
HAL Id: hal-01330898
https://hal.science/hal-01330898v1

Submitted on 13 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Randomized Regular Modular Exponentiation
using Combined Montgomery and Barrett

Multiplications
Andrea Lesavourey, Christophe Negre, Thomas Plantard

To cite this version:
Andrea Lesavourey, Christophe Negre, Thomas Plantard. Efficient Randomized Regular Modular
Exponentiation using Combined Montgomery and Barrett Multiplications. ICETE: International
Joint Conference on e-Business and Telecommunications, Jul 2016, Lisbon, Portugal. pp.368-375,
�10.5220/0005998503680375�. �hal-01330898�

https://hal.science/hal-01330898v1
https://hal.archives-ouvertes.fr

Efficient Randomized Regular Modular Exponentiation using
Combined Montgomery and Barrett Multiplications

Andrea Lesavourey1, Christophe Negre1 and Thomas Plantard2

1 DALI (UPVD) and LIRMM (Univ. of Montpellier, CNRS), Perpignan, France
2 CCISR, SCIT, University of Wollongong, Wollongong, Australia

andrea.lesavourey@outlook.fr, christophe.negre@univ-perp.fr,thomaspl@uow.edu.au

Keywords:
RSA, modular exponentiation, Barrett, Montgomery, differential power analysis, correlation
power analysis, randomization

Abstract:
Cryptographic operations performed on an embedded device are vulnerable to side channel analysis
and particularly to differential and correlation power analysis. The basic protection against such
attacks is to randomize the data all along the cryptographic computations. In this paper we
present a modular multiplication algorithm which can be used for randomization. We show that
we can use it to randomize the modular exponentiation of the RSA cryptosystem. The proposed
randomization is free of computation and induces a level of randomization from 210 to 215 for
practical RSA modulus size.

1 Introduction

Modern digital communications are inten-
sively encrypted and authenticated to ensure a
good level of confidentiality and security. Public
key encryption and signature is a concept initi-
ated in 1976 by Diffie and Hellman. This concept
was realized by Rivest Shamir and Adlemann who
proposed the RSA cryptosystem in (Rivest et al.,
1978). This RSA cryptosystem is nowadays the
most used public key scheme for electronic signa-
ture and remote authentication.

The basic operation in RSA protocols is an
exponentiation modulo a integer N which is of
size 2048-4096 bits. This exponentiation is gen-
erally computed through a sequence of a few
thousands squarings and multiplications mod-
ulo N using the Square-and-multiplication expo-
nentiation scheme. Unfortunately, a naive im-
plementation of this algorithm on an embed-
ded device could be threaten by side channel
analysis. These attacks monitor either power
consumption (Kocher et al., 1999), electromag-
netic emanation (Mangard, 2003) or computation
time (Kocher, 1996) in order to extract the secret
exponent.

The kind of attacks we will consider here

are the simple power analysis (SPA) (Kocher
et al., 1999), the differential and correlation
power analysis (Kocher et al., 1999; Brier et al.,
2004). The SPA can be easily defeated by
using a regular algorithm for the exponentia-
tion like the Montgomery-ladder (Joye and Yen,
2002) or the Square-and-multiply-always algo-
rithm (Coron, 1999). To counteract the differen-
tial and correlation power analysis it is necessary
to randomize the data and the computations all
along the exponentiation.

In this paper we study a new method to ran-
domize modular exponentiation. This approach
is based on a modular multiplication algorithm
which randomly combines the two main methods
for modular multiplication: Montgomery (Mont-
gomery, 1985) and Barrett multiplications (Bar-
rett, 1987). The advantage of this proposed
randomization is that it is free of computation.
We then present a modified Montgomery-ladder
and a modified Square-and-multiply-always al-
gorithms for modular exponentiation which uses
this randomized modular multiplication. For
these two proposed randomized exponentiations
we study the level of randomization obtained.

The remainder of the paper is organized as fol-
lows. In Section 2 we review modular exponenti-

ation and side channel analysis. In Section 3 we
review the methods of Montgomery and Barrett
for modular multiplication and we present a com-
bined version of these two methods. In Section 4
we study two randomized exponentiations based
on the combined Montgomery and Barrett mul-
tiplication. Finally, in Section 5, we give some
concluding remarks and some perspectives.

2 Exponentiation and side channel
analysis

The basic operation in RSA protocols is the
modular exponentiation: given an RSA modulus
N , an exponent E and X ∈ {0, . . . , N − 1} we
have to compute

Y = XE mod N.

Generally, the most sensitive data is the expo-
nent E. This exponentiation can be efficiently
computed with the so-called Square-and-multiply
algorithm which consists in a sequence of squar-
ings followed by a multiplication by X when the
bit ei of E is equal to 1. This approach is detailed
in Algorithm 1.

Algorithm 1 Left-to-right Square-and-multiply

Require: An RSA modulus N , an integer X ∈
{0, . . . , N − 1} and an exponent E =
(e`−1, . . . , e0)2

Ensure: R0 = XE mod N
1: R0 ← 1
2: for i from `− 1 to 0 do
3: R0 ← R2

0 mod N
4: if ei = 1 then
5: R0 ← R0 ×X mod N
6: end if
7: end for
8: return R0

2.1 Side channel analysis of RSA
exponentiation

When an RSA exponentiation is computed on
an embedded device it is under the threat of side-
channel analysis. Such attacks monitor either the
power consumption, the electromagnetic emana-
tion or the computation time in order to extract
the secret data. We review the simple power
analysis (SPA) and differential/correlation power
analysis (Kocher et al., 1999; Brier et al., 2004):

• Simple power analysis. The simple power
analysis (Kocher et al., 1999) threatens imple-
mentations based on the Square-and-multiply
exponentiation. Indeed, if the squaring of a
data has a different power trace than a multi-
plication, the eavesdropper can read on the
power trace the sequence of squarings and
multiplications which were computed. Then,
since a multiplication is done only when ei =
1, the attacker can easily deduce the sequence
of bits of the exponent. Figure 1 illustrates
this fact.

Figure 1 – SPA attack on the Square-and-multiply
exponentiation from (Kocher et al., 2011)

Counter-measures. SPA can be easily de-
feated by using a regular algorithm for the
computation of the exponentiation. For exam-
ple the Square-and-multiply-always approach
proposed in (Coron, 1999) is a variant of
the Square-and-multiply (Algorithm 1) which
performs a dummy multiplication when the
bit ei = 0.

Another popular approach is the
Montgomery-ladder which is shown in
Algorithm 2. This approach is a variant
of Algorithm 1 where a second variable R1

is used and always satisfies R1 = R0 × X
mod N . In the Montgomery-ladder, when
ei = 1, the two instructions R0 ← R2

0 and
R0 ← R0 × X are replaced by a single
multiplication R0 ← R0 × R1. Steps 5 and
8 are also included to maintain the relation
between R0 and R1.

The power trace of the execution of
the Square-and-multiply-always and
Montgomery-ladder algorithms consists
in a regular sequence of squarings followed by
a multiplication: this does not leak anymore
the bits of the exponent E.

• Differential and correlation power anal-
ysis. A more advanced attack called differ-
ential power analysis was initiated in (Kocher
et al., 1999). This attack was later extended
in (Brier et al., 2004) as a correlation power
analysis (CPA).

This attack extracts hidden information in the
power trace to identify the exact sequence

Algorithm 2 Montgomery-ladder (Joye and
Yen, 2002)

Require: An RSA modulus N , an integer X ∈
{0, . . . , N − 1} and E = (e`−1, . . . , e0)2

Ensure: R0 = XE mod N
1: R0 ← 1, R1 ← X
2: for i from 0 to `− 1 do
3: if ei = 0 then
4: R0 ← R2

0 mod N
5: R1 ← R0 ×R1 mod N
6: else
7: R0 ← R0 ×R1 mod N
8: R1 ← R2

1 mod N
9: end if

10: end for
11: return R0

of operations. The principle is to follow the
data computed in the exponentiation algo-
rithm: if we know the first bits e0, e1, . . . , ei
and the messageX we can calculateXi = XEi

mod N where Ei = (ei, . . . , e0)2. Next we
guess the next bit ei+1 = 0 or 1 and then com-
pute the corresponding next value Xi+1,0 =
X2
i mod N or Xi+1,1 = X2

i × X mod N in
the next iteration. The power trace is cor-
related to either Xi+1,0 or Xi+1,1, so the au-
thors in (Kocher et al., 1999) use a differential
of multiple power traces to accurately decide
which value of ei+1 is the correct guess. The
authors in (Brier et al., 2004) evaluate the co-
variance between the Hamming weight of data
Xi+1,0 or Xi+1,1 and the power traces to de-
cide which guess is correct.

Counter-measures. The basic approach to
counteract differential and correlation power
analysis is to inject randomization in the ex-
ponentiation. Specifically, the three main
strategies to randomize the data are the fol-
lowing:

– Exponent blinding: this strategy given
in (Coron, 1999) add to E a random multi-
ple of φ(N) = (p− 1)(q − 1)

E′ = E + β × φ(N)

Then exponentiation XE′ mod N = XE

mod N is the same. This leads to unpre-
dictable values taken by R0 during the ex-
ponentiation.

– Message blinding: The idea is to mask X
and thus makes it impossible to predict any-
thing regarding the power trace related to

X. We choose a random value ρ for which
we know ρE

′
and we compute

X ′ = X × ρE
′

mod N

Then we compute X ′E mod N = XE ×
ρE
′E mod N = XE × ρ mod N and then

we divide by ρ to get XE mod N .

– Randomization of modular multiplication:
the main approach is the use of randomized
expression modulo N , instead of X we use
X ′ ≡ X mod N with X ′ ∈ {0, . . . , 2wN}.
The value X ′ can then be randomly gener-
ated as follows:

X ′ ← X ′ + βN,

with β random in {0, . . . , 2w}. The draw-
back of this approach is that each modular
multiplication becomes more expensive, re-
sulting in a penalty in space requirement,
computation time and power consumption.

In the sequel we will present an alternative
approach for the randomization in modular ex-
ponentiation in order to get a cheaper counter-
measure against differential and correlation power
analysis.

3 Modular multiplication

In this section we first review the two main
methods, Montgomery (Montgomery, 1985) and
Barrett (Barrett, 1987), for the computation of a
multiplication modulo an integer N as the ones
used in RSA cryptosystems. These methods dif-
fer in the way the product is reduced: the Mont-
gomery method reduces the product by clearing
the least significant bits and the method of Bar-
rett reduces the product by clearing the most sig-
nificant bits. We will then present a combination
of these two approaches which can be used to ran-
domize a multiplication modulo N .

3.1 Montgomery multiplication

Let N be an n-bit modulus which is stored
on t computer words with t = dn/we and each
computer word containing w bits. Let X be a t-
word integer in [0, N] and Y be an s-word integer
such that s ≤ t. Usually we have s = t when
we want to compute the product of two elements
modulo N . But in the sequel we will need this
version of the Montgomery multiplication with a
multiplicand of word size s < t.

The word level form of Montgomery multipli-
cation computes R = X × Y × 2−sw mod N as
follows: it sequentially multiply X by the s words
of Y and add it to Z, and reduce Z by clearing its
w least significant bits. For each word reduction:
it computes Q of bit length w such that Z+Q×N
have its w least significant bits equal to 0, it fi-
nally computes the exact division (Z+Q×N)/2w

which is equal to Z×2−w mod N . The main ad-
vantage of the Montgomery approach for modular
multiplication is that it avoids a costly integer di-
visions. This approach is shown in Algorithm 3.

Algorithm 3 MontMul

Require: 2n−1 < N < 2n the modulus of bit-
length n, X = (Xt−1, . . . , X0)2w an integer in
[0, N] and Y = (Ys−1, . . . , Y0)2w an integer in
[0, . . . , 2ws[and N ′ = −N−1 mod 2w

Ensure: R = X × Y × 2−sw mod N
1: for i = 0 to s− 1 do
2: Z ← Z +X × Yi
3: Q← N ′ × Z mod 2w

4: R← (Z +Q×N)/2w

5: end for
6: if R ≥ N then
7: R← R−N
8: end if
9: return R

3.2 Barrett multiplication

We consider a modulus N of bit length n and
word length t. Let X be an integer of word length
t and Y be an integer of word length s ≤ t. Usu-
ally we have s = t but in the sequel we will need
this version of Barrett multiplication with s < t.

The approach of Barrett to perform the mod-
ular multiplication (X × Y) mod N is the fol-
lowing: it sequentially multiply X the words of
Y , add the result to Z, and reduce Z modulo N
by clearing the most significant bits. For each
word reduction it approximates the quotient Q of
the division of Z by N and then computes the
remainder R = Z −QN . This approach is shown
in Algorithm 4.

Q̂ in Algorithm 4 is a good approximation of
the quotient Q = b ZN c. The authors of (Knezevic
et al., 2009) showed that

Q ≥ Q̂ ≥ Q− 1.

This means that Step 7 in Algorithm 4 returns
the correct element R = X × Y mod N .

Algorithm 4 BarrettMul

Require: N a modulus of bit length n and word
length t, X = (Xt−1, . . . , X0)2w an integer in
[0, N] and Y = (Ys−1, . . . , Y0)2w an integer in
[0, . . . , 2s[and N ′ = b2n+w+3/Nc

Ensure: R = X × Y mod N
1: for i = s− 1 to 0 do
2: Z ← Z × 2w +X × Yi
3: Q̂← bbZ/2n−2cN ′/2w+5c
4: R← Z − Q̂N
5: end for
6: if R ≥ N then
7: R← R−N
8: end if
9: return R

3.3 Combined Montgomery and
Barrett multiplication

Now, we present our first contribution. We
consider two n-bit integers X and Y stored on
t = dn/we words. We combine Montgomery and
Barrett multiplication in order to compute

R = X × Y × 2−sw mod N

with an arbitrary s ∈ [0, t]. For this, we split the
integer X into two parts X = X0 + 2swX1. We
then perform

Z0 = MontMul(Y,X0) = Y ×X0 × 2−sw mod N,
Z1 = BarrettMul(Y,X1) = Y ×X1 mod N.

We then obtain the required result R = X×Y ×
2−sw mod N as follows

Z0 + Z1=Y ×X0 × 2−sw + Y ×X1 mod N
=Y × (X0 + 2sX1)2−sw mod N
=X × Y × 2−sw mod N.

Algorithm 5 gives the details of this approach.

3.4 Complexity comparison

We use the word level Montgomery and
Barrett algorithms reviewed in Subsection 3.1
and 3.2. We study the complexity in terms of
word additions (Add) and word multiplications
(Mul). The complexity of Barret and Mont-
gomery multiplications (without the final sub-
traction by N) for a t-word X and an s-word Y
are as follows

• Barret: #Mul = s(t+ 1) and #Add = s(3t+
2).

• Montgomery: #Mul = s(t + 1) and #Add =
s(3t+ 2).

Algorithm 5 CombMontBarrettMul

Require: 2n−1 < N < 2n the modulus of
bit-length n and word length t, X =
(Xt−1, . . . , X0)2w and Y = Yn−1, . . . , Y0)2w
two integers in [0, N [and a split s ∈ [0, t]

Ensure: Z = X × Y × 2−sw mod N
1: Split. X = X0 + 2swX1

2: Z0 ← MontMul(Y,X0)
3: Z1 ← BarrettMul(Y,X1)
4: Z ← Z0 + Z1

5: if Z > N then
6: Z ← Z −N
7: end if
8: return Z

This leads to the following complexity of the
CombinedMontMul algorithm (including the fi-
nal subtraction by N):

#Mul = s(t+ 1) + (t− s)(t+ 1) = t2 + t
#Add = s(3t+ 2) + (t− s)(3t+ 2) + t

= 3t2 + 3t+ t

This leads to the complexity shown in Table 1 for
the multiplication of the t words integers X and
Y with the three approaches: Montgomery, Bar-
rett and combined Montgomery Barrett. These
complexity includes the final subtraction to get
Z < N .

Table 1 – Complexity comparison of Montgomery,
Barrett and combined Montgomery Barrett

#Add #Mul Total

Montgomery t2 + t 3t2 + 2t+ t 4t2 + 3t

Barrett t2 + t 3t2 + 2t+ t 4t2 + 3t

Combined

Montgomery

and Barret

t2 + t 3t2 + t 4t2 + 3t

Since the complexity of the word level form of
CombMontBarretMul is the same as Montgomery
and Barrett, we can take advantage of the algo-
rithm to randomize modular exponentiation. We
will study this strategy in the following section.

4 Randomized exponentiation

We present in this section two randomized ex-
ponentiations which uses CombMontBarretMul
for modular multiplications.

4.1 Randomized
Montgomery-ladder

We first consider the Montgomery-ladder (Al-
gorithm 2). We randomize this exponentiation
by using CombMontBarrettMul for each modu-
lar multiplication. Before each multiplication the
splitting s for CombMontBarretMul is randomly
generated. The effect is that in the Montgomery-

ladder exponentiation we have R̃0 = R02γw

mod N and R̃1 = R12γw mod N such that the
integer γ evolves randomly. The integer s is ran-
domly chosen in order to keep γ in the inter-
val [t/3, 2t/3]. This approach is shown in Algo-
rithm 6.

Algorithm 6 Randomized-Montgomery-ladder

Require: An RSA modulus N of bit length n,
an integer X ∈ {0, . . . , N − 1} and E =
(e`−1, . . . , e0)2

Ensure: R0 = XE mod N
1: s` ← rand(t/3, 2t/3)
2: γ` ← s`w

3: R̃0 ← 2s`w

4: R̃1 ← BarrettMul(X, 2s`w)
5: for i from `− 1 to 0 do
6: γi ← rand(t/3, 2t/3)
7: si ← 2γi+1 − γi
8: if ei = 1 then
9: R̃0 ← CombMontBarrettMul(R̃0, R̃1, si)

10: R̃1 ← CombMontBarrettMul(R̃1, R̃1, si)
11: else
12: R̃1 ← CombMontBarrettMul(R̃0, R̃1, si)

13: R̃0 ← CombMontBarrettMul(R̃0, R̃0, si)
14: end if
15: end for
16: R̃0 ← CombMontBarrettMul(R0, 1, γ0)

17: return R̃0

Validity of Algorithm 6. Let R̃
(i)
0 and R̃

(i)
1 be the

values of R̃0 and R̃1 after the i-th iteration. The

integer γi in Algorithm 6 satisfies R̃
(i)
0 = R0×2γiw

mod N and R̃
(i)
1 = R

(i)
1 ×2γiw mod N where R

(i)
0

and R
(i)
1 are the values of R0 and R1 after the i-th

loop of the non-randomized Montgomery-ladder
exponentiation (i.e. Algorithm 2). When ei = 1
we have

R̃
(i)
0 = (R

(i+1)
0 × 2γi+1w)

×(R
(i+1)
1 × 2γi+1w)× 2−siw mod N

= R
(i+1)
0 ×R(i+1)

1 × 22γi+1w−siw mod N

= R
(i)
0 × 22γi+1w−siw mod N

which means that the instruction si = 2γi+1 − γi
in Step 7 is correct. Let us now check that si
is always in [0, t]. We have γi+1, γi ∈ [t/3, 2t/3]
then 2t/3 ≤ 2γi+1 ≤ 4t/3 and then

0 ≤ 2γi+1 − γi ≤ 3t/3

which implies that si = 2γi+1 − γi is in [0, t].

The main advantage of the proposed random-
ization is that it is free of computation. But its
main drawback is that the level of randomization
is not so important since we have, at each loop it-

eration, only t/3 possible values for R̃0 and R̃1. In
practice this means that we have to combine the
proposed randomization with the classical ones
reviewed in Section 2. When these strategies are
combined to the one proposed here we can obtain
any level of randomization with a reduced cost.

4.2 Randomized Right-to-left
Square-and-multiply-always

Now, we extend the randomization technique
presented in Subsection 4.1, to the Right-to-
left Square-and-multiply-always exponentiation.
This algorithm is reviewed in Algorithm 7. Our
goal is to get a regular exponentiation with a large
level of randomization.

Algorithm 7 Right-to-left Square-and-multiply-
always

Require: An RSA modulus N of bit length n,
an integer X ∈ {0, . . . , N − 1} and E =
(e`−1, . . . , e0)2

Ensure: R0 = XE mod N
1: R0 ← 1
2: R1 ← 1
3: Z ← X
4: for i from 0 to `− 1 do
5: if ei = 0 then
6: R0 ← R0 × Z mod N
7: else
8: R1 ← R1 × Z mod N
9: end if

10: Z ← Z2 mod N
11: end for
12: return R1

We propose to randomize Algorithm 7 as follows:

• We randomize Z with the strategy of Subsec-

tion 4.1. We have Z̃i = Z(i) × 2γiw mod N
such that γi is in [t/3, 2t/3] all along the ex-
ponentiation.

• We randomize R0 and R1 as follows: be-
fore each multiplication R0 × Z mod N and
R1×Z mod N we randomly choose s′i ∈ [0, t].
Then we perform the multiplications R0 × Z
mod N or R1 × Z mod N with CombMont-
BarrettMul with split s′i.

This randomized version of Algorithm 7 is
shown in Algorithm 8.

Algorithm 8 Randomized Right-to-left Square-
and-multiply-always

Require: An RSA modulus N of bit length n,
an integer X ∈ {0, . . . , N − 1} and E =
(e`−1, . . . , e0)2

Ensure: R0 = XE mod N
1: s−1 ← rand(t/3, 2t/3)

2: R̃0 ← 1, R̃1 ← 1, Z̃ ← Barrett(X, 2s−1w)
3: γ−1 ← s−1, γ

′
−1 ← 0

4: for i from 0 to `− 1 do
5: s′i ← rand(0, t)
6: if ei = 0 then

7: R̃0 ← CombMontBarrettMul(R̃0, Z̃, s
′
i)

8: γ′i ← γ′i−1 + (γi−1 − s′i)
9: else

10: R̃1 ← CombMontBarrettMul(R̃1, Z̃, s
′
i)

11: γ′i ← γ′i−1
12: end if
13: γi ← rand(t/3, 2t/3)
14: si ← 2γi−1 − γi
15: Z̃ ← CombMontBarrettMul(Z̃, Z̃, s)
16: end for
17: return R̃1

Validity of Algorithm 8. The way γ and Z̃ evolve
in Algorithm 8 is well known since it was studied

in Subsection 4.1. Consequently, we have Z̃(i) =
Z(i) × 2γiw mod N where Z(i) is the value of Z
after the i-th loop in the non-randomized Algo-
rithm 7 and γi is a random element in [t/3, 2t/3].

Now we consider R̃
(i)
1 and γ′i. We have:

R̃
(i)
1 = R

(i)
1 × 2γ

′
iw mod N.

The value γ′i+1 is expressed in terms of γ′i, γi and
s′i+1 as follows:

• If ei+1 = 1 we have

R̃
(i+1)
1 =R̃

(i)
1 × Z̃ × 2−s

′
i+1w mod N

=R
(i)
1 × 2γ

′
iw × Z × 2γi−1w

×2−s
′
i+1w mod N

=R
(i+1)
1 × 2γ

′
iw+γiw−s′i+1w mod N

which means that γ′i+1 = γ′i + γi − s′i+1.

• If ei+1 = 0 we have

R̃
(i+1)
1 = R̃

(i)
1

= R
(i+1)
1 × 2γ

′
i mod N

which gives γ′i+1 = γ′i.

So if we set

δi+1 =

{
γi − s′i+1 if ei+1 = 1
0 if ei+1 = 0

we have γ′i+1 = γ′i + δi+1, which means that γ′i
consists in random walk of step sizes δi for i =
1, . . . , `−1. The absolute value of these step sizes
δi are bounded by 2t/3: indeed since s′i always
satisfies 0 ≤ s′i ≤ t we always have

−2t/3 = t/3− t ≤ γi−1 − s′i︸ ︷︷ ︸
δi

≤ 2t/3− 0 = 2t/3.

Such random walk can get away from 0 as i
increases. This is interesting since this enlarges

the possible values for R̃1, i.e., this enlarges the
level of randomization.

But, on the other hand, this random walk in-
duces a problem we need to tackle: the final value
γ′`−1 can be a quite large integer and this might

render difficult to extract R
(`)
1 from R̃

(`)
1 .

We propose a strategy which controls the way
γ′i evolves, in order to have the final value γ′`−1 =
0. The following lemma provides the conditions
to reach this goal.

Lemma 1. Let E be an `-bit exponent and let hE
be his hamming weight. We denote {i0, . . . , ihE

}
the set of indexes i such that ei 6= 0. In Algo-
rithm 8 we can choose the integers s′i such that:

δi > 0 for the first hE/2 bits ei 6= 0,
δi < 0 for the last hE/2 bits ei 6= 0,

and such that we have

0 ≤ γ′ij < (hE − j)2t/3 for j = 1, . . . , hE

for all ij ∈ {i0, . . . , ihE
}.

Proof. There are the following two phases in the
evolution of γi:

• Ascending phase. This phase corresponds to
loops ij for j = 1, . . . , hE/2 where chose s′ij
such that δij ∈ [0, 2t/3]. Consequently, after
loop ij we have made j such step sizes and

then the exponent of R̃
(ij)
1 satisfies:

0 ≤ γ′ij ≤ j2t/3 ≤ (hE − j)2t/3.

• Descending phase. This phase corresponds to
loops ij for j = hE/2 + 1, . . . , hE . If we have
γ′ij ≤ (hE−j)2t/3 then there exists a step size

δij ∈ [−2t/3, 0] which yields γ′ij+1
< (hE −

j)2t/3 − t/3. Such δij can be obtained by
choosing properly s′ij and γij−1

Figure 2 illustrates the way γ′i increase and
then decrease towards 0.

Figure 2 – Evolution of the exponent γ based on
Lemma 1

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 iteration

 random
exponent

Level of randomization. We now focus on the
level of randomization injected in R̃

(i)
1 in Algo-

rithm 8 under the restriction of Lemma 1. The
number of possible values for R̃

(i)
1 depends on i

and on the Hamming weight of E. The following
lemma establishes the average case of this level of
randomization.

Lemma 2. Let R̃
(i)
1 = R

(i)
1 2γ

′
i mod N be the

value of R̃1 at the end of the i-th loop in Algo-
rithm 8. Then γ′i satisfies the following:

i) For i < `/2 we have, in average, γ′i ∈
[0, (2t/3)× (i/2)]

ii) For i > `/2 we have, in average, γ′i ∈
[0, (2t/3)× (`− i)/2]

Proof. We prove each case i) and ii) separately:

i) Let αi be the number of ej 6= 0 with j ≤ i.
Then the maximal value for γ′i which can be
reached at loop i is (2t/3)× αi which corre-
sponds to a walk of αi steps of size 2t/3. In
average, we have αi = i/2 such non-zero ej
with j ≤ i and this leads to the assertion i)
of the lemma.

ii) For i > `/2 we consider that we make back-
ward steps starting from the end where we
start at γ′` = 0. We make ` − i steps back-
wards, and only (` − i)/2 of them have step
size 6= 0, the maximal distance walked is
(2t/3)× (`− i)/2 and this leads to assertion
ii) of the lemma.

Table 2 – Level of randomization for practical sizes of
N , w = 32 and several loop iterations

Loop iterations i

50 100 500 1000 1500 2000

RSA 4096 210 211 213.4 214.4 215 215.4

RSA 3072 210 211 213.4 214.4 215

RSA 2048 210 211 213.4 214.4

The previous lemma shows that the level of

randomization for R̃
(i)
1 becomes large as soon as

we advance in the exponentiation. Table 2 shows
the level of randomization obtained for different
size of RSA modulus and different values for i.

5 Conclusion

In this paper we focused on counter-measures
based on randomization of RSA exponentiation
against side channel analysis. We proposed to
perform modular multiplications with a combina-
tion of Montgomery and Barrett multiplications.
This algorithm provides a way to randomize mod-
ular multiplication by setting the splitting value s
at random. We then provided a modified version
of two regular algorithm, i.e., Montgomery-ladder
and Square-and-multiply-always exponentiation.
We analyzed the algorithms which showed that
the proposed approach for randomization is in-
teresting since it does not induce any penalty in
terms of performance.

References

Barrett, P. (1987). Implementing the Rivest Shamir
and Adleman Public Key Encryption Algorithm
on a Standard Digital Signal Processor. In
CRYPTO ’86, pages 311–323. Springer-Verlag.

Brier, E., Clavier, C., and Olivier, F. (2004). Corre-
lation Power Analysis with a Leakage Model. In
CHES 2004, volume 3156 of LNCS, pages 16–29.
Springer.

Coron, J.-S. (1999). Resistance against Differential
Power Analysis for Elliptic Curve Cryptosys-
tems. In CHES, pages 292–302.

Diffie, W. and Hellman, M. (1976). New directions in
cryptography. IEEE Trans. Information Theory,
22(6):644–654.

Joye, M. and Yen, S. (2002). The Montgomery Pow-
ering Ladder. In CHES 2002, volume 2523 of
LNCS, pages 291–302. Springer.

Knezevic, M., Vercauteren, F., and Verbauwhede, I.
(2009). Speeding Up Barrett and Montgomery
Modular Multiplications.

Kocher, P. (1996). Timing Attacks on Implementa-
tions of Diffie-Hellman, RSA, DSS, and Other
Systems. In Advances in Cryptology - CRYPTO
’96, volume 1109 of LNCS, pages 104–113.
Springer.

Kocher, P., Jaffe, J., Jun, B., and Rohatgi, P. (2011).
Introduction to differential power analysis. J.
Cryptographic Engineering, 1(1):5–27.

Kocher, P. C., Jaffe, J., and Jun, B. (1999). Differen-
tial Power Analysis. In Advances in Cryptology,
CRYPTO’99, volume 1666 of LNCS, pages 388–
397. Springer.

Mangard, S. (2003). Exploiting Radiated Emissions
- EM Attacks on Cryptographic ICs. In Aus-
trochip 2003, Linz, Austria, October 1st, pages
13–16.

Montgomery, P. (1985). Modular Multiplication
Without Trial Division. Math. Computation,
44:519–521.

Rivest, R., Shamir, A., and Adleman, L. (1978).
A method for obtaining digital signatures and
public-key cryptosystems. Communications of
the ACM, 21:120–126.

