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Abstract—Min-Sum decoding (MS) is an alternative to belief
propagation decoding with substantially lower complexity. MS
often results in an overestimation of the log likelihood ratio
(LLR) in particular in the early stage of the iterative process. A
linear post-processing is usually performed as a compensation.
With regular low density parity check codes (LDPC), a fixed
scaling of the LLR yields sufficiently good results. In contrast,
adaptive strategies are mandatory with irregular codes. It is well
known that the scaling factor is an increasing function of the
reliability of the LLR. In most of the publications, the scaling
factor is envisioned as a function of both the iteration number
and the signal-to-noise ratio. It is proposed here to use the mutual
information between extrinsics as a measure of the reliability of
the LLR. A practical implementation is derived with reasonable
complexity. Compared to the literature, the proposed method
yields slightly better results in terms of BER and a significant
reduction in the number of iterations.

Index Terms—Parity check codes, iterative decoding, linear
approximation, mutual information, adaptive LLR scaling.

I. INTRODUCTION

LDPC were introduced in the literature by Gallager [1] in
the early sixties. Limited computing resources prevented Gal-
lager from demonstrating the capabilities of message-passing
decoders even for moderate code length. This work was ig-
nored and rediscovered 30 years later by MacKay [2]. Com-
bined with belief propagation (BP) decoding, LDPC codes
exhibit performance near to the Shannon limit. The compu-
tational complexity of BP, especially at check-node, is not
suitable for hardware implementation. Complexity reduction
can be obtained through an approximation of the check-node
calculation leading to min-sum decoding [3]. This efficient
implementation suffers performance degradation which can
be compensated by linear post-processing of the messages
computed at the check nodes [4]. In this seminal work, a
single correcting function is used during the whole iterative
process and independently of the check-node. A density evo-
lution analysis is often conducted in order to find the optimal
value of the coefficients of the linear function [4]. This ap-
proach is not efficient enough with many irregular codes. It
is observed in [5] that considering different post-processing
depending on the degree of the nodes can improve the overall
performance. Several authors suggest to consider in addition
an adaptive rule for updating the linear function within the

iterative process. It is proved in [6] that good results could
be obtained with irregular codes by scaling the message at
the check nodes with a scaling factor which is a function of
both the degree of the node and of the mutual information.
Since the mutual information is expected to increase during
the iterative process, the value of the scaling factor should
not be fixed. The practical implementation of the method is
not solved in [6], a sub-optimal approach is derived in which
the scaling factor is not anymore a function of two variables
but is computed as a function of the sole iteration number.
Recently, a variable scaling scheme based on the generalized
mutual information was proposed in [7]. The method select the
scaling factors as per iteration and as per check node degree
independently overcoming the multi-dimensional issue faced
by previous methods. We propose in this paper to make a step
further. Here, the variable scaling factors are adjusted with re-
spect to both check node degrees and mutual information with
a particular focus on implementation aspects that are missing
in [6]. It will be proved that the method can be implemented
at low cost. Comparison with previously mentioned methods
is also provided.

II. ITERATIVE DECODING

The iterative decoding of LDPC codes consists in an ex-
change of information between the variable and check nodes
of the code. Let assume a (N, K') LDPC code over an AWGN
channel. Let R; denote the log-likelihood ratio (LLR) of bit
7 derived from the observations. At iteration k, let Ej(f) and

(k) be the LLR of bit ¢+ which are sent from check node j
to Varlable node ¢ and from variable node 7 to check node j
respectively. The LLR E(k) and M; () are defined if and only
if the variable node i and the check node j are connected
in the Tanner graph of the code. The standard BP algorithm
proceeds in two steps [1]. The horizontal step reads:
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In min-sum (MS), the horizontal step is replaced by a simpler
updating rule by modifying (1) into

By = T son(Mgymin M0 @)
i #i

This approximation degrades the performance of the iterative
process and yields over-estimated LLR especially in early it-
erations. From a statistical point of view, exchanged messages
are usually modelled using Gaussian approximation [8] that
can be seen as noisy estimates of the desired message X. It is
assumed here that X € {—1,1}. Let L denote a LLR. Under
Gaussian approximation L reads:

o2
L= 7X +on 4)
where n ~ AN (0,1) and o € RT \ {0}. In particular, the
LLR that proceeds from the received data at the output of an
AWGN channel can be modelled by (4). The validity of this
assumption has been questioned in [9] for both regular and
irregular LDPC codes and under AWGN channel. The main
conclusion is that it is inappropriate to use a single parameter
o to model the statistical behaviour of L. Alternatively, the
mean and the variance of the density should be considered as
independent variables leading to the following model:

0.2
L= Oé?X +on (5)

where @ € RT \ {0}. Let G,(X) denote the set of LLR!
following (5), then oL € G1(X) where G1(X) is the set of
LLR following (4). LLR scaling is thus equivalent to propagat-
ing messages which are elements of G (X). From theoretical
point of view [5], [7], [6], the scaling factor should depend
on the check node degree. The rationale behind that is the
relationship between the check node degree and the reliability.
It is well known that the scaling factor should be an increasing
function of the reliability of the LLR and that the reliability
is larger with low degrees. Putting all these facts together, the
vertical step in min-sum decoding is replaced with

k k
ME =R+ > a®@) Y B (6)
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where D(i) is the set of degrees corresponding to parity-check

equations in which bit 4 is involved and where M(d) is the

set of indexes of parity check equations with degree d. In

eq. (6), Zj,e,;(@ E](f? is scaled in order to be in Gy(X).
J'#7

Since G4(X) is stable under addition, M](f) € G1(X). As
a consequence, the horizontal step remains unchanged since
{E](f)} is already scaled in (6) with {a(*)(d)}. It has been
previously mentioned that the numerical value of {a(*)(d)}
depends on the reliability of the LLR. A natural measure of
the reliability is the mutual information I(L,X). Since X
is unknown at the receiver side, an accurate estimation of

IThe term LLR is used indifferently for the log-ratio in (4) and (5) even if
(5) does not strictly match the definition of a log-likelihood ratio.

I(L,X) is unlikely to be obtained at the decoder. It was
observed in [10] for both turbo-codes and regular LDPC codes
that the scaling factor can be obtained as a function of a
single parameter: the mutual information between extrinsics.
An efficient computation scheme for finite sequences is also
provided leading to an estimation of the mutual information
between extrinsics at the receiver side. In the next section, the
results in [10] are briefly reviewed and extended to irregular
LDPC codes. The method for computing a(’“)(d) from the
mutual information between extrinsics is also detailed. The
complexity of the proposed method is addressed in section
IV in order to be compatible with a low-cost implementation.
Numerical results are provided in section V.

III. MUTUAL INFORMATION BETWEEN EXTRINSICS

Let L,, L, € Go(X), the mutual information I(L,, L) is
defined as:

PL,.L (gyaéz) >:|
I(L,,L,)=FE . log, | —-5F—"F~ @)
() = Bt [0 55,
The mutual information between extrinsics is related to I (L,,, X)
and I(L,, X) through [10]:

I(Lllez>:I(Lan)+I(LzaX)_I(Ly+LzaX) ¥

where I(L,X) =1 — fjocpr(ﬂX = 1)logy(1 + e~*)de.
and L stands for L, or L,. The evolution of I(L,, L) for a
given system can be obtained offline via an histogram method
applied to each of the three terms involved in (8) as in EXIT
Charts. Let Ly, resp. L, denote the random variable associated
with {3 E;;} resp. {>_; M;;}. In min-sum decoding, Ej;
is the LLR of the probability that bit ¢ causes parity check
j to be satisfied. On the other side, Mj; is the LLR of the
probability of bit ¢ based on the knowledge of the received
sequence and of the probability of the other bits in parity-
check j. Thus, Zj E;; is the opinion of the parity-check
nodes on bit ¢ whereas ), M; ; is the opinion of the variable
nodes on bit ¢. Figure 1 depicts the extension of the single-
curve Exit-Chart presented in [10] to irregular LDPC codes.
The principle is quite simple. All messages entering a vertical
or a horizontal node belong to G1(X). The scaling factor
a(d) is computed easily from {£;} ;e pm(q) since X is known.
Then {Eji}jeaa) is scaled and the vertical step is processed
with (6). In parallel, I(L,, L) is computed with (8) and an
histogram method. From this scheme, the evolution of «(d)
can be plotted as a function of I(L,,L,). We consider as
an example, an irregular code of rate % and length 10032
with degree distribution p(z) = 0.252% +0.752!* and A\(z) =
0.1917z + 0.012522 + 0.0417z* + 0.07502° + 0.204025 +
0.06677 +0.2252% 4 0.0833z" +0.058z'° + 0.05412'2. This
LDPC code was previously considered in [7] and is used
through this paper for comparison purpose. This code has
two check node degrees, 5 and 15. The evolution of «(5)
and «(15) as a function of I(L,,L,) is given in Fig. 2. As
expected, the scaling factor takes different values depending
on the check-node degree. This fact was already established
in [7] where the scaling factor is plotted as a function of
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Figure 1. Single curve EXIT Chart for irregular LDPC codes
i R . x; € {—1,+1}. An estimator I,, of I(L,,L.) is given in
f : : [10] with expression:
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Figure 2. Scaling factors c(5) and a(15) vs I(Ly, L-).

the iteration number. The shape of curves in Fig. 2 is very
similar to the ones in Fig. 5 of [7]. The main difference is that
here the value of the scaling factor is plotted as a function of
I(L,, L,) and is valid for any signal to noise ratio (SNR) and
at any iteration since this information is already captured in
the mutual information. In contrast, the curves given in [7] are
obtained for a particular value of the SNR and are accurate
only locally. Let I = I(L,, L.). Using polynomial fitting and
Fig. 2, we obtain the following rules:

0.416 + 1.9561 — 2.9751% +1.832I°  (9)
—0.232 + 2.7471 — 3.6901° + 2.2681° (10)

a(d) =
a(l5) =
The next section is devoted to the estimation of I(L,, L) at
the receiver side with finite length sequences.
IV. ONLINE COMPUTATION OF I(L,, L)

Let consider a message X = (x1,%2,...,2x) with finite
length K. Let £, ; resp. £, ; be a realization of random variable
L, resp. L. Both ¢, ; and £, ; are noisy estimates of x; with

The accuracy of this estimator was evaluated in [10] for a seri-
ally concatenated turbo-code. Obviously, the distance between
I,. and I(L,, L) depends of the system and also of the block-
length K. A numerical evaluation is provided in Fig. 3 for the
irregular LDPC code defined in the previous section. The mean
square error (MSE) is plotted as a function of I(L,,, L) where
I(L,, L) is evaluated with the histogram method whereas fyz
is obtained with (12). It can be observed that the histogram
method is computationally demanding and necessitates the
knowledge of X. This is an offline tool only. In contrast, I, .
can be computed offline an online as well. From Fig. 3 we can
conclude that, for the irregular code under consideration, the
MSE is lower than 6.10~% whatever the value of the mutual
information is. On average, |I(Ly, L) — I,.| < 2.5.1072
which gives an idea of the accuracy of the proposed estimator.
The implementation of the method in min-sum decoding is

considered below. Let f(¢) = 109(1 + e‘) then
- 1 K
Iyz =1+ m Z(f(gy,k + KZ,k) - f(gy,k) - f(EZ,k)>

k=1
(13)

Using the fact that log(e®+e®) = max(a, b)+log(1+e~1a=0l),

£(6) = max(0, ) +log(1 + e~ " max(0,€) + g(¢). Tt is
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Figure 3. MSE(I(Ly,L.) — fyz) with quantized and unquantized LLR.

straightforward to prove that
max (0,4, + £ 1) — max(0, £, ) — max(0,4, ) =

if sign(lyr) = sign(ZZ,;g)(M)

0
{ —min(|ly x|, ¢ x]) otherwise

To limit the computational complexity of the iterative decod-
ing, it is proposed to use pre-computed values of g(.) for
|ty € Q with @ = {0,¢,2q, ..., Lymas } and where £, = Q(¢)
is the closest value to £ in Q. Let A = g(¢) — g({,) denote
the corresponding error in the evaluation of ¢(.). Two different
values of A are considered. The first one is A = 10~2 which
is the same order of magnitude than the maximal average
error obtained with unquantized LLR in Fig. 3. In that case
Limaz = 4.6 and card(Q) = 115. Alternatively, A = 1073
is also considered. This last choice leads to L4, = 6.9
and card(Q) = 1725. Let I$ denote I,. evaluated with
quantized values for g(.). The reference is still the value of
the mutual information provided by the histogram method
(MSE(I(Ly, L.)—1I2)). The MSE of I% is depicted in Fig.
3 for A = 1072 and A = 1073. The MSE of INyQZ when
A = 1073 is almost equal to the MSE of I,.. Surprisingly,
the quantization tends to lower the error when A = 1072
and I(L,,L,) < 0.85. In any case, the MSE due to both
the estimator and the quantization effect remains lower than
6.10~*. In the same way, «(5) and (15) can be computed
in advance for quantized values of Isz.

The extra cost of the proposed method compared to fixed-
scaling factor techniques is (i) the storage of the table con-
taining the pre-determined values of «(5), a(15) and g(.),
(ii) the arithmetical complexity due to the computation of
I?z which has to be performed at each iteration. Point (i) is
directly connected with the desired precision. With A = 1072,
115 different value of g(.) have to be stored and if an extra
quantization error of 1072 is allowed on Isz then 100 values
have to be stored for a(5), a(15). The arithmetical complexity
in (ii) for IyQZ is evaluated in table I and compared to the
min-sum decoding in eq. (2-3). In table I, ¢(¢) denotes the
number of ones in column ¢ of the parity-check matrix of size

M x K, r(i) denotes the number of ones in raw ¢ of the
parity-check matrix and U is the number of bit positions in
which sign(¢,, ;) = sign(£. ). The comparison is conducted
for a single iteration and for the main operations (addition
and minimum or maximum selection). For the irregular LDPC

l H Horizontal step (MS) [ Vertical step (MS) [ fgz ‘
Addition 0 K cl)? 3K -U+1
Min/Max. || Y0, r(i)(r(i) — 2) 0 K-U
selection

Table I
COMPLEXITY OF I@% COMPARED TO MS

defined in section III, numerical values can be obtained. We

Cen jee sk KU
have 24 = 84d% and s G S

ic(d)? = XK c9)?
K _ . .
ST G0 2%. This leads to the conclusion that
the extra cost for the evaluation of the mutual information is
negligible compared to the total cost inherent to MS decoding.

V. SIMULATION RESULTS

In this section, the performance of the proposed method
(labelled “MS, o = f(IM)” in the following) is evaluated
in terms of bit error rate (BER) and number of iterations.
The irregular LDPC code of rate % and length 10032 with
degree distribution p(z) = 0.252* + 0.75z'* and \(z) =
0.1917z + 0.01252 + 0.0417z* 4 0.07502° + 0.20402° +
0.066727+0.225254-0.08332°+0.058219+0.0541212 is again
considered. Comparison is provided with classical methods
and also with the most recent literature. The following schemes
are considered: (SP) iterative decoding with sum-product im-
plementation, (MS, « = f(IM)) min-sum implementation
with scaling factor as in (6) in which the scaling factors are
given by (9-10) and [ = Igz, (MS, o = f(EbNOstpreshold, it))
min-sum implementation with scaling factor acquired using
training LLR and with a value of Eb/NO corresponding to the
practical threshold (EbNO;presnota) Of the code [7], (DNMS)
MS implementation with fixed values of «(5) and «(15) (gen-
eralization of the normalized MS to irregular codes [4] with
best scaling pair is «(5) = 0.88 and «a(15) = 0.68 [7]).

The results are given in Fig. 4 for BPSK modulation and in
Fig. 5 for 256-QAM modulation. For each implementation, the
same scaling sequence (if apply) is used for both BPSK and
256QAM. We observe the following. Adaptive LLR scaling
outperforms fixed LLR scaling in terms of BER. The BER
curves obtained with adaptive scaling are very close to the
BER curve obtained with SP implementation. The BER with
the proposed method (MS, o = f(IM)) is slightly better than
with the method in [7] (MS, a = f(EbNOipreshold, it)) for
both BPSK and 256QAM. The main gain obtained with our
method compared to [7] lies in the reduction in the number of
iterations. Indeed, as mentioned above, the scaling sequence
a = f(EbNO¢preshold, it) has been acquired for a particular
value of SNR EbNO¢preshoid- When the true SNR is signif-
icantly above EbNO:preshoid, the reliability of the LLR is
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Figure 4. BER (up) and iterations (down) under BPSK AWGN channel

rapidly increasing and the mutual information between ex-
trinsics as well. In that case, higher values of the scaling
factors could be chosen even in first iterations. Using the
rule « = f(EONOipreshoid, it) slows down the convergence
since the same rule is used whatever the value of EbNO is.
The same problem arises with DNMS. With BPSK, the it-
eration gain with the proposed method compared to a@ =
F(EbNOspreshold, it) is approximately 45% with EbNO =
2dB and up to 60% with higher EbNO.

VI. CONCLUSION

In this paper, the practical implementation of adaptive LLR
scaling has been investigated. The originality of the proposed
method is the use of a mutual information driven rule for the
scaling factor. This is an old idea but, up to our knowledge,
this is the first time that an implementation is proposed with
acceptable complexity. The efficiency of the proposed method
has been demonstrated in terms of BER and convergence rate.
It is worth mentioning that the estimate of the mutual informa-
tion between extrinsics could also be used as an early stopping
criterion or sent back to the transmitter via a feedback channel.
The last point could be of interest in several applications
including secure transmissions.

——sp
1o | M3 e =M i
MS o = fEBNO, it)
| —#—DNmMS
10 : M3 o=l
10
[nad
w
m _f
10
10
10
It i i i i i i 1
16 161 182 163 164 165 166 167 168
EbMO
15, T , T T : :
: : : | WS o= il
M3 o = fEBIND,it)
a0t —&4— DNMS I
2 .
5
2
£
5
= |
=
5
=
=
15 i i i ; ;
16 16.1 16.2 16.3 16.4 16.5 16.6 167
EbMO
Figure 5. BER (up) and iterations (down) under 256QAM AWGN channel

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

REFERENCES

R. Gallager, “Low-density parity-check codes,” IRE Trans. on Inform.
Theory, vol. 8, no. 1, pp. 21-28, January 1962.

D. MacKay, “Good error-correcting codes based on very sparse matri-
ces,” IEEE Trans. on Inform. Theo., vol. 45, no. 2, pp. 399-431, Mar
1999.

M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
IEEE Trans. on Commun., vol. 47, no. 5, pp. 673-680, May 1999.

J. Chen and M. Fossorier, “Density evolution for two improved BP-
Based decoding algorithms of LDPC codes,” IEEE Communications
Letters, vol. 6, no. 5, pp. 208-210, May 2002.

J. Zhang, M. Fossorier, D. Gu, and J. Zhang, “Two-dimensional correc-
tion for min-sum decoding of irregular LDPC codes,” IEEE Communi-
cations Letters, vol. 10, no. 3, pp. 180-182, Mar 2006.

G. Lechner and J. Sayir, “Improved Sum-Min Decoding for Irregular
LDPC Codes,” in 6th International ITG-Conference on Source and
Channel Coding (TURBOCODING), April 2006, pp. 1-6.

Y. Xu, L. Szczecinski, B. Rong, F. Labeau, D. He, Y. Wu, and W. Zhang,
“Variable LLR Scaling in Min-Sum Decoding for Irregular LDPC
Codes,” IEEE Trans. on Broadcasting, vol. 60, no. 4, pp. 606-613, Dec
2014.

S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. on Commun., vol. 49, no. 10, pp.
1727-1737, Oct 2001.

M. Fu, “On gaussian approximation for density evolution of low-density
parity-check codes,” in IEEE ICC, vol. 3, June 2006, pp. 1107-1112.
F. Alberge, “On Some Properties of the Mutual Information between
Extrinsics with Application to Iterative Decoding,” IEEE Trans. on
Commun., vol. 63, no. 5, pp. 1541-1553, May 2015.



