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Abstract

In this paper we proved the existance and unigness of strong gen-
eralized solution of mixed problems wih integral condition for singular
parabolic equaions depending on a theorem proved in [1] in which a priori
estimaion of the solution for such problems was derived.
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1 Introduction

Mixed problems with nonlocal boundary conditions or with nonlocal initial con-
ditions were studied in Bouziani [3], Byszewski et al [4] and [5], Gasymov [7],
Tonkin [8]-[9], Lazhar [11], and Said-Nadia [12]. The results and the method
used here are a further elaboration of those in [2]. We should mention here that
the presence of integral term in the boundary condition can greatly complicate
the application of standard functional and numerical techniques. This work can
be considered as a continuation of the results in [6] and [13].

In [1] the author considered the following mixed problem in the rectangle

Q= (Ovl) X (OaT)

_Ou 1 0, 0u

Lu=r — oz 2

):f(xat)v m >0, (1)

l
lu=u(z,0)p(x), |u0,t)] < oo, // x"u(z,t)de =0, a > 0. (2)

and he proved the following theorem
Theorem 1: For any function v € E such that x%% € Ly(Q) and

rTF %xm% € La(Q), the following inequality holds

lullf < el Fl% (3)

where ¢ =2 (I + exp(53)).

2 The Main Result

we consider the operator L = (£,1) with the following domain

) wd 0
D(L) = {u cE: :ﬁai; c LQ(Q),x7%(xma—Z) e LQ(Q)},

acting from E into F' by the rule Lu = (Lu, u(x,0)).

In a standard way its proved [10] that the operator is closable which we
denote by L with the domain D(L).

Definition: The solution of the equation Lu = F is called strong generalized
solution of the problem (1)-(2). In other words, the function u is called strong
generalized solution of the problem (1)-(2) if there exist a sequence of functions
un € D(L), such that the ||u, —u||; — 0 and || Lu, — F||p — 0 at n — oo.

Theorem 2: Strong generalized solution of the problem (1)-(2) exist and
unique for any F = (f,¢) € F.



Proof. For the sequence u,, € D(L) the following inequality holds

T
ol <2 (1 exp (503 ) ) 12l (@)

which implies from theorem 1. Passing in (4) to the limit at n — oo, we get the
following inequality

oy <2 (14 ex0 (55 ) ) [T} cu € DD )

From (5) implies that strong generalized solution of problem (1)-(2) is unique,
the range R(L) of the operator L is closed in F and R(L) = R(L). Therefore for
the proof of existence of strong generalized solution of (1)-(2) we need to prove
that the range R(L) of the operator L is dense in F.

Since the range of the operator L is dense in a space with the norm

l A 2 l
(ffa™ (ap ) de+ = [[ 2™ 1p2dz) 2, its sufficient to show that the equality
0 «

// a™ Luvdrdt = 0,Yu € Do(L) = {u € D(L) : u(z,0) = 0}, 22 v € Ly(Q),

(6)
imply the equality v = 0.
We set in (6) ™v = Mh, where Mh = 2™h at 0 < 2 < o and

l—z . 1 m
Mh= e h(o0) + [ [ emhie o @

at o <z < [. This holds if the function h(z,t) = v(z,t) at 0 < 2 < a and

l
hant) = (o) = s [ [ €mute e,

at a < x <. It is not hard to see that the function h satisfy the third condition

from (2), that is
1
// ™ h(x,t)dz = 0. (8)

So for any function u € Dg(L) and given function h we get the equality

/ / Mhdadt = / / = 3:r )Mhdxdt (9)



We set in (9) u = ffo (z,7)dr where w is any function such that z%w €

La(Q),
86( ) € La(Q //ac w(z, t)dx =0,

Then we get the equality
1 0 ow
// wMhdzdt = //x—m%(z 8x)Mgdxdt (10)
Q

where g(z,t) = [ ft (x,7)dr. The left side of (10) show that the map

pewl01)] <oc

Ly(Q) 9x2w—>// )Mgd:tdteR
a:m(?z

is linear continuos functional. Consequently

o 2 (@) s (10 € 1a(@)
and by virtue of (5)
ot 2o e L@y e 20 € L@, 20D <oy
Integrating by parts the right hand side of (10) and taking into account (7)
and (8), we get
mow 0 M
//thdxdt: f// %F?ﬁd wdt. (12)
Q Q
On the basis of (11) we set in (12)
t
w(z,t) = // T Dy (x, 7)dr. (13)

0

dw 82  Muw
<t=T) g M gdzdt = 7// e(r—t) dxdt. 14
//6 g gar c x@x@x@t(xm)x (14)
Q Q

By analogy of formula (12) in [1] we get

// N gMgdedt = /ec(t*T)w(x) \g|? dadt
Q

Q

Then

2

[ me C(f T) m
* //2 )z /ﬁgétdf dzdt. (15)
0
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Further

m OW 0?2 Mw ow 0%w
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T 2
/ =D g(x, t)dt| du
0

l
/
/ AT=8) g () |w(w, t)|* dudt
TQl
_ // o t)m /gm—dgdxdt
0

m—1

T
e — m /ec(t_T)g(x,t)dt dx
0

" (x

(
T c(T—-t),,m—1
+ & / / C T wdxdt,  (16)
0

1, 0<Lz<a,
where 1/)(1‘):{ N )

By analogy of (18) in [1] we get

T 1 T T
oe(T— t)w ) 1 ec(T—t) o OW
0 0

[e3




From (14) and by virtue of (13),(15)-(17) implies the following inequality

2

T
/ec(t_T)@[J( ) lg)? dadt + = / / =T g(x, t)dt| du
0

Q
T
+2/ = gmap () lw(x, t)[? dxdt—i——/ —a) / =) g(z, t)dt| da
Q a 0
1 T c(T t
c—— // l—a 2(x,t)dmdt§0. (18)
0 «

We set in (13) ¢ > 3. Then from (18) implies that g = 0. Since 2™v = M%
then v = 0, and theorem 2 is proved.
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