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MapReduce is a popular programming model for distributed data processing and Big Data applications running on clouds. Extensive research has been conducted either to improve the dependability or to increase performance of MapReduce, ranging from adaptive and on-demand fault-tolerance solutions, adaptive task scheduling techniques to optimized job execution mechanisms. This paper investigates an optimization-based solution to control MapReduce systems in order to provide guarantees in terms of both performance and availability while reducing utilization costs. We follow a control theoretical approach for MapReduce cluster scaling and admission control. Moreover, we aim to be robust to changes in MapReduce and in it's environment by adapting the controller online to those changes. This paper highlights the major challenges of combining system adaptation and optimal control to take the best of both approaches.

INTRODUCTION
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Feedback Computing 2016 June 19, 2016, Wurzburg, Germany c 2016 ACM. ISBN 978-1-4503-2138-9. DOI: [START_REF] Filieri | Software engineering meets control theory[END_REF].1145/1235 dustry to handle these large amounts of data. MapReduce is a popular programming model and execution environment for developing and executing distributed data-intensive and computer-intensive applications [START_REF] Dean | MapReduce: simplified data processing on large clusters[END_REF] now mostly used in its open source implementation Hadoop. It was developed in 2008 by Google, and broadly improved since, to automatically handle data partitioning, consistency and replication, as well as task distribution, scheduling, load balancing and fault tolerance, and nowadays it is backed by Big Data industry leaders such as Facebook, Yahoo or LinkedIn (see [START_REF] Shen | Enabling the New Era of Cloud Computing: Data Security, Transfer, and Management: Data Security, Transfer, and Management[END_REF], [START_REF] Dean | MapReduce: simplified data processing on large clusters[END_REF] among others). Hence, the complexity of configuration of such a system is continuously increasing while the user expectations remain the same: continuous availability and fast response times are the required norm. Moreover, with the advent of cloud solutions, the environments where BigData systems need to run is becoming more and more dynamic. These environments are influenced, among many other, by input/output and network skews [START_REF] Li | Ofscheduler: A dynamic network optimizer for mapreduce in heterogeneous cluster[END_REF] and hardware and software failures [START_REF] Sangroya | Benchmarking Dependability of MapReduce Systems[END_REF]. Moreover, workloads variation over time [START_REF] Ghit | Balanced resource allocations across multiple dynamic mapreduce clusters[END_REF][START_REF] Ari | Managing flash crowds on the internet[END_REF][START_REF] Li | Realistic workload modeling and its performance impacts in large-scale e-science grids[END_REF] both in size and in nature are a major cause of the unpredictable changing behavior of MapReduce.

Furthermore, ensuring the performance and dependability of cloud services still poses several challenges. Extensive research has been conducted to improve dependability or performance of MapReduce by changing the behavior and/or algorithms of the framework itself (see [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF] for instance). Although these solutions improve upon how MapReduce works, no guarantees are provided in term of performance and availability. Some solutions for performance modeling [START_REF] Verma | Resource provisioning framework for MapReduce jobs with performance goals[END_REF][START_REF] Ganapathi | Statistics-driven workload modeling for the cloud[END_REF] and control [START_REF] Cardosa | Steamengine: Driving mapreduce provisioning in the cloud[END_REF] can be found in the literature. However, to the best of our knowledge, there are no work to provide concurrent guarantees in terms of combined dependability and performance, while reducing utilization costs.

From this context we identify two objectives as being still open problems concerning MapReduce usage. This paper details a workin-progress and is intended as a position (or challenge) paper. Further on the article highlights the main challenges that such approach has. First there is a need for solutions that can guarantee multiple objectives such as performance level or dependability while being parsimonious in resource usage. Second, these solutions need to be highly robust to variations of the Hadoop framework itself and to the dynamics of its environment. To tackle these issues we chose to use control theory, as it is a well established theory being promisingly applied to software systems [START_REF] Filieri | Software engineering meets control theory[END_REF]. In the following, we present an algorithm that generate the optimal configuration of a MapReduce system to meet performance, availability, costs and power constraints taking into account the dynamics of the environment by scaling the resource cluster and realizing admission control. Moreover, this control algorithm is able to adapt itself to changes in Hadoop or its working environment, hence fulfilling robustness specifications.

STATE OF THE ART

MapReduce Dynamic Modeling

Capturing the complex behavior of a cloud service in varying environments which will be valid in all its configurations while being implementation independent is highly challenging. A simple model that captures quite well the dynamics of MapReduce systems and can be used to predict its performance and availability levels was already proposed in [START_REF] Berekmeri | Feedback autonomic provisioning for guaranteeing performance in mapreduce systems[END_REF]. The model is built as a set of difference equations that describe the impact of changes in the inputs (control variables and disturbances) on system's outputs, see Equation 1.

Rt N (k) = a.Rt N (k -1) + b(N(k -5) + N(k -6)) Rt MC (k) = c.Rt MC (k -1) + d(MC(k -8) + MC(k -9)) Rt(k) = Rt N (k) + Rt MC (k) Av(k) = α.Av(k -1) + β (MC(k) -C(k)) (1)
The choice of control variables out of Hadoop's many parameters (more than 170) is not straightforward. After an in depth analysis of Hadoop's behavior and because the proposed control technique needs to be independent of the implementation or the Hadoop / MapReduce version (see [START_REF] Berekmeri | Feedback autonomic provisioning for guaranteeing performance in mapreduce systems[END_REF]), we chose the cluster size (N) and the maximum number of admitted clients (MC) as our tunable signals that can be used to control cloud services behavior, as they are known to have a high influence on both service availability and performance. The workload C (the number of concurrent clients that are sending requests) is considered as an exogenous disturbing signal that we cannot control. The outputs, that is to say the measured variables which we desire to keep below or above given levels, are the average response time Rt of a MapReduce client request and the availability level Av of MapReduce to its clients.

The proposed model, even if it is not as accurante and general as what can be found in the litterature (see [START_REF] Ganapathi | Statistics-driven workload modeling for the cloud[END_REF] for instance), has the advantage of taking into account the dynamics of the system thus enabling easy design of a control law. The considered model makes no limitations on client requests to MapReduce (their number, size or nature), it only assumes that their variance is no more than 25%, which is hardly ever the case in practice. However, to improve this model, we propose an adaptation mechanism that implicitly take into account workload features at every level, as well as cloud environment variation.

Control of MapReduce

One of the important challenges in current MapReduce deployments is ensuring performance and availability while minimizing costs [START_REF] Compuware-Researchinaction | The hidden costs of managing applications in the cloud[END_REF]. In our case these specifications are given as the maximum response time Rt max and the minimum availability Av min to be guaranteed by the MapReduce system at all times. MapReduce admission control is a classical technique to control availability and to prevent server thrashing since it consists in limiting the maximum number of clients that are allowed to concurrently send requests to the system. By controlling the number of resources the cloud service has at his disposal by means of feedback loops one can ensure a certain response time.

Control theory has been already applied to perform both feedback actions through a Proportional-Integral controller and predictive control through a feedback-feedforward loop [START_REF] Berekmery | A control approach for performance of big data systems[END_REF].

Event though these techniques have proved their efficiency, to our knowledge there is very difficult to perform both performance and dependability control while reducing the cost of running the cluster and being robust to workload changes and environment variations. Indeed, the actions of both control systems for performance and availability are highly coupled, as the model of Equation (1) highlights. Moreover, these techniques are heuristic and based on reaction or prediction of events so they cannot ensure the decision taken is the optimal one. Consequently, we propose a Multi-Input-Multi-Output optimal controller to ensure multiple objectives in the best possible way.

PROPOSED SOLUTIONS

In order to meet the 2-fold objectives motivated in Section 1, we combine two fields of control theory:

• Adaptation of the model previously developed by [START_REF] Berekmery | A control approach for performance of big data systems[END_REF] is performed on-line using an recursive algorithm;

• Control signals are optimally computed to achieve performance, availability and costs objectives, even when the objectives are contradictory.

Adaptive Modeling

When adapting the model, we keep the overall structure of Equation 1 unchanged and we re-compute its parameters on-line to better fit the real system. For that, we use a recursive least square estimator (RLSE) [START_REF] Astrom | Adaptive Control: Second Edition[END_REF] to on-line optimize our model parameters. RLSE is a well known algorithm that has proved its stability, accuracy and simplicity for a long time [START_REF] Astrom | Adaptive Control: Second Edition[END_REF]. RLSE recursively updates the model parameters by minimizing a least square cost function between the measured outputs and the estimated ones. To compute new parameters the estimator only needs current signals, past parameter estimations and the model structure. This model adaptation has been introduced in [START_REF] Cerf | Adaptive modelling and control in distributed systems[END_REF] on a Single-Input-Single-Output model between the cluster size and the response time. We further extended the estimator to our Multiple-Input-Multiple-Output (MIMO) model by introducing other variables: availability and the MC number. Figure 1 shows the compared performance of both adaptive and non adaptive models for representatives configurations of MapReduce, it highlight the fitting improvement of the model, especially when system saturation is reached.

Optimal Control

The aim of our control algorithm proposed in [START_REF] Cerf | Adaptive modelling and control in distributed systems[END_REF] is to guarantee performance and availability levels using the minimal amount of resources, even when the system faces bursty variations in its workload. For that purpose, at each time step k we define a cost function J(k) (see Equation ( 2)) designed to be minimized and which has two components: the first one makes the response time (resp. the availability) match its reference values Rt max (resp. Av min ), while the second component minimize the cluster size (N).

J(k) = Rt k -Rt max Av k -Av min Q Rt k -Rt max Av k -Av min + N k R N k
(2) Each of the above mentioned components are considered over a time horizon of H samples, called prediction horizon. At the k th time instant, the response time, availability and cluster size respectively, are measured and the MapReduce model is used to predict the behavior of the system over the prediction horizon. Equation 3is an example of the mathematical formulation of the predicted set for response time values, where Rt(k) is the measured one while the other elements are predicted by the model.

Rt k =      Rt(k) Rt(k + 1)
. . .

Rt(k + H)      (3) 
The algorithm computes, and periodically updates, a profile for the control signals which minimizes the cost function J over the whole prediction horizon, that is to say it computes a control profile which guarantees performance and availability while minimizing the resource consumption. Furthermore, by adding weights (the Q and R matrices) to the different components of the cost function we can give more importance to particular specifications (response time, availability or costs): when the controller cannot meet all the constraints on the system, the weighting matrices allow him to make a trade-off, according to user specifications, between those which should be kept at any price an those for which we can afford relaxation.

Due to page restriction, we do not present here validation and implementation of the proposed control, for further details one can refer to [START_REF] Cerf | Towards control of mapreduce performance and availability[END_REF].

VISION AND OPEN CHALLENGES : COMBINED ADAPTIVE AND OPTIMAL CONTROL

To achieve both goals (ensuring multiple objectives such as performance, availability and cost reduction while being robust to any kind of variation or disturbance) the presented solutions of adaptive modeling and optimal control should be combined. This merged solution consists in using the adaptive model for the output predictions used in the formulation of the optimal cost function (see Equation (3)). Figure 2 below sketches this principle.

Even if this idea seems promising, there is some theorical and technical challenges that need to be tackled. The major ones are:

• Stability When updating the model, what kind of properties could we expect from the control signals? Can we ensure that the created closed loop will be stable? Indeed one can imagine that the consequence of applying a control profile designed at a certain operating point could be different than expected (for instance due to exogenous disturbances) and Adaptive optimal control schema lead to oscillations or even instability. If absolute stability cannot be proved, can we find a condition on the control law that nevertheless leads to stability? Mathematical proof that the system will converge with a precedently computed control signal even if the system itself changed should be given.

• Comparing Dynamics The dynamics of the model adaptation process is not necessary the same as the one of the control algorithm. When comparing computation complexity, the adaptation is expected to be faster than the control, however one can imagine intentionally slowing down the adaptation process. In the first case, the difference in dynamics can allow time for ensuring the convergence of the model parameters before modifing the system behavior, while in the second case it can enable the system to reach steady state before deciding if the system changed.

• Event-Driven adaptation or control Following this idea of asynchronous adaptation and control, one can imagine that model or control signal updates do not necessary need to be synchronous in time and could be driven by events generated by indicators such as the fit of the outputs estimation, the current operating point of the system or the level of specification satisfaction. The addition of such mechanisms could ensure stability for the system that were not reachable before. We believe that the mathematical proof of stability may be simplified, and, if found, will consist in one of the few existing solutions to guarantee adaptive optimal control stability [START_REF] Kim | Recent advances in adaptive mpc[END_REF].

CONCLUSION & FUTURE WORKS

In order to improve both performance and availability of a MapReduce deployments subject to a changing workload, we introduce a control strategy that, through mathematical optimization, scales the resources of the cluster and performs admission control. Furthermore, to ensure robustness to changes in the cloud environment or the MapReduce system itself, we develop an adaptation algorithm that updates on-line the prediction of the MapReduce system behavior using RLSE technique. Reaching those two objectives by combining the adaptive modeling with the optimal controller is a promising solution which however raises many challenges such as stability or synchronicity. All the technical keys have been developped to merge these theories, however there is still a theoretical gap to cross to properly use both these methods.

Future work will consist in solving these challenges through experimental validation as well as mathematical proofs. We aim to validate the stability and efficiency of the proposed optimal adaptive controller on different clusters (with different scales, deployments, etc.), with varying Hadoop distributions and configurations as well as with different workload profiles (data-intensive or computingintensive jobs, different input data sizes, etc.).
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 2 Figure2: Adaptive optimal control schema lead to oscillations or even instability. If absolute stability cannot be proved, can we find a condition on the control law that nevertheless leads to stability? Mathematical proof that the system will converge with a precedently computed control signal even if the system itself changed should be given.