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ABSTRACT

MapReduce is a popular programming model for distributed data
processing and Big Data applications running on clouds. Extensive
research has been conducted either to improve the dependability or
to increase performance of MapReduce, ranging from adaptive and
on-demand fault-tolerance solutions, adaptive task scheduling tech-
niques to optimized job execution mechanisms. This paper inves-
tigates an optimization-based solution to control MapReduce sys-
tems in order to provide guarantees in terms of both performance
and availability while reducing utilization costs. We follow a con-
trol theoretical approach for MapReduce cluster scaling and admis-
sion control. Moreover, we aim to be robust to changes in MapRe-
duce and in it’s environment by adapting the controller online to
those changes. This paper highlights the major challenges of com-
bining system adaptation and optimal control to take the best of
both approaches.

CCS Concepts

eNetworks — Cloud computing; eSoftware and its engineer-
ing — Software configuration management and version control
systems; eComputer systems organization — Dependable and
Sault-tolerant systems and networks,

Keywords

control of computing systems; cloud computing; adaptive control;
optimal control

1. INTRODUCTION

The amount of data produced by everything from mobile phones,
tablets, computers to smart watches brings novel challenges in data
storage and analysis. Many solutions have arisen in research and in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

Feedback Computing 2016 June 19, 2016, Wurzburg, Germany

© 2016 ACM. ISBN 978-1-4503-2138-9.

DOIL: 10.1145/1235

Mihaly Berekmeri
GIPSA-lab, CNRS
11 rue des Mathématiques
Grenoble, France
mihaly.berekmeri @ gipsa-lab.fr

Bogdan Robu
GIPSA-lab, CNRS
11 rue des Mathématiques
Grenoble, France
bogdan.robu @ gipsa-lab.fr

Sara Bouchenak
LIRIS - INSA Lyon
20, Avenue Albert Einstein
Lyon, France
sara.bouchenak @insa-lyon.fr

dustry to handle these large amounts of data. MapReduce is a popu-
lar programming model and execution environment for developing
and executing distributed data-intensive and computer-intensive ap-
plications [9] now mostly used in its open source implementation
Hadoop. It was developed in 2008 by Google, and broadly im-
proved since, to automatically handle data partitioning, consistency
and replication, as well as task distribution, scheduling, load bal-
ancing and fault tolerance, and nowadays it is backed by Big Data
industry leaders such as Facebook, Yahoo or LinkedIn (see [17],
[9] among others). Hence, the complexity of configuration of such
a system is continuously increasing while the user expectations re-
main the same: continuous availability and fast response times are
the required norm. Moreover, with the advent of cloud solutions,
the environments where BigData systems need to run is becom-
ing more and more dynamic. These environments are influenced,
among many other, by input/output and network skews [15] and
hardware and software failures [16]. Moreover, workloads varia-
tion over time [12, 1, 14] both in size and in nature are a major
cause of the unpredictable changing behavior of MapReduce.

Furthermore, ensuring the performance and dependability of cloud
services still poses several challenges. Extensive research has been
conducted to improve dependability or performance of MapReduce
by changing the behavior and/or algorithms of the framework itself
(see [19] for instance). Although these solutions improve upon how
MapReduce works, no guarantees are provided in term of perfor-
mance and availability. Some solutions for performance modeling
[18, 11] and control [5] can be found in the literature. However, to
the best of our knowledge, there are no work to provide concurrent
guarantees in terms of combined dependability and performance,
while reducing utilization costs.

From this context we identify two objectives as being still open
problems concerning MapReduce usage. This paper details a work-
in-progress and is intended as a position (or challenge) paper. Fur-
ther on the article highlights the main challenges that such approach
has. First there is a need for solutions that can guarantee multi-
ple objectives such as performance level or dependability while be-
ing parsimonious in resource usage. Second, these solutions need
to be highly robust to variations of the Hadoop framework itself
and to the dynamics of its environment. To tackle these issues we
chose to use control theory, as it is a well established theory being
promisingly applied to software systems [10]. In the following,
we present an algorithm that generate the optimal configuration
of a MapReduce system to meet performance, availability, costs



and power constraints taking into account the dynamics of the en-
vironment by scaling the resource cluster and realizing admission
control. Moreover, this control algorithm is able to adapt itself to
changes in Hadoop or its working environment, hence fulfilling ro-
bustness specifications.

2. STATE OF THE ART
2.1 MapReduce Dynamic Modeling

Capturing the complex behavior of a cloud service in varying en-
vironments which will be valid in all its configurations while being
implementation independent is highly challenging. A simple model
that captures quite well the dynamics of MapReduce systems and
can be used to predict its performance and availability levels was
already proposed in [3]. The model is built as a set of difference
equations that describe the impact of changes in the inputs (control
variables and disturbances) on system’s outputs, see Equation 1.

Riy(k) = a.Rty(k— 1)+ b(N(k—5) + N(k—6))
Rl‘Mc(k)=C.Rl‘Mc(k*1)+d(MC(k78)+MC(k79)) (l)
Rt (k) = Rty (k) + Rtpgc (k)
Av(k) = a.Av(k — 1) + B(MC(k) — C(k))

The choice of control variables out of Hadoop’s many parameters
(more than 170) is not straightforward. After an in depth analysis
of Hadoop’s behavior and because the proposed control technique
needs to be independent of the implementation or the Hadoop /
MapReduce version (see [3]), we chose the cluster size () and
the maximum number of admitted clients (MC) as our tunable sig-
nals that can be used to control cloud services behavior, as they are
known to have a high influence on both service availability and per-
formance. The workload C (the number of concurrent clients that
are sending requests) is considered as an exogenous disturbing sig-
nal that we cannot control. The outputs, that is to say the measured
variables which we desire to keep below or above given levels, are
the average response time Rt of a MapReduce client request and
the availability level Av of MapReduce to its clients.

The proposed model, even if it is not as accurante and general as
what can be found in the litterature (see [11] for instance), has the
advantage of taking into account the dynamics of the system thus
enabling easy design of a control law. The considered model makes
no limitations on client requests to MapReduce (their number, size
or nature), it only assumes that their variance is no more than 25%,
which is hardly ever the case in practice. However, to improve
this model, we propose an adaptation mechanism that implicitly
take into account workload features at every level, as well as cloud
environment variation.

2.2 Control of MapReduce

One of the important challenges in current MapReduce deploy-
ments is ensuring performance and availability while minimizing
costs [8]. In our case these specifications are given as the maxi-
mum response time Rf,,,, and the minimum availability Av,,;, to be
guaranteed by the MapReduce system at all times. MapReduce ad-
mission control is a classical technique to control availability and to
prevent server thrashing since it consists in limiting the maximum
number of clients that are allowed to concurrently send requests to
the system. By controlling the number of resources the cloud ser-
vice has at his disposal by means of feedback loops one can ensure
a certain response time.

Control theory has been already applied to perform both feed-
back actions through a Proportional-Integral controller and predic-
tive control through a feedback-feedforward loop [4].

Event though these techniques have proved their efficiency, to
our knowledge there is very difficult to perform both performance
and dependability control while reducing the cost of running the
cluster and being robust to workload changes and environment vari-
ations. Indeed, the actions of both control systems for performance
and availability are highly coupled, as the model of Equation (1)
highlights. Moreover, these techniques are heuristic and based on
reaction or prediction of events so they cannot ensure the decision
taken is the optimal one. Consequently, we propose a Multi-Input-
Multi-Output optimal controller to ensure multiple objectives in the
best possible way.

3. PROPOSED SOLUTIONS

In order to meet the 2-fold objectives motivated in Section 1, we
combine two fields of control theory:

e Adaptation of the model previously developed by [4] is per-
formed on-line using an recursive algorithm;

e Control signals are optimally computed to achieve perfor-
mance, availability and costs objectives, even when the ob-
jectives are contradictory.

3.1 Adaptive Modeling

When adapting the model, we keep the overall structure of Equa-
tion 1 unchanged and we re-compute its parameters on-line to bet-
ter fit the real system. For that, we use a recursive least square esti-
mator (RLSE) [2] to on-line optimize our model parameters. RLSE
is a well known algorithm that has proved its stability, accuracy and
simplicity for a long time [2]. RLSE recursively updates the model
parameters by minimizing a least square cost function between the
measured outputs and the estimated ones. To compute new param-
eters the estimator only needs current signals, past parameter esti-
mations and the model structure. This model adaptation has been
introduced in [6] on a Single-Input-Single-Output model between
the cluster size and the response time. We further extended the es-
timator to our Multiple-Input-Multiple-Output (MIMO) model by
introducing other variables: availability and the MC number.
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Figure 1: Comparison of adaptive and classic modeling

Figure 1 shows the compared performance of both adaptive and
non adaptive models for representatives configurations of MapRe-
duce, it highlight the fitting improvement of the model, especially
when system saturation is reached.



3.2 Optimal Control

The aim of our control algorithm proposed in [6] is to guarantee
performance and availability levels using the minimal amount of
resources, even when the system faces bursty variations in its work-
load. For that purpose, at each time step k we define a cost function
J(k) (see Equation (2)) designed to be minimized and which has
two components: the first one makes the response time (resp. the
availability) match its reference values Rtyqy (resp. Aviin), while
the second component minimize the cluster size (V).

k
JK) = ( RE*—Rtpaxy AF—Avy, )Q ( fi . _i’v”r‘;z )
+ NFRN

2

Each of the above mentioned components are considered over a

time horizon of H samples, called prediction horizon. At the k'

time instant, the response time, availability and cluster size respec-

tively, are measured and the MapReduce model is used to predict

the behavior of the system over the prediction horizon. Equation 3

is an example of the mathematical formulation of the predicted set

for response time values, where Rz(k) is the measured one while
the other elements are predicted by the model.

Rt (k)
. Rt(k+1)
Rt* = . 3

Ri(k+H)

The algorithm computes, and periodically updates, a profile for
the control signals which minimizes the cost function J over the
whole prediction horizon, that is to say it computes a control pro-
file which guarantees performance and availability while minimiz-
ing the resource consumption. Furthermore, by adding weights (the
Q and R matrices) to the different components of the cost func-
tion we can give more importance to particular specifications (re-
sponse time, availability or costs): when the controller cannot meet
all the constraints on the system, the weighting matrices allow him
to make a trade-off, according to user specifications, between those
which should be kept at any price an those for which we can afford
relaxation.

Due to page restriction, we do not present here validation and
implementation of the proposed control, for further details one can
refer to [7].

4. VISION AND OPEN CHALLENGES :
COMBINED ADAPTIVE AND OPTIMAL
CONTROL

To achieve both goals (ensuring multiple objectives such as per-
formance, availability and cost reduction while being robust to any
kind of variation or disturbance) the presented solutions of adaptive
modeling and optimal control should be combined. This merged
solution consists in using the adaptive model for the output pre-
dictions used in the formulation of the optimal cost function (see
Equation (3)). Figure 2 below sketches this principle.

Even if this idea seems promising, there is some theorical and
technical challenges that need to be tackled. The major ones are:

e Stability When updating the model, what kind of properties
could we expect from the control signals? Can we ensure
that the created closed loop will be stable? Indeed one can
imagine that the consequence of applying a control profile
designed at a certain operating point could be different than
expected (for instance due to exogenous disturbances) and
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Figure 2: Adaptive optimal control schema
lead to oscillations or even instability. If absolute stability
cannot be proved, can we find a condition on the control law
that nevertheless leads to stability? Mathematical proof that
the system will converge with a precedently computed con-
trol signal even if the system itself changed should be given.

e Comparing Dynamics The dynamics of the model adapta-
tion process is not necessary the same as the one of the con-
trol algorithm. When comparing computation complexity,
the adaptation is expected to be faster than the control, how-
ever one can imagine intentionally slowing down the adapta-
tion process. In the first case, the difference in dynamics can
allow time for ensuring the convergence of the model param-
eters before modifing the system behavior, while in the sec-
ond case it can enable the system to reach steady state before
deciding if the system changed.

e Event-Driven adaptation or control Following this idea of
asynchronous adaptation and control, one can imagine that
model or control signal updates do not necessary need to be
synchronous in time and could be driven by events generated
by indicators such as the fit of the outputs estimation, the cur-
rent operating point of the system or the level of specification
satisfaction. The addition of such mechanisms could ensure
stability for the system that were not reachable before. We
believe that the mathematical proof of stability may be sim-
plified, and, if found, will consist in one of the few existing
solutions to guarantee adaptive optimal control stability [13].

S. CONCLUSION & FUTURE WORKS

In order to improve both performance and availability of a MapRe-
duce deployments subject to a changing workload, we introduce a
control strategy that, through mathematical optimization, scales the
resources of the cluster and performs admission control. Further-
more, to ensure robustness to changes in the cloud environment or
the MapReduce system itself, we develop an adaptation algorithm
that updates on-line the prediction of the MapReduce system be-
havior using RLSE technique. Reaching those two objectives by
combining the adaptive modeling with the optimal controller is a
promising solution which however raises many challenges such as
stability or synchronicity. All the technical keys have been devel-
opped to merge these theories, however there is still a theoretical
gap to cross to properly use both these methods.

Future work will consist in solving these challenges through ex-
perimental validation as well as mathematical proofs. We aim to
validate the stability and efficiency of the proposed optimal adap-
tive controller on different clusters (with different scales, deploy-
ments, etc.), with varying Hadoop distributions and configurations

as well as with different workload profiles (data-intensive or computing-

intensive jobs, different input data sizes, etc.).
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