to Eq. (18) of Schlembach
and Tiemann39 when one takes into account that the Dunham
potential coefficient

a1 =
f3Re

3ke
(30)

and that they approximate the effective density by the contact
density. Schlembach and Tiemann consider the change of the
force constant when going from a point to a finite nucleus,
whereas we consider the change upon isotopic substitution A→
A′. A problem with the former approach is that the contact den-
sity is singular in the relativistic domain.

The vibrational field-shift parameter V A
10 is found as

δUAA′
10 =U10

δkAA′
e

2ke
=U10V A

10δ

〈
r2

n

〉
AA′

; V A
10 =

Ze2

12ε0ke

(
ρ̄

A[2]
e − f3

ke
ρ̄

A[1]
e

)
(31)

and is equivalent to Eq. (6) of Tiemann et al..67 It also agrees
with Eq. (8) of Knöckel et al.40 Eq.(7), but only if our expression,
eqn (27) for the rotational field shift parameter V A

01 is taken.

3 Computational details
All calculations reported in this paper have been performed using
the DIRAC package68 and are based on the 4-component rela-
tivistic Dirac–Coulomb Hamiltonian as well as uncontracted basis
sets of Gaussian-type orbitals (GTO). The default Hamiltonian of
the DIRAC package uses a energy correction to avoid the explicit

4 | 1–14Journal Name, [year], [vol.],



calculation of two-electron integrals containing small component
basis functions only.69 However, calibration studies showed that
this gave errors on the order of 10% for the gradient and Hessian
of the contact and effective densities. We have therefore retained
the (SS|SS) class of integrals in all calculations (using the DOSSSS
flag). On the other hand, inclusion of the Gaunt two-electron in-
teraction modified results on the order of 1% and was therefore
neglected. For the elements O, S, Se, Te, F, Cl, Br and I we used
Dyall’s triple zeta basis sets including core–valence correlation
functions (denoted dyall.acv3z).70–72 For the heavy atoms Pb and
Tl, in light of previous studies,12,73 two more tight s and one tight
p function were added to the dyall.acv3z basis. The final large-
component basis set, denoted TZ+2s1p, are [33s28p18d12f1g]
and [37s33p22d18f4g1h] for Pb and Tl, respectively. Small com-
ponent basis functions were generated from the large component
functions using the restricted kinetic balance condition.74 As ex-
plained in the previous section, the nuclear charge distribution
was modeled by a Gaussian function.64

Benchmark values of the effective and contact densities at the
Pb- and Tl-centers were obtained at the coupled-cluster singles-
and-doubles (CCSD) level using a newly developed extension of
the RELCCSD module of the DIRAC package,75,76 allowing the
calculation of CCSD expectation values in an orbital-unrelaxed
formalism.45 For PbO, PbS, TlF and TlCl 20 electrons were corre-
lated, corresponding to the 5d6s6p shells of Pb/Tl and the nsnp
shells of the chalcogens/halogens. For PbSe, PbTe, TlBr and TlI
the (n-1)d shells of the chalcogens/halogens were included as
well, giving a total of 30 correlated electrons. An energy cutoff of
40 Eh in the virtual space was introduced, but care was taken to
include all core and valence correlation as well as valence dipole
polarization functions.

We also carried out 4-component relativistic density functional
theory (DFT) calculations,77 using a wide variety of functionals:
PBE,78 PBE0,79–81 BLYP,82–84 B3LYP82,85,86 and CAMB3LYP.87

All DFT calculations were carried out with an “ultrafine” grid for
numerical integration to guarantee well converged results in the
exchange-correlation functional evaluation. In practice, for this
purpose, we used the .ULTRAFINE option in the DIRAC pack-
age which means that radial integration is performed using the
scheme proposed by Lindh et al.88 with a convergence threshold
of 2× 10−15, while the angular integration is carried out using
the Lebedev scheme with Lmax = 64 . Geometric first- and second
derivatives of the contact and effective densities were obtained by
numerical differentiation using a three-point stencil

ρ
′
(x) =

ρ(x+h)−ρ (x−h)
2h

; ρ
′′ (x) =

ρ(x+h)−2ρ(x)+ρ(x−h)
h2

(32)
with a step size h=0.01 Å.44,89 For selected molecules calibra-
tion studies using five- and seven-point stencils and other step
sizes were carried out to assure that the numerical scheme was
stable. We also calculated spectroscopic constants (equilibrium
bond length re, harmonic frequencies ωe and anharmonicities
ωexe) based on a 6th order polynomial fit of 9 energy points and
masses of the most abundant isotopes, using the auxiliary pro-
gram TWOFIT which is included in the DIRAC package.90,91

4 Results and discussion
In Tables 1 and 2 we present calculated geometric derivatives of
contact and effective densities at the position of the heavy nucleus
in PbX (X=O, S, Se, Te) and TlY (Y=F, Cl, Br, I), respectively.
We have also included calculated and experimental spectroscopic
constants (re, ωe, ωexe) to further indicate the performance of
each method.

4.1 Methodological considerations

We start by considering the performance of SCF methods, that is,
Hartree-Fock and Kohn-Sham, using our CCSD data as reference.
We have calculated relative errors of calculated geometric deriva-
tives of effective densities with respect to CCSD and present in
Table 3 corresponding mean relative errors ∆̄ and standard de-
viations ∆std . For the gradient of the contact density ρ̄

[1]X
e the

CAMB3LYP functional has the overall best performance in terms
of accuracy (∆̄) and precision ∆std . However, for the Hessian ρ̄

[2]X
e

of the effective density the same functional is not at all reliable.
In fact, for the lead compounds the DFT functionals show large
scattering. One might suspect errors due to numerical evaluation
of the functionals, despite the use of ultrafine grids, but HF shows
the same degradation of performance when going from the gradi-
ent to the Hessian of the effective density. We have also carefully
checked our procedure for numerical geometric derivatives, but
have not detected any instabilities. What can be noted, though,
is that CAMB3LYP overall provides excellent agreement with ex-
periment for equilibrium bond lengths and harmonic constants,
but not for anharmonicites, and only the wave function based
methods HF and CCSD show reasonable standard deviations for
anharmonicites. In conclusion we find that whereas some DFT
functionals, in particular CAMB3LYP and PBE0, provide reliable
gradients of effective densities ρ̄

[1]
e compared to CCSD, this no

longer holds true for Hessians of effective densities ρ̄
[2]
e .

We next consider the effect of approximating the effective den-
sity ρ̄X

e by the contact density ρX
0 . For all methods we find that

replacing the contact density by the effective density reduces gra-
dients systematically by about 10.5 %; for CCSD we obtain for in-
stance -10.40(11) %. However, for SCF methods the correspond-
ing deviation for Hessians varies substantially, whereas for CCSD
we obtain -10.13(54) %, which is more reasonable and seems to
indicate that the CCSD values are reliable.

4.2 Effective density as a function of internuclear distance

Following Tiemann et al.67 we plot in Figure 1 our CCSD values
for the gradient of the heavy-atom effective density ρ̄

[1]
e as a func-

tion of reported experimental equilibrium bond lengths. A rather
striking linear relationship becomes apparent, probably indicat-
ing similar electronic structure of the title compounds. Tiemann
and co-workers further speculated that they could use this rela-
tionship to estimate a value for the Hessian of the contact density,
or, more correctly, the effective density. Linear regression of the
data in Figure 1 gives a slope of -237 Å−5. This is indeed very
close to our CCSD value of ρ̄T l[2]= -238 Å−5 obtained for TlCl.
However, further inspection of Tables 1 and 2 shows that the Hes-
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sian of the effective density span the range -414 Å−5 to 210 Å−5.
It is furthermore positive for the lead chalcogenides, but negative
for thallium halides.

Fig. 1 Gradient of effective density ρ̄
[1]
e (in Å−4) plotted as function of

equilibrium bond length Re (in Å). Linear regression gives y = 802.12 -
236.91x

An example of the effective density as a function of internuclear
distance R is given in Figure 2. We plot the effective density ρ̄Pb

e
of the PbS molecule relative to its value at R = 4.0 Å. The values
have been obtained at the Kramers-restricted Kohn-Sham level,
using the PBE0 functional, which means that the values in the
dissociation limit calls for some caution. We are, however, more
interested in the behavior of the effective density around the equi-
librium distance, which is 2.29 Å from experiment. From Table 1
we see that both the gradient and the Hessian of the effective
density ρ̄Pb

e is positive in this region, but we also see from Fig-
ure 2 that the effective density goes through a minimum around
R= 1.96 Å. We have tried to rationalize this behavior using pro-
jection analysis.92,93 We start by expressing the effective density
as an SCF expectation value, which in the present case gives〈

0
∣∣∣ρG

n

∣∣∣0〉= ∑
i

〈
ψ

MO
i

∣∣∣ρG
n

∣∣∣ψMO
i

〉
. (33)

We then expand the molecular orbitals ψMO
i in pre-calculated or-

bitals ψA
k of the constituent atoms∣∣∣ψMO

i

〉
= ∑

kA

∣∣∣ψA
k

〉
cA

ki +
∣∣∣ψ pol

i

〉
. (34)

where A refers to the atomic center and k is an orbital index for
that center. The expansion is normally restricted to the orbitals
that are occupied in the ground state configuration of each atom
and is thereby not guaranteed to fully span each occupied molec-
ular orbital. The orthogonal complement ψ

pol
i is denoted the po-

larization contribution and should normally be small for a mean-
ingful analysis. Insertion of the expansion, eqn (34), into the
expression for the expectation value, eqn (33), allows a decom-
position of the latter into intra- and interatomic contributions.
In the present case we find, as expected, that the effective den-
sity ρ̄Pb

e is completely dominated by the intraatomic contribution

associated with the atomic orbitals of lead. From previous anal-
ysis94 we know that only the large components of s1/2-orbitals
and the small components of p1/2-orbitals contribute to the con-
tact density; for the effective density other atomic orbitals may
contribute as well, but their contributions can be ignored. In the
present case we see that the effective density ρ̄Pb

e is dominated by
the contribution from Pb s1/2-orbitals, but it is interesting to see
that there is a non-negligible p1/2 - contribution at intermediate
internuclear distances. By looking at contributions from individ-
ual pairs of lead orbitals, we find that there are a number of large
contributions of opposite sign which leads to the minimum of Fig-
ure 2, but we have so far not succeeded in formulating a simple
mechanism explaining this observation.

Fig. 2 Projection analysis of the effective density ρ̄Pb
e (in Å−3 and

relative to values at R = 4.0 Å) of the PbS molecule, using the PBE0
functional, as a function of internuclear distance R (in Å)

4.3 Comparison with experimental data
Let us now compare our CCSD results to available experimen-
tal data. In Table 4 we report calculated field shift parameters
for lead and thallium in the title compounds. The reported val-
ues have been obtained by using our CCSD values of ρ̄

[1]X
e , ρ̄

[2]X
e

as well as the cubic force constant f3 and combining them with
equilibrium bond lengths re and harmonic vibrational frequencies
ωe taken from experiment.95 The latter values have been con-
verted to equilibrium force constants ke using the atomic masses
of the most abundant isotopes, corresponding to the reference
isotopomer.

We first compare our rotational field shift parameters V01 with
the values reported by Tiemann and co-workers in 1982.39,67

Although our calculated values are systematically outside ex-
perimental error bounds, with relative errors on the order of
-20%, they are of the right order of magnitude, correctly re-
produce trends observed in the experimental data and there-
fore seem to corroborate the observation of nuclear size effects
in rotational spectra by Tiemann and co-workers. What is cu-
rious is that the field shift parameters V Pb

01 for PbS, although
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Table 1 Spectroscopic constants (bond lengths re, harmonic vibrational frequencies ωe, and anharmonic constants ωexe) of diatomic molecules PbX
(X=O, S, Se, Te) obtained with various method and using TZ+2s1p basis set, as well as the gradient and Hessian of the contact and effective
(number) density. All experimental spectroscopic data (re, ωe, ωexe) were taken from ref. 95

Method re

[
Å
]

ωe
[
cm−1] ωexe

[
cm−1] ρ

[1]Pb
0

[
Å−4

]
ρ̄
[1]Pb
e

[
Å−4

]
ρ
[2]Pb
0

[
Å−5

]
ρ̄
[2]Pb
e

[
Å−5

]
PbO
HF 1.8717 825.1 5.29 473 423 817 733
CCSD 1.9060 754.1 4.74 394 353 233 210
PBE0 1.9017 774.9 5.19 384 343 21 20
PBE 1.9346 716.7 4.92 362 324 -112 -100
BLYP 1.9524 691.1 3.69 372 333 -148 -131
B3LYP 1.9211 744.8 5.38 390 349 -40 -35
CAMB3LYP 1.8982 788.2 17.93 397 355 314 221
Exp. 1.9218 712 3.54 - 40.4(31)a - -
PbS
HF 2.2672 464.6 1.31 310 278 308 276
CCSD 2.2844 440.3 1.25 268 239 145 131
PBE0 2.2804 440.4 0.53 262 235 63 57
PBE 2.3121 412.7 0.39 237 212 4 4
BLYP 2.3398 396.3 0.99 237 212 -15 -13
B3LYP 2.3075 419.1 0.34 257 230 31 29
CAMB3LYP 2.2754 444.2 0.28 280 250 345 305
Exp. 2.2868 429.4 1.3 - 213(17)b - 47(61)c

PbSe
HF 2.3906 294.2 0.66 281 251 204 183
CCSD 2.4062 282.6 0.58 236 211 73 66
PBE0 2.4007 287.1 0.80 227 203 4 6
PBE 2.4329 272.7 1.47 201 180 -39 -32
BLYP 2.4616 258.8 1.50 197 176 -54 -46
B3LYP 2.4290 274.6 1.25 218 195 -18 -15
CAMB3LYP 2.3952 287.1 -1.76 244 218 -134 -67
Exp. 2.4022 277.6 0.51 - 177(15)b - -
PbTe
HF 2.5995 215.3 0.54 240 215 134 121
CCSD 2.5947 216.0 0.40 191 171 56 51
PBE0 2.5971 215.1 0.27 181 162 4 5
PBE 2.6313 201.9 -0.04 155 139 -19 -16
BLYP 2.6656 191.8 0.01 148 132 -28 -24
B3LYP 2.6300 202.8 0.07 170 152 -8 -7
CAMB3LYP 2.5927 214.8 1.63 197 176 -6 -3
Exp. 2.5949 211.9 0.43 - 148(11)b - -

a Ref. 43 (believed to be too small by a factor ten, see text) b Ref. 39 c Ref. 40 (believed to be in error, see text)

a fitting parameter, was changed by about an order of magni-
tude from 2.45(19)·104 Å−2to 26.38(51)·104 Å−2 in the 1985 ex-
perimental study reported by the same group.40 On the other
hand, their reported vibrational field shift parameter V Pb

10 for PbS
is 6.84(41)·104 Å−2, which is in line with our theoretical value
7.87·104 Å−2. In the 1985 paper Knöckel et al.40 Eq.(7) report
ρ
[2]Pb
0 = 47(61)·Å−5 for PbS , which deviates significantly from our

CCSD value of 131 Å−5. However, if we use the rotational field
shift parameter V Pb

01 for PbS reported by the Tiemann group in
1982,39,67 the vibrational field shift parameter V Pb

10 from 198540

combined with our CCSD cubic force constant we obtain the value
ρ
[2]Pb
0 = 137 Å−5 which is in very good agreement with our result.
Serafin et al. completed the series of Pb-chalcogenides by

studying the nuclear volume effect in the rotational spectrum of
PbO.43 They report a rotational field shift parameter V Pb

01 which
is in reasonable agreement with our CCSD value. On the other

hand, they give the 1985 formula for V01, eqn (28), and so their
value for ρ̄Pb[1] is about an order of magnitude smaller than our
CCSD value. Interestingly, they cite the 1985 value of Knöckel et
al.40 Eq.(7) V Pb

01 for PbS, but a factor of ten smaller, so in line with
our CCSD results.

In Table 5 we have compiled the change of ground electronic
state potential energy, equilibrium distance and force constant,
that is, δEAA′ , δRAA′

e and δkAA′
e , upon isotope substitution of the

heavy atom in the title compounds. As illustrated for lead in Fig-
ure 3, the nuclear radii of the isotopes of a given element are
monotonically increasing as a function of atomic number, despite
the well-known odd-even staggering. As seen from eqn (15), this
implies that the ground electronic state potential energy is mono-
tonically increasing with atomic mass. Interestingly, the changes
of bond lengths δRAA′

e due to isotope substitution shown in Table 5
are all positive, although nuclear radii decrease. From eqn (24)
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Table 2 Spectroscopic constants (bond lengths re, harmonic vibrational frequencies ωe, and anharmonic constants ωexe) of diatomic molecules TlY
(Y=F, Cl, Br, I) obtained with various method and using TZ+2s1p basis set, as well as the gradient and Hessian of the contact and effective (number)
density. All experimental spectroscopic data (re, ωe, ωexe) were taken from ref. 95.

Method re

[
Å
]

ωe
[
cm−1] ωexe

[
cm−1] ρ

[1]T l
0

[−4] ρ̄
[1]T l
e

[−4] ρ
[2]T l
0

[−5] ρ̄
[2]T l
e

[−5]
TlF
HF 2.0801 478.1 2.38 438 393 -411 -368
CCSD 2.0887 473.3 2.18 368 330 -461 -414
PBE 2.1190 440.3 1.44 307 276 -521 -468
PBE0 2.0905 471.8 5.23 343 308 -513 -461
BLYP 2.1415 421.5 -2.94 308 276 -530 -474
B3LYP 2.1124 451.3 2.53 335 300 -523 -469
CAMB3LYP 2.0912 473.2 -9.09 351 315 -375 -366
Exp. 2.0844 477.3 2.3 - 254(30)a - -
TlCl
HF 2.5264 268.9 0.88 310 278 -256 -228
CCSD 2.5064 277.2 0.84 247 222 -266 -238
PBE 2.5198 264.2 -1.68 190 171 -249 -224
PBE0 2.4955 273.1 -1.64 222 199 -264 -237
BLYP 2.5577 259.4 1.06 186 166 -259 -231
B3LYP 2.5306 265.7 -0.29 210 189 -268 -241
CAMB3LYP 2.5005 273.1 -11.10 238 213 -306 -307
Exp. 2.4848 283.7 0.81 - 185(25)a - -
TlBr
HF 2.6720 180.7 0.40 264 237 -203 -182
CCSD 2.6393 189.0 0.40 206 184 -207 -186
PBE 2.6546 190.4 2.42 155 139 -186 -166
PBE0 2.6325 195.4 1.73 184 165 -200 -180
BLYP 2.6931 176.4 1.90 149 133 -195 -173
B3LYP 2.6667 186.8 2.13 171 154 -207 -184
CAMB3LYP 2.6353 200.2 17.63 200 179 -333 -267
Exp. 2.6181 192.1 0.39 - 142(42)a - -
TlI
HF 2.8867 138.8 0.25 212 190 -130 -117
CCSD 2.8389 147.0 0.25 160 143 -127 -113
PBE 2.8565 137.7 -0.73 114 102 -104 -92
PBE0 2.8315 144.2 -0.31 140 126 -119 -107
BLYP 2.9041 133.1 -0.18 107 95 -109 -97
B3LYP 2.8731 137.1 -0.52 127 114 -122 -108
CAMB3LYP 2.8335 145.4 4.70 155 138 -23 -58
Exp. 2.8136 150 - - 120.6(38)a - -

a Ref. 39

one sees that the sign of δRAA′
e is determined by the gradient of

the effective density, which is positive for all title compounds in
our study. What is quite amazing is that the NVE modification
of spectroscopic constants such as the equilibrium rotational and
force constant is due to bond length changes that are on the order
of one percent of the nuclear radius of the heavy atom, yet ap-
parently seen in high-resolution rovibrational spectroscopy. The
change in the equilibrium force constant upon reduction of the
heavy atom nuclear radius is negative for all title compounds. As
shown in eqn (29), the change in the equilibrium force constant
has contributions from both the gradient and the Hessian of the
effective density. Since cubic force constants are typically nega-
tive, as for instance inferred from a Morse potential and as shown
in Table 4, the two contributions have the same sign if the gradi-
ent and the Hessian of the effective density have the same sign.
From our CCSD results reported in Tables 1 and 2 this is seen to

be the case of the lead-chalcogenides, but not for the thallium
halides; for the first class of compounds the contribution from
ρ̄

A[2]
e is on the order of 10 %, whereas it is on the order of 30 - 40

% for the latter.

4.4 Isotope fractionation

We close this section by a short discussion of the nuclear vol-
ume effect on chemical equilibria. In his seminal 1996 paper25,96

Bigeleisen considered the nuclear volume effect on the isotopic
exchange reaction

A′Y +AX = A′X +AY (35)

and in particular the isotope fractionation factor

α =
(A/A′)AY
(A/A′)AX

, (36)
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Table 3 Statistical analysis of relative errors (the mean relative error and the standard deviation) in bond lengths re, harmonic vibrational frequencies
ωe, and anharmonic constants ωexe obtained for the eight diatomic molecules PbX (X=O, S, Se, Te) and TlY (Y=F, Cl, Br, I) with different methods and
compared to experimental data. 95 We also give relative errors of calculated first- and second derivatives of effective densities using our CCSD results
as reference

Method re ωe ωexe ρ̄
[1]A
e ρ̄

[2]A
e

∆̄ ∆std ∆̄ ∆std ∆̄ ∆std ∆̄ ∆std ∆̄ ∆std

HF 0.3% 1.7% 1.7% 8.1% 17.1% 18.3% 23.4% 5.7% 82.5% 100.1%

PBE0 0.1% 0.5% 1.2% 4.2% 25.1% 196.5% 0.1% 14.3% -40.7% 45.8%

PBE 1.4% 4.0% -4.2% 3.3% 31.9% 262.5% -18.2% 6.9% -68.3% 69.5%

BLYP 2.6% 0.5% -8.3% 2.8% 38.2% 200.2% -19.9% 9.1% -74.8% 79.8%

B3LYP 1.3% 0.7% -3.3% 4.0% 51.4% 198.0% -10.5% 6.5% -52.7% 60.5%

CAMB3LYP 0.0% 0.7% 1.9% 4.7% 373.8% 1889.3% -0.4% 3.7% -19.6% 101.1%

CCSD 0.2% 0.6% 0.7% 2.9% 5.4% 14.4% — — — —

which compares distributions of isotopes A and A′ in compounds
AY and AX . He concluded that the field shift effect would modify
the isotope fractionation factor α0, as predicted by Bigeleisen–
Goeppert-Mayer theory,23 by

lnα = lnα0 + lnK f s, (37)

where appears the correction factor

lnK f s =−
1

kT

{
δEAA′(AX)−δEAA′(AY )

}
, (38)

due to the change of the electronic ground state energies induced
by the nuclear volume effect. Using eqn 15 we can re-write the
above expression as

lnK f s =−
1

kT
ZAe2

6ε0
δ

〈
r2

n

〉
AA′

{
ρ̄

A
e (AX)− ρ̄

A
e (AY )

}
, (39)

which shows that the nuclear volume effect favors the compound
having the smallest effective density at center A. Normally this
would imply the compound with the smallest s1/2- contribution
to the contact density, but for heavy elements one can not ne-
glect the possible importance of p1/2-contributions, as seen from
Figure 2.

A key result of Bigeleisen–Goeppert-Mayer theory is that the
isotope fractionation factor α0 can be expressed in terms of re-
duced partition-function ratios

α0 =

( s
s′
)

f (AY/A′Y )( s
s′
)

f (AX/A′X)
, (40)

where the reduced partition-function ratio in turn is defined as

( s
s′

)
f =

( s
s′

)( q
q′

) N

∏
j

(
m j

m′j

)
,−3/2 (41)

where appears partition functions q and q′, symmetry numbers s
and s′ from the rotational part of the partition functions as well
as the atomic mass ratios. Bigeleisen and Goeppert-Mayer in par-
ticular noted that the latter factor would cancel out in the calcu-
lation of the equilibrium constant for any isotopic exchange reac-
tion, eqn (35). The natural logarithm of the reduced partition-

function ratio is conveniently expressed as

ln
[( s

s′

)
f
]
=

3N−6(5)

∑
i

G(ui)
(
ui−u′i

)
; ui =

h̄ωi

kT
; G(u)=

[
1
2
− 1

u
+

1
eu−1

]
;

(42)
this expression is valid when the difference in harmonic frequen-
cies ωi between the two isotopomers is small. In a 1998 paper
Bigeleisen considered the effect of the nuclear volume effect on
this frequency difference for a diatomic molecule.97 Bigeleisen
based his estimation on a plot by Tiemann et al.67 similar to that
of Figure 1, but based on experimental data. Tiemann and co-
workers proposed based from the linearity of the plot that i) the
Hessian of the contact (effective) density would be almost con-
stant for this series of molecules and that ii) the slope of the linear
fit therefore suggested that the relative field shift effect would be
on the order of 10−6 for vibrational energies. Our results indicate
that the first suggestion is wrong, yet the estimates of Bigeleisen
are to good measure correct, as we show in the following. We
may write the harmonic frequency of the substituted isotopomer
as

ω
′
e =

√
k′e
µ ′

=

√
ke +δkAA′

e
µ ′

≈

√
ke

µ ′
+

1
2

δkAA′
e√

µ ′ke
=ω

′[0]
e +

1
2

δkAA′
e

ke
ω
′[0]
e .

(43)
The first term is the harmonic frequency ω

′[0]
e in the absence of the

nuclear volume effect. From the second term it follows that the
nuclear volume effect may be expressed relative to this zeroth-
order harmonic frequency and that the weight is determined by
the ratio between the change of force constant δkAA′

e due to NVE
and the force constant ke of the reference isotopomer. This ratio
is given for all title compounds in Table 5 and is indeed of or-
der 10−6. Using the experimental spectroscopic data from Table 1
we find that upon isotope substitution 208Pb→207 Pb in 208Pb32S,
the change of harmonic frequency due to the mass effect alone is
ωe−ω

′[0]
e is 0.1396 cm−1, whereas the nuclear volume effect gives

an additional shift of 2.514·10−4 cm−1. These numbers agree
quite well with those of Bigeleisen and corroborate his conclu-
sion that the nuclear volume effect on the force constant has very
little influence on the equilibrium constant in isotopic exchange
reactions.
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Table 4 Rotational V01 and vibrational V10 field shift parameters of the
heavy atom in the selected diatomic molecules. Theoretical values have
been obtained using CCSD geometric derivatives of effective densities
(ρ̄ [1]

e and ρ̄
[2]
e ) and cubic force constants f3. For re and ωe we have used

experimental data, 95 except for TlI, where we used the CCSD(T) values
reported by Knecht and Saue. 44 Experimental values of V01 are those
given by Tiemann and co-workers in 1982, 39,67 except for PbO, taken
from ref. 43.

Molecules V01

(
104 Å−2

)
f3
(
Eh/a−3

0
)

V10

(
104 Å−2

)
theory exp. theory theory exp.

PbO 3.28 2.64 (36) -0.957 10.94
PbS 2.75 2.45 (19) -0.456 7.87 6.84(41)
PbSe 2.66 2.21 (19) -0.384 7.37
PbTe 2.47 2.12 (16) -0.299 7.15
TlF 5.31 4.09 (19) -0.385 9.95
TlC 4.94 4.09 (55) -0.179 8.13
TlBr 4.44 3.37 (10) -0.151 7.47
TlI 3.96 3.20 (10) -0.117 7.33

5 Conclusion
In the present contribution we have investigated the nu-
clear volume effect in the rovibrational spectra of diatomic
molecules, motivated by the pioneering work of Tiemann and co-
workers.37,39,40,67 We provide a new derivation of the electro-
static interaction between electrons and nuclei which is respon-
sible for the NVE, as well as the isomer shift of Mössbauer spec-
troscopy. This derivation has the advantage of not assuming any
specific model for the nuclear charge distribution and naturally
brings out the nuclear mean square radius

〈
r2
n
〉

as a measure of
nuclear size. It also leads to the introduction of the effective den-
sity ρ̄A

e which corresponds to the value of the electronic number
density at some radius inside the nuclear volume. The effective
density is often approximated by the contact density ρA

0 , but the
present and previous studies44,62,94 show that for heavy atoms
this leads to errors, albeit systematic, on the order of 10%. We fur-
thermore argue that this is an unnecessary approximation, since
the effective and contact densities can be calculated at identical
computational cost.

Based on the energy expression, eqn (13), we derive, using
variational perturbation theory, expressions for the change of en-
ergy, rotational constant Be and force constant ke due to the NVE
in terms of the field shift parameters V A

00, V A
01 and V A

10, respec-
tively. These expressions agree with the 1982 derivations of Tie-
mann and co-workers,39,67 but we find no justification of the later
introduction of a scaling factor π2 in the rotational field shift pa-
rameter V A

01.40

The field shift parameters are expressed in terms of the effec-
tive density ρ̄A

e and its first and second derivative with respect
to internuclear distance. We have calculated these quantities
for lead chalcogenides and thallium halides at the level of 4-
component relativistic CCSD theory and conclude that our results
corroborate the experimental findings of the Tiemann group, al-
though we observe relative errors on the order of 20 %. This is all
the more remarkable in that the modifications of spectroscopic
constants primarily arise from bond lengths changes on the or-
der of one percent of nuclear radii. We have also carried out

Fig. 3 Root mean square (rms) nuclear charge radii (in fm) for lead as a
function of atomic mass number A. Data is taken from the tables of
Angeli and Marinova 56

4-component relativistic DFT calculations, but they do not appear
to be reliable for the Hessian of the effective density, at least for
the lead chalcogenides.

For lead sulfide we investigate the effective density at the lead
nucleus as a function of internuclear distance and find that it has
a minimum around 0.2 Å inside the equilibrium bond length. Pro-
jection analysis shows that the effective density is dominated by
the intra-atomic contribution of the atomic orbitals of lead, with
contributions from both s1/2- and p1/2- orbitals, the latter signifi-
cant at intermediate internuclear distances. We have on the other
hand not been able to explain the appearance of the minimum of
the effective density at short internuclear distance.

We also discuss modifications of Bigeleisen–Goeppert-Mayer
theory of isotope fractionation in light of our results. We con-
clude, as Bigeleisen,25,97 that the modification of electronic
ground state energies due to NVE has an important bearing on
the isotope chemistry of the heavy elements, whereas the modifi-
cations of force constants due to NVE can be ignored at this level
of approximation.

In future work we would like to further check the convergence
of our results in terms of basis sets and correlation treatment. We
would in particular like to investigate the effect of going beyond
the 4-component relativistic CCSD level of theory in the study
of nuclear volume effects, notably the effect of the inclusion of
triples. We would also like to investigate possible effects of nu-
clear spin on heavy element isotope chemistry.
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Table 5 Change of ground electronic state potential energy, equilibrium distance and force constant upon isotope substitution of the heavy atom in the
title compounds. Nuclear radii changes δ AA′ 〈r2

n
〉

are taken from the tables of Angeli and Marinova 56 and are (in fm2): -0.0743 (208Pb→207Pb), -0.1189
(208Pb→206Pb) and -0.0978 (205Tl→203Tl)

Reference ρ̄e(107 Å−3) Substitution δEAA′(mEh) δRAA′
e (fm) δkAA′

e (10−4 N/m) δkAA′
e /ke

208Pb16O 1.683 207Pb -11.36 0.0234 -7.215 -1.450E-06
206Pb -18.18 0.0375 -11.545 -2.603E-06

208Pb32S 1.683 207Pb -11.36 0.0234 -3.521 -1.113E-06
206Pb -18.18 0.0374 -5.635 -1.872E-06

208Pb80Se 1.683 207Pb -11.36 0.0237 -2.869 -1.056E-06
206Pb -18.18 0.0379 -4.592 -1.752E-06

208Pb130Te 1.683 207Pb -11.36 0.0238 -2.246 -1.022E-06
206Pb -18.18 0.0381 -3.595 -1.699E-06

205Tl19F 1.554 203Tl -13.65 0.0541 -4.542 -1.980E-06
205Tl35Cl 1.554 203Tl -13.65 0.0600 -2.254 -1.666E-06
205Tl79Br 1.554 203Tl -13.65 0.0569 -1.811 -1.510E-06
205Tl127I 1.554 203Tl -13.65 0.0545 -1.441 -1.444E-06

from Université Toulouse III. AS was financially supported by a
PhD-grant from the Indo-French Centre for the Promotion of Ad-
vanced Research (IFCPAR project No. 4705-3).
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