Andrea Lesavourey
email: andrea.lesavourey@outlook.fr

Christophe Negre
email: christophe.negre@univ-perp.fr

Thomas Plantard
email: thomaspl@uow.edu.au

Efficient Randomized Regular Modular Exponentiation using Combined Montgomery and Barrett Multiplications

Keywords: RSA, modular exponentiation, Barrett, Montgomery, differential power analysis, correlation power analysis, randomization

Cryptographic operations performed on an embedded device are vulnerable to side channel analysis and particularly to differential and correlation power analysis. The basic protection against such attacks is to randomize the data all along the cryptographic computations. In this paper we present a modular multiplication algorithm which can be used for randomization. We show that we can use it to randomize the modular exponentiation of the RSA cryptosystem. The proposed randomization is free of computation and induces a level of randomization from 2 10 to 2 15 for practical RSA modulus size.

Introduction

Modern digital communications are intensively encrypted and authenticated to ensure a good level of confidentiality and security. Public key encryption and signature is a concept initiated in 1976 by Diffie and Hellman. This concept was realized by Rivest Shamir and Adlemann who proposed the RSA cryptosystem in [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF]. This RSA cryptosystem is nowadays the most used public key scheme for electronic signature and remote authentication.

The basic operation in RSA protocols is an exponentiation modulo a integer N which is of size 2048-4096 bits. This exponentiation is generally computed through a sequence of a few thousands squarings and multiplications modulo N using the Square-and-multiplication exponentiation scheme. Unfortunately, a naive implementation of this algorithm on an embedded device could be threaten by side channel analysis. These attacks monitor either power consumption [START_REF] Kocher | Differential Power Analysis[END_REF], electromagnetic emanation [START_REF] Mangard | Exploiting Radiated Emissions -EM Attacks on Cryptographic ICs[END_REF] or computation time [START_REF] Kocher | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF] in order to extract the secret exponent.

The kind of attacks we will consider here are the simple power analysis (SPA) [START_REF] Kocher | Differential Power Analysis[END_REF], the differential and correlation power analysis [START_REF] Kocher | Differential Power Analysis[END_REF][START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF]. The SPA can be easily defeated by using a regular algorithm for the exponentiation like the Montgomery-ladder (Joye and Yen, 2002) or the Square-and-multiply-always algorithm [START_REF] Coron | Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems[END_REF]. To counteract the differential and correlation power analysis it is necessary to randomize the data and the computations all along the exponentiation.

In this paper we study a new method to randomize modular exponentiation. This approach is based on a modular multiplication algorithm which randomly combines the two main methods for modular multiplication: [START_REF] Montgomery | Modular Multiplication Without Trial Division[END_REF] and Barrett multiplications (Barrett, 1987). The advantage of this proposed randomization is that it is free of computation. We then present a modified Montgomery-ladder and a modified Square-and-multiply-always algorithms for modular exponentiation which uses this randomized modular multiplication. For these two proposed randomized exponentiations we study the level of randomization obtained.

The remainder of the paper is organized as follows. In Section 2 we review modular exponenti-ation and side channel analysis. In Section 3 we review the methods of Montgomery and Barrett for modular multiplication and we present a combined version of these two methods. In Section 4 we study two randomized exponentiations based on the combined Montgomery and Barrett multiplication. Finally, in Section 5, we give some concluding remarks and some perspectives.

Exponentiation and side channel analysis

The basic operation in RSA protocols is the modular exponentiation: given an RSA modulus N , an exponent E and X ∈ {0, . . . , N -1} we have to compute

Y = X E mod N.
Generally, the most sensitive data is the exponent E. This exponentiation can be efficiently computed with the so-called Square-and-multiply algorithm which consists in a sequence of squarings followed by a multiplication by X when the bit e i of E is equal to 1. This approach is detailed in Algorithm 1.

Algorithm 1 Left-to-right Square-and-multiply Require: An RSA modulus N , an integer X ∈ {0, . . . , N -1} and an exponent E = (e -1 , . . . , e 0) 2 Ensure: R 0 = X E mod N 1: R 0 ← 1 2: for i from -1 to 0 do

3: R 0 ← R 2 0 mod N 4: if e i = 1 then 5: R 0 ← R 0 × X mod N 6:
end if 7: end for 8: return R 0

Side channel analysis of RSA exponentiation

When an RSA exponentiation is computed on an embedded device it is under the threat of sidechannel analysis. Such attacks monitor either the power consumption, the electromagnetic emanation or the computation time in order to extract the secret data. We review the simple power analysis (SPA) and differential/correlation power analysis [START_REF] Kocher | Differential Power Analysis[END_REF][START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF]):

• Simple power analysis. The simple power analysis [START_REF] Kocher | Differential Power Analysis[END_REF] threatens implementations based on the Square-and-multiply exponentiation. Indeed, if the squaring of a data has a different power trace than a multiplication, the eavesdropper can read on the power trace the sequence of squarings and multiplications which were computed. Then, since a multiplication is done only when e i = 1, the attacker can easily deduce the sequence of bits of the exponent. Figure 1 illustrates this fact.

Figure 1 -SPA attack on the Square-and-multiply exponentiation from [START_REF] Kocher | Introduction to differential power analysis[END_REF] Counter-measures. SPA can be easily defeated by using a regular algorithm for the computation of the exponentiation. For example the Square-and-multiply-always approach proposed in [START_REF] Coron | Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems[END_REF]) is a variant of the Square-and-multiply (Algorithm 1) which performs a dummy multiplication when the bit e i = 0. Another popular approach is the Montgomery-ladder which is shown in Algorithm 2. This approach is a variant of Algorithm 1 where a second variable R 1 is used and always satisfies R 1 = R 0 × X mod N . In the Montgomery-ladder, when e i = 1, the two instructions R 0 ← R 2 0 and R 0 ← R 0 × X are replaced by a single multiplication R 0 ← R 0 × R 1 . Steps 5 and 8 are also included to maintain the relation between R 0 and R 1 . The power trace of the execution of the Square-and-multiply-always and Montgomery-ladder algorithms consists in a regular sequence of squarings followed by a multiplication: this does not leak anymore the bits of the exponent E.

• Differential and correlation power analysis. A more advanced attack called differential power analysis was initiated in [START_REF] Kocher | Differential Power Analysis[END_REF]. This attack was later extended in [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF] as a correlation power analysis (CPA). This attack extracts hidden information in the power trace to identify the exact sequence Algorithm 2 Montgomery-ladder (Joye and Yen, 2002) Require: An RSA modulus N , an integer X ∈ {0, . . . , N -1} and E = (e -1 , . . . , e 0) 2 Ensure: R 0

= X E mod N 1: R 0 ← 1, R 1 ← X 2: for i from 0 to -1 do 3: if e i = 0 then 4: R 0 ← R 2 0 mod N 5: R 1 ← R 0 × R 1 mod N 6: else 7: R 0 ← R 0 × R 1 mod N 8: R 1 ← R 2 1 mod N 9:
end if 10: end for 11: return R 0 of operations. The principle is to follow the data computed in the exponentiation algorithm: if we know the first bits e 0 , e 1 , . . . , e i and the message X we can calculate X i = X Ei mod N where E i = (e i , . . . , e 0) 2 . Next we guess the next bit e i+1 = 0 or 1 and then compute the corresponding next value X

i+1,0 = X 2 i mod N or X i+1,1 = X 2 i × X mod N in the next iteration.
The power trace is correlated to either X i+1,0 or X i+1,1 , so the authors in [START_REF] Kocher | Differential Power Analysis[END_REF] use a differential of multiple power traces to accurately decide which value of e i+1 is the correct guess. The authors in [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF] evaluate the covariance between the Hamming weight of data X i+1,0 or X i+1,1 and the power traces to decide which guess is correct.

Counter-measures. The basic approach to counteract differential and correlation power analysis is to inject randomization in the exponentiation. Specifically, the three main strategies to randomize the data are the following:

-Exponent blinding: this strategy given in [START_REF] Coron | Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems[END_REF] add to E a random multiple of φ(N) = (p -1)(q -1)

E = E + β × φ(N)
Then exponentiation X E mod N = X E mod N is the same. This leads to unpredictable values taken by R 0 during the exponentiation.

-Message blinding: The idea is to mask X and thus makes it impossible to predict anything regarding the power trace related to X. We choose a random value ρ for which we know ρ E and we compute the main approach is the use of randomized expression modulo N , instead of X we use X ≡ X mod N with X ∈ {0, . . . , 2 w N }.

X = X × ρ E mod N Then we compute X E mod N = X E × ρ E E mod N = X E × ρ mod N
The value X can then be randomly generated as follows:

X ← X + βN,
with β random in {0, . . . , 2 w }. The drawback of this approach is that each modular multiplication becomes more expensive, resulting in a penalty in space requirement, computation time and power consumption.

In the sequel we will present an alternative approach for the randomization in modular exponentiation in order to get a cheaper countermeasure against differential and correlation power analysis.

Modular multiplication

In this section we first review the two main methods, Montgomery [START_REF] Montgomery | Modular Multiplication Without Trial Division[END_REF] and [START_REF] Barrett | Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor[END_REF], for the computation of a multiplication modulo an integer N as the ones used in RSA cryptosystems. These methods differ in the way the product is reduced: the Montgomery method reduces the product by clearing the least significant bits and the method of Barrett reduces the product by clearing the most significant bits. We will then present a combination of these two approaches which can be used to randomize a multiplication modulo N .

Montgomery multiplication

Let N be an n-bit modulus which is stored on t computer words with t = n/w and each computer word containing w bits. Let X be a tword integer in [0, N] and Y be an s-word integer such that s ≤ t. Usually we have s = t when we want to compute the product of two elements modulo N . But in the sequel we will need this version of the Montgomery multiplication with a multiplicand of word size s < t.

The word level form of Montgomery multiplication computes R = X × Y × 2 -sw mod N as follows: it sequentially multiply X by the s words of Y and add it to Z, and reduce Z by clearing its w least significant bits. For each word reduction: it computes Q of bit length w such that Z +Q×N have its w least significant bits equal to 0, it finally computes the exact division (Z +Q×N)/2 w which is equal to Z × 2 -w mod N . The main advantage of the Montgomery approach for modular multiplication is that it avoids a costly integer divisions. This approach is shown in Algorithm 3.

Algorithm 3 MontMul

Require:

2 n-1 < N < 2 n the modulus of bit- length n, X = (X t-1 , . . . , X 0) 2 w an integer in [0, N] and Y = (Y s-1 , . . . , Y 0) 2 w an integer in [0, . . . , 2 ws [and N = -N -1 mod 2 w Ensure: R = X × Y × 2 -sw mod N 1: for i = 0 to s -1 do 2: Z ← Z + X × Y i 3: Q ← N × Z mod 2 w 4: R ← (Z + Q × N)/2 w 5: end for 6: if R ≥ N then 7: R ← R -N 8: end if 9: return R

Barrett multiplication

We consider a modulus N of bit length n and word length t. Let X be an integer of word length t and Y be an integer of word length s ≤ t. Usually we have s = t but in the sequel we will need this version of Barrett multiplication with s < t.

The approach of Barrett to perform the modular multiplication (X × Y) mod N is the following: it sequentially multiply X the words of Y , add the result to Z, and reduce Z modulo N by clearing the most significant bits. For each word reduction it approximates the quotient Q of the division of Z by N and then computes the remainder R = Z -QN . This approach is shown in Algorithm 4.

Q in Algorithm 4 is a good approximation of the quotient Q = Z N . The authors of [START_REF] Knezevic | Speeding Up Barrett and Montgomery Modular Multiplications[END_REF] showed that

Q ≥ Q ≥ Q -1.
This means that Step 7 in Algorithm 4 returns the correct element R = X × Y mod N .

Algorithm 4 BarrettMul

Require: N a modulus of bit length n and word length t, X = (X t-1 , . . . , X 0) 2 w an integer in [0, N] and Y = (Y s-1 , . . . , Y 0) 2 w an integer in [0, . . . , 2 s [and

N = 2 n+w+3 /N Ensure: R = X × Y mod N 1: for i = s -1 to 0 do 2: Z ← Z × 2 w + X × Y i 3: Q ← Z/2 n-2 N /2 w+5 4: R ← Z -QN 5: end for 6: if R ≥ N then 7: R ← R -N 8: end if 9: return R

Combined Montgomery and Barrett multiplication

Now, we present our first contribution. We consider two n-bit integers X and Y stored on t = n/w words. We combine Montgomery and Barrett multiplication in order to compute

R = X × Y × 2 -sw mod N with an arbitrary s ∈ [0, t].
For this, we split the integer X into two parts X = X 0 + 2 sw X 1 . We then perform

Z0 = MontMul(Y, X0) = Y × X0 × 2 -sw mod N, Z1 = BarrettMul(Y, X1) = Y × X1 mod N.
We then obtain the required result R = X × Y × 2 -sw mod N as follows

Z0 + Z1=Y × X0 × 2 -sw + Y × X1 mod N =Y × (X0 + 2 s X1)2 -sw mod N =X × Y × 2 -sw mod N.
Algorithm 5 gives the details of this approach.

Complexity comparison

We use the word level Montgomery and Barrett algorithms reviewed in Subsection 3.1 and 3.2. We study the complexity in terms of word additions (Add) and word multiplications (Mul). The complexity of Barret and Montgomery multiplications (without the final subtraction by N) for a t-word X and an s-word Y are as follows • Barret: #M ul = s(t + 1) and #Add = s(3t + 2).

• Montgomery: #M ul = s(t + 1) and #Add = s(3t + 2).

Algorithm 5 CombMontBarrettMul

Require: 2 n-1 < N < 2 n the modulus of bit-length n and word length t, X = (X t-1 , . . . , X 0)

2 w and Y = Y n-1 , . . . , Y 0) 2 w two integers in [0, N [and a split s ∈ [0, t] Ensure: Z = X × Y × 2 -sw mod N 1: Split. X = X 0 + 2 sw X 1 2: Z 0 ← MontMul(Y, X 0) 3: Z 1 ← BarrettMul(Y, X 1) 4: Z ← Z 0 + Z 1 5: if Z > N then 6: Z ← Z -N 7: end if 8: return Z
This leads to the following complexity of the CombinedMontMul algorithm (including the final subtraction by N):

#M ul = s(t + 1) + (t -s)(t + 1) = t 2 + t #Add = s(3t + 2) + (t -s)(3t + 2) + t = 3t 2 + 3t + t
This leads to the complexity shown in Table 1 for the multiplication of the t words integers X and Y with the three approaches: Montgomery, Barrett and combined Montgomery Barrett. These complexity includes the final subtraction to get Z < N . Since the complexity of the word level form of CombMontBarretMul is the same as Montgomery and Barrett, we can take advantage of the algorithm to randomize modular exponentiation. We will study this strategy in the following section.

Randomized exponentiation

We present in this section two randomized exponentiations which uses CombMontBarretMul for modular multiplications.

Randomized Montgomery-ladder

We first consider the Montgomery-ladder (Algorithm 2). We randomize this exponentiation by using CombMontBarrettMul for each modular multiplication. Before each multiplication the splitting s for CombMontBarretMul is randomly generated. The effect is that in the Montgomeryladder exponentiation we have R 0 = R 0 2 γw mod N and R 1 = R 1 2 γw mod N such that the integer γ evolves randomly. The integer s is randomly chosen in order to keep γ in the interval [t/3, 2t/3]. This approach is shown in Algorithm 6.

Algorithm 6 Randomized-Montgomery-ladder

Require: An RSA modulus N of bit length n, an integer X ∈ {0, . . . , N -1} and E = (e -1 , . . . , e 0) 2 Ensure: R 0 = X E mod N 1: s ← rand(t/3, 2t/3) 2: γ ← s w 3: R 0 ← 2 s w 4: R 1 ← BarrettMul(X, 2 s w) 5: for i from -1 to 0 do 6:

γ i ← rand(t/3, 2t/3) 7: s i ← 2γ i+1 -γ i 8: if e i = 1 then 9: R 0 ← CombMontBarrettMul(R 0 , R 1 , s i) 10: R 1 ← CombMontBarrettMul(R 1 , R 1 , s i) 11: else 12: R 1 ← CombMontBarrettMul(R 0 , R 1 , s i) 13: R 0 ← CombMontBarrettMul(R 0 , R 0 , s i) 14: end if 15: end for 16: R 0 ← CombMontBarrettMul(R 0 , 1, γ 0) 17: return R 0 Validity of Algorithm 6. Let R (i) 0 and R (i)
1 be the values of R 0 and R 1 after the i-th iteration. The integer γ i in Algorithm 6 satisfies R

(i) 0 = R 0 ×2 γiw mod N and R (i) 1 = R (i) 1 ×2 γiw mod N where R (i) 0 and R (i)
1 are the values of R 0 and R 1 after the i-th loop of the non-randomized Montgomery-ladder exponentiation (i.e. Algorithm 2). When e i = 1 we have

R (i) 0 = (R (i+1) 0 × 2 γi+1w) ×(R (i+1) 1 × 2 γi+1w) × 2 -siw mod N = R (i+1) 0 × R (i+1) 1 × 2 2γi+1w-siw mod N = R (i) 0 × 2 2γi+1w-siw mod N which means that the instruction s i = 2γ i+1 -γ i in Step 7 is correct. Let us now check that s i is always in [0, t]. We have γ i+1 , γ i ∈ [t/3, 2t/3] then 2t/3 ≤ 2γ i+1 ≤ 4t/3 and then 0 ≤ 2γ i+1 -γ i ≤ 3t/3 which implies that s i = 2γ i+1 -γ i is in [0, t].
The main advantage of the proposed randomization is that it is free of computation. But its main drawback is that the level of randomization is not so important since we have, at each loop iteration, only t/3 possible values for R 0 and R 1 . In practice this means that we have to combine the proposed randomization with the classical ones reviewed in Section 2. When these strategies are combined to the one proposed here we can obtain any level of randomization with a reduced cost.

Randomized Right-to-left

Square-and-multiply-always

Now, we extend the randomization technique presented in Subsection 4.1, to the Right-toleft Square-and-multiply-always exponentiation. This algorithm is reviewed in Algorithm 7. Our goal is to get a regular exponentiation with a large level of randomization.

Algorithm 7 Right-to-left Square-and-multiplyalways Require: An RSA modulus N of bit length n, an integer X ∈ {0, . . . , N -1} and E = (e -1 , . . . , e 0) 2 Ensure: R 0 = X E mod N 1: R 0 ← 1 2: R 1 ← 1 3: Z ← X 4: for i from 0 to -1 do 5:

if e i = 0 then 6:

R 0 ← R 0 × Z mod N 7: else 8: R 1 ← R 1 × Z mod N 9:
end if 10:

Z ← Z 2 mod N 11: end for 12: return R 1

We propose to randomize Algorithm 7 as follows:

• We randomize Z with the strategy of Subsection 4.1. We have Z i = Z (i) × 2 γiw mod N such that γ i is in [t/3, 2t/3] all along the exponentiation.

• We randomize R 0 and R 1 as follows: before each multiplication R 0 × Z mod N and R 1 ×Z mod N we randomly choose s i ∈ [0, t].

Then we perform the multiplications R 0 × Z mod N or R 1 × Z mod N with CombMont-BarrettMul with split s i . This randomized version of Algorithm 7 is shown in Algorithm 8.

= X E mod N 1: s -1 ← rand(t/3, 2t/3) 2: R 0 ← 1, R 1 ← 1, Z ← Barrett(X, 2 s-1w) 3: γ -1 ← s -1 , γ -1 ← 0 4: for i from 0 to -1 do 5: s i ← rand(0, t) 6: if e i = 0 then 7: R 0 ← CombMontBarrettMul(R 0 , Z, s i) 8: γ i ← γ i-1 + (γ i-1 -s i) 9: else 10: R 1 ← CombMontBarrettMul(R 1 , Z, s i) 11: γ i ← γ i-1 12: end if 13: γ i ← rand(t/3, 2t/3) 14: s i ← 2γ i-1 -γ i 15:
Z ← CombMontBarrettMul(Z, Z, s) 16: end for 17: return R 1

Validity of Algorithm 8. The way γ and Z evolve in Algorithm 8 is well known since it was studied in Subsection 4.1. Consequently, we have Z (i) = Z (i) × 2 γiw mod N where Z (i) is the value of Z after the i-th loop in the non-randomized Algorithm 7 and γ i is a random element in [t/3, 2t/3].

Now we consider R (i)

1 and γ i . We have: R

(i) 1 = R (i) 1 × 2 γ i w mod N.
The value γ i+1 is expressed in terms of γ i , γ i and s i+1 as follows:

• If e i+1 = 1 we have R (i+1) 1 = R (i) 1 × Z × 2 -s i+1 w mod N =R (i) 1 × 2 γ i w × Z × 2 γi-1w ×2 -s i+1 w mod N =R (i+1) 1 × 2 γ i w+γiw-s i+1 w mod N which means that γ i+1 = γ i + γ i -s i+1 . • If e i+1 = 0 we have R (i+1) 1 = R (i) 1 = R (i+1) 1 × 2 γ i mod N which gives γ i+1 = γ i . So if we set δ i+1 = γ i -s i+1 if e i+1 = 1 0 if e i+1 = 0
we have γ i+1 = γ i + δ i+1 , which means that γ i consists in random walk of step sizes δ i for i = 1, . . . , -1. The absolute value of these step sizes δ i are bounded by 2t/3: indeed since s i always satisfies 0 ≤ s i ≤ t we always have

-2t/3 = t/3 -t ≤ γ i-1 -s i δi ≤ 2t/3 -0 = 2t/3.
Such random walk can get away from 0 as i increases. This is interesting since this enlarges the possible values for R 1 , i.e., this enlarges the level of randomization.

But, on the other hand, this random walk induces a problem we need to tackle: the final value γ -1 can be a quite large integer and this might render difficult to extract R ()

1 from R () 1 .
We propose a strategy which controls the way γ i evolves, in order to have the final value γ -1 = 0. The following lemma provides the conditions to reach this goal.

Lemma 1. Let E be an -bit exponent and let h E be his hamming weight. We denote {i 0 , . . . , i h } the set of indexes i such that e i = 0. In Algorithm 8 we can choose the integers s i such that: δ i > 0 for the first h E /2 bits e i = 0, δ i < 0 for the last h E /2 bits e i = 0, and such that we have 0 ≤ γ ij < (h E -j)2t/3 for j = 1, . . . , h E for all i j ∈ {i 0 , . . . , i h E }.

Proof. There are the following two phases in the evolution of γ i :

• Ascending phase. This phase corresponds to loops i j for j = 1, . . . , h E /2 where chose s ij such that δ ij ∈ [0, 2t/3]. Consequently, after loop i j we have made j such step sizes and then the exponent of R (ij) 1 satisfies: 0 ≤ γ ij ≤ j2t/3 ≤ (h E -j)2t/3.

• Descending phase. This phase corresponds to loops i j for j = h E /2 + 1, . . . , h E . If we have γ ij ≤ (h E -j)2t/3 then there exists a step size δ ij ∈ [-2t/3, 0] which yields γ ij+1 < (h Ej)2t/3 -t/3. Such δ ij can be obtained by choosing properly s ij and γ ij -1

Figure 2 illustrates the way γ i increase and then decrease towards 0. i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 i 13 i 14 iteration random exponent

Level of randomization. We now focus on the level of randomization injected in R

 and then we divide by ρ to get X E mod N .-Randomization of modular multiplication:

Algorithm 8

 8 Randomized Right-to-left Squareand-multiply-always Require: An RSA modulus N of bit length n, an integer X ∈ {0, . . . , N -1} and E = (e -1 , . . . , e 0) 2 Ensure: R 0

Figure 2 -

 2 Figure 2 -Evolution of the exponent γ based on Lemma 1

 the restriction of Lemma 1. The number of possible values for

 i and on the Hamming weight of E. The following lemma establishes the average case of this level of randomization.

Table 1 -

 1 Complexity comparison of Montgomery, Barrett and combined Montgomery Barrett

		#Add	#Mul	Total
	Montgomery	t 2 + t	3t 2 + 2t + t	4t 2 + 3t
	Barrett	t 2 + t	3t 2 + 2t + t	4t 2 + 3t
	Combined			
	Montgomery	t 2 + t	3t 2 + t	4t 2 + 3t
	and Barret			

Lemma 2. Let R

1 2 γ i mod N be the value of R 1 at the end of the i-th loop in Algorithm 8. Then γ i satisfies the following: i) For i < /2 we have, in average,

Proof. We prove each case i) and ii) separately:

i) Let α i be the number of e j = 0 with j ≤ i.

Then the maximal value for γ i which can be reached at loop i is (2t/3) × α i which corresponds to a walk of α i steps of size 2t/3. In average, we have α i = i/2 such non-zero e j with j ≤ i and this leads to the assertion i) of the lemma. ii) For i > /2 we consider that we make backward steps starting from the end where we start at γ = 0. We make -i steps backwards, and only (-i)/2 of them have step size = 0, the maximal distance walked is (2t/3) × (-i)/2 and this leads to assertion ii) of the lemma. The previous lemma shows that the level of randomization for R (i) 1 becomes large as soon as we advance in the exponentiation. Table 2 shows the level of randomization obtained for different size of RSA modulus and different values for i.

Conclusion

In this paper we focused on counter-measures based on randomization of RSA exponentiation against side channel analysis. We proposed to perform modular multiplications with a combination of Montgomery and Barrett multiplications. This algorithm provides a way to randomize modular multiplication by setting the splitting value s at random. We then provided a modified version of two regular algorithm, i.e., Montgomery-ladder and Square-and-multiply-always exponentiation. We analyzed the algorithms which showed that the proposed approach for randomization is interesting since it does not induce any penalty in terms of performance.