
HAL Id: hal-01330927
https://hal.science/hal-01330927

Submitted on 13 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lazy Leak Resistant Exponentiation in RNS
Andrea Lesavourey, Christophe Negre, Thomas Plantard

To cite this version:
Andrea Lesavourey, Christophe Negre, Thomas Plantard. Lazy Leak Resistant Exponentiation in
RNS. [Research Report] DALI (UPVD); LIRMM (UM, CNRS). 2016, pp.156-163. �hal-01330927�

https://hal.science/hal-01330927
https://hal.archives-ouvertes.fr

Lazy Leak Resistant Exponentiation in RNS

A. Lesavourey1,2, C. Negre1,2 and T. Plantard3

1 Team DALI, Université de Perpignan, France
2 LIRMM, UMR 5506, Université Montpellier 2 and CNRS, France

3 CCISR, SCIT, (University of Wollongong), Australia

Abstract. In [1] the authors introduced the leak resistant arithmetic in RNS to
randomize RSA modular exponentiation. This randomization is meant to protect
implementations on embedded device from side channel analysis. We propose in this
paper a lazy version of the approach of [1] in the case of right-to-left square-and-
multiply exponentiation. We show that this saves roughly 30% of the computation
when the randomization is done at each loop iteration. We also show that the level
of randomization of the proposed approach is better than the one of [1] after a few
number of loop iterations.

Keywords. RSA, modular exponentiation, randomization, side channel analysis,
RNS.

1 Introduction

RSA cryptosystem is nowadays the most used cryptosystem. The basic operation
in RSA encryption or signature is the modular exponentiation. Specifically, given an
RSA modulus N , a message X and an exponent E, we have to compute XE mod N .
In practice N,X and E are integers of bit size 2048− 4096. The exponentiation can
be computed with a few thousands modular multiplications and squarings with the
square-and-multiply algorithm.

When such a computation is done on an embedded device it is under the threat
of side channel analysis. Such attacks monitor power consumption, electromagnetic
emanation or computation time and then try to extract the secret key from leaked
information in such data. The simplest of this attack is the simple power analysis
(SPA) which threatens implementations based on square-and-multiply algorithm
and such that squaring and multiplication have different power traces. Then an
attacker can decompose the power trace into the sequence of traces corresponding
to squarings and multiplications. Then he can deduce the sequence of bit of the
exponent since a multiplication is computed only when the bit exponent ei = 1.
SPA can be easily defeated by using a regular exponentiation algorithm like the
square-and-multiply-always proposed by Coron [3] and the Montgomery-ladder [4].

Differential and correlation power analyses (DPA and CPA) are more advanced
attacks: they can threaten implementations protected with a regular exponentiation
algorithm. The idea is to guess the bits of the exponent sequentially and for each
guess we compute the data in the next loop iteration of an exponentiation. The
correct guess leads to data which are correlated to the power trace. If we have a large
number of power traces, a statistical analysis accurately determines this correlation
and we can proceed to the guess of the next bit.

Such attacks are generally defeated by randomizing data and exponentiation.
Coron suggests in [3] to randomize the exponent by adding a random multiple of
φ(N) = (q − 1)(p − 1) or to randomize the message X by multiplying it by a

random multiplicative mask. In [1], the authors proposed a randomization based on
modular arithmetic in residue number system (RNS). RNS is based on the Chinese
remainder theorem: given t pairwise coprime moduli mi, an integer X is represented
by its residue modulo mi. Modular arithmetic is implemented in this system by a
modified version of the modular multiplication of Montgomery [9]. The basic idea
of [1] is to randomize the set of moduli mi: this leads to a randomization of the
computations and also of the multiplicative factor induced by Montgomery modular
multiplication. The authors in [1] proposed to use this randomization all along the
exponentiation to get a stronger counter-measure against DPA and CPA.

In this paper we propose an modified version of the counter-measure of [1].
Specifically, we consider the right-to-left version of the square-and-multiply-always
exponentiation. We remove the Update operation which was initially used in [1] to
keep the data in the correct Montgomery representation. This reduces the complex-
ity of the randomization. Also, this modifies the form the multiplicative mask of
the data involved in the exponentiation algorithm. We study this mask and give a
strategy to remove it at the end of the exponentiation. We also evaluate the level of
randomization induced by this modified version of the modular exponentiation with
leak resistant arithmetic.

This paper is organized as follows: In Section 2 we briefly review modular ex-
ponentiation and side channel analysis. In Section 3 we review the residue number
system and the randomization based on leak resistant arithmetic. In Section 4 we
provide our modified exponentiation algorithm with strategy render the last mask
equal to 1. In Section 5 we evaluate the level of randomization and compare it to[1].
Finally, in Section 6 we give some concluding remarks.

2 Modular exponentiation and side channel analysis

The main operation in RSA protocols is the modular exponentiation: given a
modulus N , an exponent E and X ∈ {0, . . . , N − 1} we have to compute R0 =
XE mod N . This exponentiation can be computed with a sequence of squarings
and multiplications using the so-called square-and-multiply approach. This approach
reconstructs the exponent bit after bit either from left-to-right or from right-to-
left. The right-to-left version computes sequentiallyX2, X22 , . . . , X2i , . . . , temporary
stored in the variable Z and if the bit ei = 1 in E a multiplication R0 ← R0 × Z is
performed to set this bit to 1 in the exponent. This approach is shown in Algorithm 1.

Algorithm 1 Right-to-left Square-and-multiply
Require: An RSA modulus N , an integer X ∈ {0, . . . , N−1} and an exponent E = (e`−1, . . . , e0)2
Ensure: R0 = XE mod N
1: R0 ← 1, Z ← X
2: for i from 0 to `− 1 do
3: if ei = 1 then
4: R0 ← R0 ×X mod N
5: Z ← Z2 mod N
6: return R0

When such algorithms are implemented on an embedded device they can be
threatened by side channel analysis. Such attacks monitor either the computation
time [6], power consumption [5] or electromagnetic emanation [8] to derive the secret
exponent E. The main attacks are the following:

– Simple power analysis (SPA). This attack is based on the different shapes
of the power trace of a squaring and a multiplication. The power trace of an
exponentiation can be decomposed as sub-traces corresponding to the sequence
of squarings and multiplications computed during an exponentiation. Then the
bits of the exponent can be determined as follows: if a squaring is followed by
a multiplication the corresponding bit is “1” and if a squaring is followed by a
squaring then the corresponding bit is “0”. Figure 1 is an example provided by
Kocher et al. in [7] of an SPA on a modular exponentiation.

Fig. 1. SPA attack from [7]

To counteract SPA the basic approach is to break the correlation between the
sequence of operations done in an exponentiation and the secret exponent. A first
solution is the approach proposed by Coron in [3] which consists to add a dummy
multiplication in the right-to-left exponentiation when the exponent bit is ei = 0.
Indeed, the sequence operations becomes a regular sequence of ` squarings always
followed by a multiplication. This approach is called the square-and-multiply-
always exponentiation. We provide in Algorithm 2 the right-to-left version of
this method. Another popular regular exponentiation is the Montgomery-ladder
which can be found in [4].

Algorithm 2 Right-to-left Square-and-multiply-always
Require: A modulus N , an integer X ∈ {0, . . . , N − 1} and E = (e`−1, . . . , e0)2
Ensure: R1 = XE mod N
1: R0 ← 1, R1 ← 1, Z ← X
2: for i from 0 to `− 1 do
3: if ei = 0 then
4: R0 ← R0 × Z mod N
5: else
6: R1 ← R1 × Z mod N
7: Z ← Z2 mod N
8: return R1

– Correlation and differential power analyses. These attacks are meant to
recover the exponent E in the modular exponentiation even if it is protected
against SPA with the use of the square-and-multiply-always scheme. The goal is

to track the different values R
(0)
0 , R

(1)
0 , . . . , R

(`)
0 taken by R0 during the exponen-

tiation. We assume that we know R
(j)
0 for j = 0, . . . , i and ej for j = 0, . . . , i− 1:

R
(0)
0 −→

e0 R
(1)
0 →

e1 R
(2)
0 →

e2 · · · →ei−1 R
(i)
0︸ ︷︷ ︸

known bits and data

guessing ei gives R
(i+1)
0︷ ︸︸ ︷

↗ R
(i)
0 ×X2i+1

if ei = 1

↘ R
(i)
0 if ei = 0

By guessing the bit ei we can compute the next value R
(i+1)
0 . The correct guess for

ei+1 is the one such that to the power trace is correlated to R
(i+1)
0 . In practice

it is necessary to have multiple power traces in order to have good statistical
evaluation of this correlation. This statistical evaluation of the correlation is done
in [5] by computing a differential of the power traces and in [2] by computing the

co-variance between with the Hamming weight of R
(i+1)
0 and the power traces.

Counter-measures. The main strategies were proposed by Coron in [3] and consist
in randomizing the data and the computations at different level. First Coron
proposes to randomize the exponent E by adding a random multiple of φ(N) =
(p− 1)(q − 1) where p and q are the two factors of N :

E′ = E + β(p− 1)(q − 1)

and E′ satisfies XE′ mod N = XE mod N . Coron also proposes to randomize
the data by randomly blinding the message X: the message is multiplied it by a
random value α

X ′ = X × α mod N.

Then XE mod N can be recovered from X ′E mod N = XE×αE mod N if the
value αE mod N is precomputed. The message blinding can also be achieved
by using a randomized representation of X. Indeed in [1] the authors suggest to
use the residue number system (RNS) for the representation of integers modulo
N . They could then randomize the representation by randomly permuting the
moduli of the RNS basis.

3 Leak resistant modular exponentiation in RNS

We review in this section the Montgomery multiplication in residue number
system. Then we will briefly present the approach of Bajard et al. [1] for the ran-
domization of the modular exponentiation.

3.1 Modular multiplication in RNS

Montgomery modular multiplication. Let N be an RSA modulus and let X
and Y be two integers such that 0 ≤ X,Y < N . Montgomery proposed in [9] a
method for modular multiplication which avoids Euclidean division. This approach
uses an integer A such that A > N and gcd(A,N) = 1 and computes Z = XY A−1

mod N as follows:
Q←−XYN−1 mod A
Z ← (XY +QN)/A

(1)

In the above computation we have (XY + QN) mod A = 0, this means that the
division by A is exact in the computation of Z and then Z ≡ XY A−1 mod N . The

integer Z is almost reduced modulo N since Z = (XY +QN)/A < (N2 +AN)/A <
2N : if Z > N we subtract N to get Z < N .

For a long sequence of multiplications, we can use the following Montgomery
representation

X̃ = (X ×A) mod N. (2)

in order to absorb the factor A−1 appearing when we perform a Montgomery mul-
tiplication. Indeed, the Montgomery multiplication applied to X̃ and Ỹ outputs
Z̃ = XY A mod N , i.e., the Montgomery representation of the product of Z = X×Y
mod N . In the sequel the factor A in (2) will be called the Montgomery factor.

Residue number system. Now we review the residue number system (RNS). Let
a1, . . . , at be t coprime integers. In the RNS base A = {a1, . . . , at} an integer X such
that 0 ≤ X < A =

∏
i=1 ai is represented by the t residues

xi = X mod ai for i = 1, . . . , t.

X can be reconstructed from the t residues xi as follows

X =

(
t∑
i=1

[
xi ×A−1i

]
ai
×Ai

)
mod A (3)

where Ai =
∏t
j=1,j 6=i ai and the brackets [·]ai denotes a reduction modulo ai.

Let X = (x1, . . . , xt)A and Y = (y1, . . . , yt)A be two integers given in an RNS
base A. Then, the Chinese remainder theorem provides that an integer addition
X + Y or multiplication X × Y consists in RNS in t independent additions xi + yi
mod ai and multiplications xi×yi mod ai for i = 1, . . . , t. These t operations modulo
ai can be implemented in parallel since each operation modulo ai are independent
from the others.

Montgomery multiplication in RNS. In [10] Posch and Posch proposed to
perform a Montgomery multiplication in RNS. To reach their goal they first modified
the second step of the Montgomery multiplication (1) as follows:

Z ← (XY +QN)A−1 mod B

where B is an integer such that

gcd(A,B) = gcd(N,B) = 1 and B ≥ 2N. (4)

Then they used two RNS bases A = {a1, . . . , at} and B = {b1, . . . , bt} along with
their products A =

∏t
i=1 ai and B =

∏t
i=1 bi which satisfy (4). Then the first step

of a Montgomery multiplication becomes Q ← −X × Y × N−1 mod A in A and
the second step becomes Z ← (XY + QN)A−1 mod B in the base B. To have a
fully functional algorithm Posch and Posch needed some conversions, called base
extensions (BE), to convert Q from A to B and to convert Z from B to A. Their
Montgomery multiplication in RNS is shown in Algorithm 3.

3.2 Leak resistant arithmetic

In [1] the authors noticed that we can take advantage of the Montgomery mul-
tiplication in RNS to randomize a modular exponentiation. Specifically, when we

Algorithm 3 MM RNS(X,Y,A,B)
Require: X,Y in A ∪ B
Ensure: XY A−1 mod N in A ∪ B
1: [Q]A ← [−XYN−1]A
2: BEA→B([Q]A)
3: [Z]B ← [(XY + QN)A−1]B
4: BEB→A([Z]B)
5: return (ZA∪B)

compute a modular exponentiation using MM RNS for modular multiplication, the
data are set in Montgomery representation X̃ = X ×A mod N and in RNS repre-
sentation [X̃]A∪B in the two bases A and B. The authors of [1] noticed that a way
to randomize data X is to randomly change the Montgomery factor A in

X̃ = X ×A mod N.

They proposed to randomize this factor by randomly permuting the moduli of A∪B,
and then by updating the Montgomery factor in X̃. They update this Montgomery
representation in RNS as it is described in Algorithm 4. Step 1 of the algorithm
computes X ×Anew ×Aold mod N and in Step 2 we get X ×Anew mod N .

Algorithm 4 Update(X,Aold,Bold,Anew,Bnew)

Require: X̃old = X ×Aold mod N in Aold ∪ Bold and M =
(∏t

i=1 ai

) (∏t
i=1 bi

)
Ensure: X̃new = XAnew mod N in Anew ∪ Bnew

1: T ← MM RNS(X̃old,M mod N,Bnew,Anew)

2: X̃new ← MM RNS(T, 1,Bold,Aold)

3: return X̃new

This update of the Montgomery representation in RNS makes it possible to
randomize any modular exponentiation in RNS. We provide in Algorithm 5 the ran-
domized Right-to-left Square-and-multiply-always exponentiation in RNS. In this
algorithm the data are randomized as follows: the variable Z̃ is updated at each
iteration by changing the Montgomery factor Aold to Anew using the Update algo-
rithm. Then the two variables R̃0 and R̃1 are updated before each multiplication by
Z̃: this update is from the RNS bases used the last time R̃0 (resp. R̃1) was updated:
we denote A0 and B0 (resp. A1 and B1) these bases. This approach requires four
multiplications per iteration: two per variable update (cf. Algorithm 3).

4 Proposed randomized right-to-left exponentiation in RNS

In this section we present a modified version of the randomized right-to-left
square-and-multiply-always approach reviewed in Subsection 3.2. The main idea
is quite simple: we remove the Update for the two variables R̃1 and R̃0 in order to
reduce the cost of the randomization. We will call this approach the lazy leak resistant
square-and-multiply-always exponentiation. It is shown in details in Algorithm 6.

The main thing we have to deal with in this lazy version of Algorithm 5 is the

following: we do not control anymore the Montgomery factor in R̃1. Indeed if R̃
(i)
1

Algorithm 5 Right-to-left Square-and-multiply-always randomized with LRA
Require: An exponent E = (e`−1, . . . , e0)2, N and X ∈ {0, . . . , N − 1} expressed in the RNS base
M = {m1, . . . ,m2t}.

Ensure: R1 = XE mod N
1: Aold,Bold ← random split M
2: Z ← MM RNS(X,M,Aold,Bold)

3: R̃0 ← MM RNS(M, 1,Bold,Aold)
4: A0,B0 ← Aold,Bold

5: R̃1 ← R̃0

6: A1,B1 ← Aold,Bold

7: for i from 0 to `− 1 do
8: R̃ei ← Update(Rei ,Aei ,Bei ,Aold,Bold)
9: Aei ,Bei ← Aold,Bold

10: R̃ei ← MM RNS(R̃ei , Z̃,Aold,Bold)

11: Z̃ ← MM RNS(Z̃, Z̃,Aold,Bold)
12: Anew,Bnew ← random split M
13: Z̃ ← Update(Z̃,Aold,Bold,Anew,Bnew)
14: Aold,Bold ← Anew,Bnew

15: R1 ←MM RNS(R̃1, 1,B1,A1)
16: return R1

Algorithm 6 Lazy Leak Resistant Right-to-left Square-and-multiply-always
Require: X ∈ {0, . . . , N − 1} and E = (e`−1, . . . , e0)2 and M mod N a moduli set
Ensure: XE mod N
1: R̃0 ← 1, R̃1 ← 1
2: Aold,Bold ← random split M
3: Z̃ ← MM RNS(X,M,Aold,Bold)
4: for i from 0 to `− 1 do
5: A′,B′ ← random split M
6: if ei = 0 then
7: R̃0 ← MM RNS(R̃0, Z̃,A′,B′)
8: else
9: R̃1 ← MM RNS(R̃1, Z̃,A′,B′)

10: Z̃ ← MM RNS(Z̃, Z̃,Aold,Bold)
11: Anew,Bnew ← random split M
12: Z̃ ← Update(Z̃,Anew,Bnew,Aold,Bold)
13: Aold,Bold ← Anew,Bnew

14: return R̃1

is the value of R̃1 at the beginning of the of loop iteration i it satisfies

R̃
(i)
1 = X

∑i−1
j=0 ej2

j

×
2t∏
j=0

m
γ
(i)
j

j

for some γ
(i)
j ∈ Z for j = 1, . . . , 2t. This can be proven by induction. For i = 0 we

can see it at the initialization of R̃1 = 1. Now if we suppose that it is true for i, we

show it for i+ 1. We process loop i to get R̃
(i+1)
1 as follows:

– If ei = 0 then R̃1 is not modified and then

R̃
(i+1)
1 = R̃

(i)
1 = X

∑i
j=0 ej2

j

×
2t∏
j=0

m
γ
(i)
j

j .

Thus taking γ
(i+1)
j = γ

(i)
j provides the correct result.

– If ei = 1 we have

R̃
(i+1)
1 = R̃

(i)
1 × Z̃ × (A′(i)) mod N

= R̃
(i)
1 ×X2i ×A(i) × (A′(i))−1 mod N

where A(i) and A′(i) are both products of t moduli mj among M, i.e., the ones

of A(i)
old and A′(i) respectively. This leads to

R̃
(i+1)
1 = X

∑i
j=0 ej2

j

×
2t∏
j=0

m
γ
(i)
j +δ

(i)
j

i

where

δ
(i)
j =

1 if mj |A(i) and mj 6 |A′(i),
−1 if mj 6 |A(i) and mj |A′(i),
0 otherwise.

(5)

Then taking γ
(i+1)
j = γ

(i)
j + δ

(i)
j , leads to the required expression of R̃

(i+1)
1 .

In the sequel we will call
∏2t
j=0m

γ
(i)
j

j the multiplicative mask of R̃
(i)
1 since it is

a random data masking the real value of R
(i)
1 . The above analysis shows that the

exponents γ
(i)
j of the multiplicative mask in R̃

(i)
1 have always an absolute value ≤ i.

This means that at the end of the loop for of Algorithm 6 we have |γ(`)j | ≤ ` for all
j.

4.1 Strategy to remove the final multiplicative mask

We present in this section a strategy to remove the final multiplicative mask of
R̃1 at the end of Algorithm 6. We investigate a strategy which reduces the level of
randomization, but ensures that this final multiplicative mask is trivial and avoid a
final correction. We first notice that the multiplicative mask is modified only when
ei = 1. Then let hE be the Hamming weight of the exponent E. The proposed
strategy lets the exponent evolve freely for the bhE/2c iterations such that ei = 1.

Then for the last dhE/2e bits ei = 1 we force the exponent γ
(i)
j to decrease toward

0 as it is shown in Figure 2.
The details of this strategy is given in the following lemma.

Fig. 2. Strategy 2 for the final correction

Loop iterations

γ

Lemma 1. Let E = (e`−1, e`−2, . . . , e0) be an exponent and let Ei = (ei−1, . . . , e0)2.
Let

R̃
(i)
1 = xEi

2t∏
j=0

m
γ
(i)
j

j mod N

be the value of R̃
(i)
1 at the beginning of iteration i in Algorithm 6. Let hE be the

Hamming weight of E and let i1, . . . , ihE be the subscripts such that eik = 1. If the
randomizations of the bases A,B,A′ and B′ we ei = 1 are done under the following
restrictions:

i) if γ
(ik)
j = hE − k then j ∈ A′ and j 6∈ A,

ii) if γ
(ik)
j = −(hE − k) then j ∈ A and j 6∈ A′,

iii) if γ
(ik)
j = hE − k − 1 then j 6∈ A,

iv) if γ
(ik)
j = −(hE − k − 1) then j 6∈ A′,

then for j = 1, . . . , 2t and ik ∈ {i1, . . . , ihE} we have

|γ(ik)j | ≤ (hE − k).

Proof. The idea of the proof is quite simple: we always have to be at distance at
most hE − k from 0, since from loop ik to loop ihE we can only do hE − k non-zero
steps, i.e., at loop iterations ik+1, . . . , ihE . This implies the following:

– If at step ik we are at distance hE − k we have to make a non-zero step toward

0 (“-1” if γ
(ik)
j = hE − k and “+1” if γ

(ik)
j = −(hE − k)) this exactly what i) and

ii) do.

– If at step ik we are at distance hE − k − 1 we have to either stay at distance
hE − k − 1 or make step toward 0 this is exactly what iii) and iv) do.

– Otherwise we can move freely.

Then by induction on k we easily see that the claim of the lemma is satisfied.

The previous lemma shows that under the restrictions given by i) to iv) we

ensure that all final exponents γ
(`)
j = 0. Which implies R̃

(`)
1 = R1. The disadvantage

of this approach is that it reduces the level of randomization in the second phase of
the exponentiation.

Table 1. Complexities of randomized exponentiation

Algorithm # MM RNS

Montgomery-ladder [1] 6`

Proposed Leak Resistant Right-to-left 4`

4.2 Complexity comparison

Table 1 contains the complexity of the proposed approach along with the one
of [1] which was originally proposed for the Montgomery-ladder.

The complexities in Table 1 shows that the proposed approach is always the best
option: it saves 30% of the amount of computation.

Remark 1. In their paper [1] Bajard et al. propose also a trade-off approach which
randomizes the data only every f loop iterations. We can apply this trade-off ap-
proach to Algorithm 6, and this will reduce the complexity by 2`/f MM RNS com-
pared to [1].

5 Level of randomization

The goal of this section is to evaluate the level of randomization induced by the

multiplicative mask of R̃
(i)
1 in our modified randomized modular exponentiation. We

first analyze the behavior of the exponent γ
(i)
j .

5.1 Random walk of the exponents γ
(i)
j

We first study the way the exponents γ
(i)
j of

∏2t
j=0m

γ
(i)
j

j evolve during the pro-

posed randomized exponentiation. We do not study the evolution of R̃
(i)
0 since we

do not have to correct the multiplicative mask at the end, but it evolves similarly

as R̃
(i)
1 does. We denote Γ (i) = (γ

(i)
1 , . . . , γ

(i)
2k) the vector of the exponents of the

multiplicative mask of R̃
(i)
1 . We can notice that each γ

(i)
j for a fixed j behaves as a

random walk for i = 1, 2, . . . , `. For any loop iteration then γ
(i)
j is modified as

γ
(i+1)
j = γ

(i)
j + δ

(i)
j

and δ
(i)
j is chosen at random at follows:

P(δ
(i)
j = 1) = 1/8,

P(δ
(i)
j = −1) = 1/8,

P(δ
(i)
j = 0) = 3/4.

(6)

Indeed, we first notice that A(i),A′(i) and (A(i))c and (A′(i))c the RNS bases used
in iteration i have all t elements. Now since the events {ei = 1}, {mj ∈ A(i)} and
{mj ∈ A′(i)} are independent we have:

P(δ
(i)
j = 1) = P(ei = 1,mj ∈ A(i)\A′(i))

= P(ei = 1)× P(mj ∈ A(i))× P(mj ∈ (A′(i))c)
= 1

2 ×
1
2 ×

1
2 = 1

8 ,

P(δ
(i)
j = −1) = P(ei = 1,mj ∈ A′(i)\A(i))

= P(ei = 1)× P(mj ∈ A′(i))× P(mj ∈ (A(i))c)
= 1

2 ×
1
2 ×

1
2 = 1

8 ,

P(δ
(i)
j = 0) = P(ei = 0) + P(ei = 1,mj ∈ A′(i) ∩ A(i))

+P(ei = 1,mj ∈ (A′(i))c ∩ (A(i))c)
= 1

2 + 1
2 ×

1
2 ×

1
2 + 1

2 ×
1
2 ×

1
2 = 3

4 .

Finally, the exponent γ
(i)
j behaves as a random walk with step size δ

(i)
j ∈ {1,−1, 0}

following the probability given in (6). The following lemma provides the probability

P(γ
(i)
j = d) for any d ∈ {−i,−(i− 1), . . . , i− 1, i}.

Lemma 2. Let γ
(i)
j be the exponent of mj in the factor of R̃

(i)
1 at the beginning of

the i-th loop iterations. Then, for a given d ∈ {−i,−(i− 1), . . . , (i− 1), i} we have

P(γ
(i)
j = d) =

d+b(i−d)/2c∑
k=d

(
i

k

)(
i− k
k − d

)(
1

8

)2k−d(3

4

)i−2k+d
. (7)

Proof. We consider the random walks which have k steps “1” and k− d steps ”−1”
and i− k − (k − d) step “0”. The number of these random walks is(

i

k

)(
i− k
k − d

)
.

Each of these random walks has a probability of(
1

8

)k
×
(

1

8

)k−d
×
(

3

4

)i−2k+d
.

We get the probability for γ
(i)
j = d by summing over all acceptable values for k and

this leads to (7).

We can also evaluate the expected value E(γ
(i)
j) and the variance V(γ

(i)
j) of the

random variable γ
(i)
j at iteration i. This can be easily obtained since γ

(i)
j is the sum

of i independent random variables δ
(k)
j , k = 1, . . . , i with the probability law of (6).

In other words:

E(γ
(i)
j) =

∑i−1
k=0 E(δ

(k)
j) = `× 0 = 0

V(γ
(i)
j) =

∑i−1
k=0V(δ

(k)
j) = i/4

And then the standard deviation is SD(γ
(i)
j) =

√
i/2. In other words γ

(i)
j is in

{−i, . . . , i}, but it is more likely that its absolute value is less than
√
i/2.

The following lemma shows that for a fixed i, this probability P(δ
(i)
j = d) de-

creases as |d| increases.

Lemma 3. Let j be a fixed integer in {1, . . . , 2t}. We have for any i and any d, d′

such that |d| ≤ |d′|:
P(λ

(i)
j = d) ≥ P(λ

(i)
j = d′).

The proof of Lemma 3 is given in the appendix.

5.2 Bounding the level of randomization

Let Γ ∈ Z2t, then we denote σ(Γ) =
∑2t

j=0 γj . In this subsection we will first give

the exact condition for a vector Γ = (γ1, . . . , γ2t) ∈ Z2t to be i-th term of a sequence
of exponent vectors in Algorithm 6. In other word we will consider the vectors for
which there exists a path Γ (k), k = 1, . . . , i with Γ (i) = Γ and

Γ (k) = Γ (k−1) +∆(k)

and ∆(i) ∈ {0, 1,−1}2t and σ(∆) = 0. We will say that such vector can be reached
by such sequence. This is the goal of the next proposition.

Proposition 1. We consider a vector Γ = (γ1, . . . , γ2t) ∈ Z2t. The vector Γ can be
reached by a sequence of length i of exponent vector produced by Algorithm 6

Γ (0) = 0, Γ (1), . . . , Γ (i) = Γ

if and only if we have

‖Γ‖∞ ≤ i
σ(Γ) = 0

The proof of this proposition is given in the appendix. Our goal now is to bound
the probability to obtain a given multiplicative mask after a certain number of
iterations. The following lemma states the basic result we will use to bound this
probability.

Lemma 4. Let Γ = (γ1, . . . , γ2t) be a vector that can be reached after i loop itera-
tions. Then we have:

P(Γ (i) = Γ) ≤
2t∏
j=1

P(γ
(i)
j = γj)

Proof. We notice that if C : Γ (0) = 0, Γ (1), . . . , Γ (i) = Γ is walk reaching Γ then
cj : γ(0) = 0, γ(1), . . . , γ(i) = γj is a walk reaching γj in Z. In other words, if
Walk(i)(Γ) (resp. Walk(i)(γj)) is the set of walks reaching Γ (resp. γj), then we
have:

{C ∈Walk(i)(Γ)} ⊂
2t∏
j=1

{cj ∈Walk(i)(γj)}

Taking the probability of both sets leads to:

P(Γ (i) = Γ) = P({C ∈Walk(i)(Γ)})
≤ P(

∏2t
j=1{cj ∈Walk(i)(γj)})

=
∏2t
j=1 P(γ(i) = γj)

Now we combine the results of Lemma 3 and Lemma 4 to get a bound on the
probability to get Γ after i loop iterations:

P(Γ (i) = Γ) ≤
2t∏
j=1

P(γ(i) = γj) ≤ P(γ(i) = 0)2t. (8)

5.3 Comparison

With the results of Subsection 5.2 we are able to compare the level of random-
ization of the proposed approach with the one of [1]. In [1] the multiplicative mask is
taken at random in a set of

(
2t
t

)
masks, in other words, with a probability of 1/

(
2t
t

)
.

Then we can say that the level of randomization of the proposed approach after i
loop iterations is better than the one of [1] if the probability of any mask is smaller
than 1/

(
2t
t

)
.

We were not able to compare these two probabilities formally. But we could
compute the probabilities or probability bounds for practical sizes of N and t in
Table 2. For each value i we computed P(λ(i) = 0) using the formula of Lemma 2,
we then could compute a bound of the probability P(Γ (i) = Γ) for any Γ with (8).

Table 2. Level of randomization for 2048 bits and t = 32

Approach loop 1 loop 2 loop 3 loop 4 loop 5 loop 10
Montg.-ladder [1] 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38

Proposed 10−8 3 · 10−15 2 · 10−20 1.3 · 10−24 5 · 10−28 1.7 · 10−38

Approach loop 15 loop 20 loop 50 loop 100 loop 500 loop 1000
Montg.-ladder [1] 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38 4.17 · 10−38

Proposed 2.4 · 10−44 2 · 10−48 2.69 · 10−61 5.75 · 10−71 2.31 · 10−93 5.34 · 10−103

The probability for Montgomery-ladder with [1] is the same for all iteration
and is equal to 1

(
128
64

) ∼= 4.17 · 10−38. The values in Table 2 shows that we cannot
assert the randomization is better for the first 10 loop iterations. But after the i-th
loop it becomes clearly better. This problem can be easily overcome by using the
randomization of [1] for these few first 10 loop iterations and then use our proposed
approach for the other iterations.

6 Comparison and conclusion

In this paper we proposed a lazy version of the leak resistant square-and-multiply-
always approach of [1]. We used a right-to-left version of the square-and-multiply
exponentiation and remove the Update on the Montgomery representation of the two
variables R̃0 and R̃1. This lead to a reduction of the complexity. We also studied the
impact of proposed modification on the randomization level. The proposed approach
has the advantage to offer a higher level of randomization after a small number of
loop iterations.

References

1. J.-C. Bajard, L. Imbert, P.-Y. Liardet, and Y. Teglia. Leak Resistant Arithmetic. In CHES,
volume 3156 of LNCS, pages 62–75. Springer, 2004.

2. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In
CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

3. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems.
In CHES 1999, pages 292–302, 1999.

4. M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In CHES 2002, volume 2523 of
LNCS, pages 291–302. Springer, 2002.

5. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in Cryptology,
CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer, 1999.

6. P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In Advances in Cryptology - CRYPTO ’96, volume 1109 of LNCS, pages 104–113.
Springer, 1996.

7. P.C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to differential power analysis. J.
Cryptographic Engineering, 1(1):5–27, 2011.

8. S. Mangard. Exploiting Radiated Emissions - EM Attacks on Cryptographic ICs. In Austrochip
2003, Linz, Austria, October 1st, pages 13–16, 2003.

9. P. Montgomery. Modular Multiplication Without Trial Division. Math. Computation, 44:519–
521, 1985.

10. K.C. Posch and R. Posch. Modulo Reduction in Residue Number Systems. IEEE Trans. Parallel
Distrib. Syst., 6(5):449–454, 1995.

A Proof of Lemma 3

Before proceeding we notice that P(λ
(i)
j = d) = 0 for any |d| > i this justified by

the fact that |λ(i)j | ≤ i. Now we prove the lemma by induction on i.

– For i = 1 we have P(λ
(1)
j = 0) = 3/4 is larger than P(λ

(1)
j = 1) = P(λ

(1)
j = −1) =

1/8 which are larger than P(λ
(1)
j = d) = 0 for |d| > 1.

– We assume that the assertion is true for i − 1 and we prove it for i. We first

prove for d > 0 and d+ 1 ≤ i that P(λ
(i)
j = d) ≥ P(λ

(i)
j = d+ 1) :

P(λ(i)j = d) = 1
8
P(λ(i−1)

j = d+ 1) + 3
4
P(λ(i−1)

j = d) + 1
8
P(λ(i−1)

j = d− 1)

≥ 1
8
P(λ(i−1)

j = d+ 2) + 3
4
P(λ(i−1)

j = d+ 1) + 1
8
P(λ(i−1)

j = d)

= P(λ(i)j = d+ 1)

– The case d > 0 and d+ 1 > i is trivial.
– The proof for P(λ

(i)
j = 0) ≥ P(λ

(i)
j = 1), i.e. for d = 0, is slightly different, but

very close the case d > 0. We then skip it.
– For d < 0 it is symmetric to d > 0.

B Proof of Proposition 1

The fact that each γj have to satisfy |γj | ≤ i is direct since there are i loop
iterations and in each loop iteration we can increase or decrease each γj by at most
1. We can further assume without loss of generality that i = ‖Γ‖∞. We prove the
proposition by induction on t and on i.

We first deal with t = 1 and i = 1:

– If t = 1. We have Γ = (γ1, γ2) and by assumption this vector satisfies γ1+γ2 = 0.
Without loss of generality we assume that γ1 ≥ 0 and γ2 ≤ 0. We have also that
|γ1| = |γ2| = ‖Γ‖∞. We can easily see that Γ can be reached after ‖Γ‖∞ loop

iteration, where we increase by 1 at each loop iteration γ
(k)
1 and decrease by 1

at each loop turn γ
(k)
2 .

– If i = 1, we have ‖Γ‖∞ ≤ 1 and
∑2t

j=0 γj = 0, but in this case the sequence with

only one element Γ (1) = Γ is a good sequence.

Now we assume that the lemma is true up do t and i and we prove it for t + 1
and i+1. We assume that ‖Γ‖∞ = i+1 and Γ = (γ1, . . . , γ2t, γ2t+1, γ2t+2) such that

– γ2t+2 is ≥ 0 and γ2t+2 = ‖Γ‖∞,
– γ2t+1 is the smallest coefficient among γj , j = 1, . . . , 2t+ 2,

We deal with a special case: γ2t+2 is the only γj ≥ 0. We have

γ2t+2 = −
2t+1∑
j=1

γj

we can easily define a sequence Γ (k), k = 0, . . . , i+ 1 reaching Γ as follows: at each

loop we increase γ
(k)
2t+2 and we decrease one γ

(k)
j such that γ

(k)
j 6= γj .

The other cases: there exists j 6= 2t+ 2 such that γj ≥ 0. For the sake of simplicity,
we assume that this γj is γ2t. In other words, without loss of generality, we can
assume that Γ = (γ1, . . . , γ2t, γ2t+1, γ2t+2) is such that

– γ2t+2 is ≥ 0 and γ2t+2 = ‖Γ‖∞,
– γ2t+1 is the smallest coefficient among γj , j = 1, . . . , 2t+ 2,
– γ2t is the smallest coefficient ≥ 0.

We split the proof into the two following cases:

– Case |γ2t| ≤ |γ2t+1|. In this case we use an induction on t. We set Γ ′ = (γ1, . . . , γ2t−1, γ2t+
β) where β = |γ2t+2| − |γ2t+1|. Then Γ ′ is a vector of size 2t such that ‖Γ ′‖∞ ≤
i+ 1 since

0 ≤ γ2t + β ≤ |γ2t+1|+ |γ2t+2| − |γ2t+1| ≤ ‖Γ‖∞ = i+ 1.

So by induction hypothesis on t there exists a sequence reaching Γ ′

Γ ′(0), Γ ′(1), . . . , Γ ′(i+1) = Γ ′

We define δ
′(k−1)
j = γ

′(k)
j −γ′(k−1)j which lies in {−1, 0, 1}. Now since γ

′(k)
2t reaches

γ′2t there are at least s = γ
′(k)
2t = γ2t + β superscripts k where δ

(k)
2t = 1. Let

k1, . . . , ks such superscripts. We can now define δ
(k)
j for Γ as follows:

δ
(k)
j = δ

′(k)
j for j = 1, . . . , 2t− 1 and k = 0, . . . , i,

δ
(k)
2t =

{
0 if k ∈ {k1, . . . , kβ},
δ
′(k)
2t otherwise.

δ
(k)
2t+1 =

{
0 if k ∈ {k1, . . . , kβ},
−1 otherwise.

δ
(k)
2t+2 = 1.

In other word for k ∈ {k1, . . . , kβ} we moved the 1 of δ
′(k)
2t to δ

(k)
2t+2. And for the

other superscripts we set δ
(k)
2t+2 = 1 and δ

(k)
2t+1 = −1. Then one can see that for

each k we have σ(∆(k)) = 0 and also:∑i
k=0 δ

(k)
j = γj for j = 1, . . . , 2t− 1 and k = 1, . . . , i+ 1∑i

k=0 δ
(k)
2t = (

∑i
k=1 δ

′(k)
2t)− β = (γ2t + β)− β = γ2t∑i

k=0 δ
(k)
2t+1 = −(i+ 1− β) = γ2t+1∑i

k=0 δ
(k)
2t+2 = i+ 1 = γ2t+2

which means that the sequence Γ (k), k = 0, . . . , i+ 1 reaches Γ .

– Case |γ2t| > |γ2t+1|. This means we have all γj 6= 0 (since γ2t is the smallest
among γj ≥ 0). Moreover any γj ≥ 0 satisfies γj > |γs| for all γs < 0. In this case
we have

#{j s.t. γj > 0} < #{j s.t. γj < 0}

otherwise it would contradict the fact that σ(Γ) = 0. Let j1, . . . , jr be the sub-
scripts such that γj > 0 and let j′1, . . . , j

′
r be r subscripts in {j s.t. γj < 0}. We

define ∆(i) by

δ
(i)
j = 1 for j ∈ {j1, . . . , jr},

δ
(i)
j = −1 for j ∈ {j′1, . . . , j′r},

δ
(i)
j = 0 otherwise.

Then Γ ′ = Γ −∆(i) satisfies ‖Γ ′‖∞ ≤ i and then, by induction on i, Γ ′ can be
reached by a sequence of length i. If we complete this sequence reaching Γ ′ with
Γ (i+1) = Γ we obtain a sequence reaching Γ of length i+ 1.

This ends the proof of Proposition 1.

