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Abstract

Background: We previously showed that blood serum induced cytochrome P450 1A1 (CYP1A1) monooxygenase expression
in vitro.

Objective: Our purpose was (i) to identify the molecular mechanism involved and (ii) to characterize the inducer
compound(s) in serum involved at least in part.

Methods: Serum was fractionated on hydrophobic columns. PPARa involvement was demonstrated by gene reporter
assays, DNA mutagenesis and EMSA. Gene expression was evaluated by qRT-PCR. Serum samples were analyzed using HS-
SPME-GC-MS.

Results: The inductive effect of serum did not depend on the AhR pathway and was enhanced by cotransfection of PPARa
cDNA. Mutations in the PPAR response elements of the CYP1A1 gene promoter suppressed this effect. One of the PPRE sites
appeared highly specific for human PPARa, an unreported PPRE property. A link was found between CYP1A1 inducibility
and serum hydrophobic compounds. Characterization of sera showed that hexanal, a metabolite produced by peroxidation
of linoleic acid, was involved in CYP1A1 induction by serum, possibly along with other serum entities.

Conclusion: We demonstrate that serum induces CYP1A1 via the PPARa pathway and that hexanal is one of the serum
inducers. The two PPRE sites within the CYP1A1 promoter are functional and one of them is specific for PPARa.
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Introduction

Cytochromes P450 (CYP) are monooxygenases involved in the

metabolism and degradation of xenobiotics, including procarcinogens

such as arylamines and polycyclic aromatic hydrocarbons (PAHs) [1].

Among the CYP, CYP1A1 plays a physiological role in the

degradation of estradiol into 2-OH-estradiol [2]. These metabolisms

elicit the production of reactive oxygen species (ROS). CYP1A1 gene

expression is mainly regulated by the aryl hydrocarbon receptor (AhR)

activated by xenobiotics including dioxins and polycyclic aromatic

hydrocarbons [3]. Endogenous agonist AhR ligands (such as bilirubin,

tryptophan-N-formylated derivatives and lipoxin A4) have already

been identified, together with an endogenous antagonist, 7-ketocho-

lesterol [4], [5], [6], [7]. However, the role of endogenous AhR ligands

in cell physiology remains poorly understood. The activated

AhR migrates into the nucleus, interacts with its partner, the aryl

hydrocarbon receptor nuclear translocator (ARNT) and the heterodi-

mer binds DNA at specific dioxin-responsive elements (DRE) [8].

There is little data available on CYP1A1 expression stimulation

by other regulatory pathways. Retinoic acid (RA) exerts a weak

transactivation through a RARE (retinoid acid responsive element)

sequence in the CYP1A1 promoter [9], but essentially inhibits

AhR activity through SMRT displacement [10], [11]. We

previously identified PPARa as a mediator of CYP1A1 induction

[12]. Free fatty acids (FA) may act as PPAR ligands. Polyunsat-

urated FA (PUFA) are PPARc and PPAPa agonists [13], [14], but

less is known about saturated, peroxidized, halogenated or thio-

derivatives of FA. We hypothesized that serum containing a high

level of FA could induce CYP1A1 expression through PPARa
activation by one or more discrete FA species or derivatives.

Several clinical reports have shown that local CYP1A1

overexpression correlates with predisposition to various human
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cancers, including colon and non-small cell lung cancers (NSCLC)

[15].

We report here that serum-mediated CYP1A1 induction involves

PPARa and two PPRE sites within the CYP1A1 promoter

(positions –931/-919 and –531/-519, named PPRE1 and PPRE2),

and that the proximal PPRE site is a new human PPARa-specific

consensus site. In parallel, we have characterized one serum product

derived from the peroxidation of linoleic acid, hexanal, that is at

least partly responsible for intestinal CYP1A1 induction.

Materials and Methods

Culture and cell treatments
Human colic adenocarcinoma cells CaCo-2 and HT29-D4,

human hepatoma cells Hep G2, human pulmonary cells A549 and

primary human keratinocytes (obtained under ethical conditions),

were cultured as previously described [16]. After 80% confluence,

cells were starved for 24 h without FBS (replaced by 0.2% BSA)

and treated for 6 h with 20% FBS or a low-FA FBS (FBSLess); or

1 mM of 3-methyl-cholanthrene (3-MC); or 100 mM of WY-

14643; or 1 mM of retinoic acid (RA); or 200 mM of free FA

(palmitic, stearic, linoleic, a-linolenic, c-linolenic, arachidonic or

eicosapentaenoic acid); or 5, 10, 25, 50, 100 and 200 mM of

hexanal (Sigma, France). Control cells were treated with the

solvent used to dissolve the compounds (DMSO).

Quantitative RT-PCR experiments
Total RNA was isolated using a Nucleospin RNAII kit

(Macherey-Nagel, France) and reverse-transcribed at 37uC for

1 h using GibcoBRL M-MLV reverse-transcriptase (Life Tech-

nologies, France) and random primers. CYP1A1 mRNA expres-

sion, normalized to b2-microglobulin, was determined using the

LightCycler System (Roche Diagnostics, France). The CYP1A1

and b2microglobulin primers used were:

CYP1A1-S: 59AAGAGGAGCTAGACACAGT39

CYP1A1-AS: 59GAAACCGTTCAGGTAGGA39

b 2m-S: 59CCGACATTGAAGTTGACTTAC39

b 2m-AS: 59ATCTTCAAACCTCCATGATG39

PCR was performed as previously described [17]. The results

are expressed as relative expression levels (REL). At least three

independent experiments were carried out in triplicate.

CAT assays
Cells were placed in six-well plates and transfected using lipofectin

(Life Technologies, France) with 1 mg of a chimeric construction

including the 21140/+80 region of CYP1A1 gene, (pRNH25c), or

1 mg of DRE-TK-CAT construct [16] driving chloramphenicol

acetyltransferase (CAT). In some experiments, 1 mg of psG5

PPARacDNA [18] was cotransfected. After an 18 h incubation

period, cells were treated 24 h later with 20% FBS or 1 mM 3-MC or

100 mM WY-14643 and harvested after a further 24 h. CAT

expression was then evaluated by quantifying CAT protein using the

CAT Elisa System (Roche Diagnostics, France) [19]. The transfection

efficiency was normalized using beta-Galactosidase expression vector.

At least three independent experiments were carried out in triplicate.

LUCIFERASE assays
Cells were placed in six-well plates and transfected using

lipofectin with 1 mg of a chimeric construction including three

PPRE sequences driving luciferase (LUC) gene expression (PPRE-

TK-LUC), and treated as described above. LUC enzymatic

activity was then evaluated. The transfection efficiency was

normalized using beta-Galactosidase expression vector. At least

three independent experiments were carried out in triplicate.

Site-directed mutagenesis of CYP1A1 promoter
PPRE mutations of pRNH25c were introduced using the

QuickChange site-directed mutagenesis kit (Stratagene, France) to

obtain pRNH25c-DPPRE as previously described [12]. Cells were

transfected by the pRNH25c or the pRNH25c- DPPRE and after

a 48 h treatment with 100 mM WY-14643, 20% FBS or 1 mM 3-

MC the CAT expression was evaluated as described above. The

transfection efficiency was normalized using beta-Galactosidase

expression vector.

FBS treatment by XAD2 column or active charcoal
50 ml of FBS was run through either an XAD2 column (Sigma,

France) or active charcoal. The retained hydrophobic elements

were eluted from the XAD2 column with methanol, and from

active charcoal with methanol, ethyl acetate or hexane. After

solvent evaporation the eluted compounds were resuspended in

50 ml of FBS free culture medium.

In vitro translation and electromobility shift assays
(EMSA)

EMSA were performed using PPARa and RXRa prepared by in

vitro translation (Promega, France). Proteins were incubated for 20

minutes at room temperature with 50.000 cpm of T4 polynucleotide

kinase-labeled oligonucleotides (in 10 mM Tris pH 8.0, 100 mM

KCl, 10% glycerol, 1 mM dithiothreitol, 1 mg of poly-dIdC and

0.5 mg of salmon sperm) and separated on a 4% polyacrylamide gel.

The oligonucleotides used as either radiolabeled probes or

competitors (sense strands are shown, with core sequence

underlined and mutation in bold-face) as previously described [12].

Autoradiography was carried out on Kodak X-AR film.

Determination of lipid serum composition
Total lipids were extracted from 1 ml aliquots of FBS and

FBSLess using the Folch method modified by Hernell [20], [21].

The chloroform fraction containing lipids was evaporated to

dryness under nitrogen, and the lipid pellet was suspended in

isopropanol. Triglycerides, total cholesterol and free fatty acids

were assayed by colorimetry using specific commercial kits

(Triglyceride/Free glycerol reagent from Sigma, Cholesterol

CHOD-PAP from Roche Diagnostic, NEFA from Randox,

respectively), and phospholipids were assayed by phosphorus

determination [22]. Fatty acid profiles were determined after

methylation with BF3-methanol (Sigma, St Louis, MO) by gas

chromatography [23] using a Perkin Elmer Autosystem XL

(Perkin Elmer, Courtaboeuf, France) equipped with a fused silica

capillary column (Omegawax 250, 30 m 60.25 mm i.d., film

thickness 0.25 mm; Sigma-Supelco), equipped with a flame

ionization detector and the Turbochrom software. Hydrogen

was used as carrier gas. The oven temperature was ramped from

60uC to 215uC at 45uC/min. Fatty acids were identified by their

retention times against standards (PUFA 2, Sigma-Supelco).

HS-SPME-GC-MS analysis of volatile compounds in FBS
and FBSLess sera

Substances derived from FA peroxidation were sought in both

sera. Headspace solid-phase microextraction (HS-SPME) was used

to extract the volatile organic compounds, which then underwent

qualitative analysis by gas chromatography–mass spectrometry

(GC-MS). HS-SPME was performed with an AOC-5000 auto-

sampler: 1 ml of serum was placed in a sealed 20 ml vial and

thermostated at 37uC for 15 min before introduction of the fiber

(carboxenTM- PDMS, length 10 mm, thickness 75 mm, Supelco Inc.,

Bellefonte, USA). The fiber was exposed to the vapor phase for 5 min
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to sample the volatile compounds, and then inserted into the injection

port of the GC-MS (GC QP 20120, Shimadzu) using an inlet liner

(0.75 mm i.d.) set at 250uC for thermal desorption for 3 min. (splitless

mode, purge opened after 0.5 min.). Volatiles were separated on an

UBWAX column (30 m 60.25 mm, 0.5 mm, Interchim, Montluçon,

France). The carrier gas was He at a velocity of 35 cm.s21. The oven

program temperature was as follows: 40uC for 1 min, 3uC min21 to

100uC and 5uC min21 to 220uC. The mass spectrometer was operated

in the electron impact mode at 70 eV in the m/z range 29–300 at a

speed of 2 scans s21. The temperatures of the ion source and transfer

line were 200uC and 240uC. Detected compounds were identified by

matching spectra against the NIST library (v.2.0).

Statistical Analysis
Results are expressed as means 6 SD. Data were analyzed

using Wicoxon signed rank test. P values less than 0.05 were

considered significant. All analyses were done using the STAT-

VIEW software (Abacus Concepts, Berkeley, CA, USA).

Results

FBS induced CYP1A1 in different cell lines independently
of AhR

We studied the inducibility of CYP1A1 mRNA by serum in A549

CaCo-2, HepG2, HT29-D4 cells and human primary keratinocytes.

As shown in Figure 1A, 3-MC induced CYP1A1 mRNA in all the cell

lines tested, while serum induced CYP1A1 expression in all the cell

lines except the human HT29-D4 adenocarcinoma cell line. As CaCo-

2 cells are high-responsive, we chose this cell line to study the molecular

mechanism involved in the CYP1A1 induction process by serum. We

also performed reporter gene assays where CAT expression was driven

by two DRE sequences. As shown in Figure 1B, in CaCo-2 cells, this

construct was inducible by 3-MC but not by serum. In addition we

studied, in HT29-D4 and CaCo-2 cells, the AhR protein nuclear

translocation after 3-MC or FBS treatments. Result (data not shown)

shown that 3-MC, but not serum, is able to induce AhR nuclear

translocation in the two studied cell lines.

CYP1A1 inducers present in serum are hydrophobic
We fractionated FBS by chromatography through XAD2 or

active charcoal columns to study the chemical nature of the

CYP1A1 inducers. Retained hydrophobic compounds were eluted

from the XAD2 column by methanol and from the active charcoal

by methanol, ethyl acetate, or hexane. As shown in Figure 2A and

2B, CYP1A1 inducers contained in serum were retained by both

XAD2 and charcoal, since there was no induction with the flow-

through fraction (Figure 2A, lane 2 and Figure 2B, lane 2). The

inducers were eluted from both XAD2 (with methanol) (Figure 2A,

lane 3) and charcoal (with ethyl acetate, hexane, or methanol), as

the eluate elicited CYP1A1 induction (Figure 2B, lanes 3, 4, 5).

Figure 2. Effect of FBS fractions on CYP1A1 mRNA levels. 2A: Results obtained after XAD2-bound or unbound fractions of FBS. C: control cells;
1: cells treated with FBS; 2: cells treated with XAD2-unbound fraction; 3: cells treated with XAD2-bound fraction eluted with methanol. 2B: Results
obtained after charcoal-bound or unbound fractions of FBS. C: control cells; 1: cells treated with FBS. Cells were treated with either unbound-charcoal
fraction (lane 2) or compounds eluted from charcoal by methanol (lane 3), ethyl acetate (lane 4) or hexane (lane 5).
doi:10.1371/journal.pone.0014629.g002

Figure 1. CYP1A1 induction by FBS is independent of AhR. 1A: CYP1A1 mRNA levels in various cell lines after a 6 h treatment by 20% FBS or
1 mM 3-MC. 1B: CaCo-2 cells were transfected with the DRE-TK-CAT construct and treated with 20% FBS, 1 mM 3-MC or 100 mM WY-14643. CAT
expression was evaluated 24 h later.
doi:10.1371/journal.pone.0014629.g001
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Hence the serum inducing compound(s) was more likely a

hydrophobic compound (Figure 2) rather than proteins, as

MgSO4 protein precipitation had no effect on CYP1A1 induction

by FBS (data not shown).

CYP1A1 induction by FBS involves PPARa
In addition to the AhR-dependent DRE sites, CYP1A1 can also

be induced through two PPRE sites and one RARE. We treated

CaCo-2 cells for 6 h with FBS, WY-14643 (a PPARa ligand),

TZD (a PPARc ligand), RA or 3-MC. As shown in Figure 3A,

TZD did not increase CYP1A1 mRNA levels, whereas there was a

marked induction with the WY-14643, FBS and 3-MC treatments

and a weaker induction with RA.

To confirm that FBS was able to induce CYP1A1 through

PPRE sequences, we transfected CaCo-2 cells with either

pRNH25c, or pRNH25c- DPPRE. Cells were treated with FBS

or WY-14643 for 48 h. As shown in Figure 3B, FBS and WY-

14643 efficiently induced CYP1A1 promoter transactivation (2.5-

fold) while the mutation of one PPRE site alone slightly reduced

luciferase activity, and the mutations of the two PPRE sites

abrogated it. We observed that CYP1A1 promotor activation by

3-MC is independent of PPRE sites, this activation being lower

when PPRE sites were mutated.

FBS-mediated CYP1A1 induction was increased by cotransfec-

tion of a PPARa expression vector (2-fold) (Figure 3C). Finally, as

shown in Figure 3D, both FBS and WY-14643 were able to

transactivate reporter constructs driven by a canonical PPRE

sequence, while no induction was observed with 3-MC. In

addition, WY-14643 was unable to transactivate DRE sequences

(Figure 1B).

We investigated the PPARa-binding ability of each CYP1A1

PPRE. Given that TZD did not induce CYP1A1 expression and

Figure 3. Effect of PPRE on CYP1A1 promoter activation. CaCo-2 cells were either left untreated (C) or treated for 6 h with either: 20% FBS,
100 mM WY-14643, 200 mM 2, 4-thiazolidinedione, 1 mM RA, or 1 mM 3-MC (3A). Before treatments CaCo2 cells were transfected with wild-type
pRNH25c or pRNH25c-DPPRE1, pRNH25c- DPPRE2 or pRNH25c- DPPREs (3B) and treated with serum or 100 mM WY-14643 or 1 mM 3-MC. CAT
expression was evaluated. Statistical analyses were performed by comparing mutated PPRE constructions to the wild-type construct. 3C: Effect of
PPARa cDNA transfection on CYP1A1 mRNA induction by FBS. 3D: CaCo-2 cells were transfected by PPRE-TK-LUC and treated with 1 mM 3-MC, 20%
FBS, 100 mM WY-14643 or 25 mM hexanal (HEX). C: cells treated with solvent.
doi:10.1371/journal.pone.0014629.g003

Figure 4. Detection of PPARa binding on the two CYP1A1 PPRE
sites by Gel shift assay. A PPRE canonical sequence, the CYP1A1
PPRE1 (position –931/-919) and the CYP1A1 PPRE2 (position –519/-531)
were tested. 1: TNT + PPRE canonical sequence; 2: TNT + RXR + PPRE
canonical sequence; 3: TNT + RXR + PPARa + PPRE canonical sequence;
4: TNT + RXR + PPARc + PPRE canonical sequence; 5: TNT + PPRE 1;
6: TNT + RXR + PPRE 1; 7: TNT + RXR + PPARa + PPRE 1; 8: TNT + RXR +
PPARc + PPRE 1; 9: TNT + PPRE2; 10: TNT + RXR + PPRE2; 11: TNT + RXR
+ PPARa + PPRE2; 12: TNT + RXR + PPARc + PPRE2.
doi:10.1371/journal.pone.0014629.g004

Figure 5. Effect of FBS, FBSLess (FBS with low fatty acids levels)
and hexanal on CYP1A1 mRNA levels. C: control cells; FBS: cells
treated with 20% FBS; FBSLess: cells treated with 20% FBSLess; hexanal:
cells treated with 25 mM hexanal (5A). Effect of various hexanal
concentrations (5, 10, 25, 50, 100 and 200 mM) on CYP1A1 mRNA level
(5B).
doi:10.1371/journal.pone.0014629.g005
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that CaCo-2 cells express PPARa and PPARc, we hypothesized

that these two PPRE sequences might act through PPARa. This

hypothesis was supported by EMSA. As shown in Figure 4, we

compared the specificity of each CYP1A1 PPRE sequence toward

PPARa or PPARc. The results (Figure 4, lanes 11–12) indicate

that the PPRE2 core is specific for PPARa. PPARc was unable to

recognize the PPRE2 core (Figure 4, lane 12). By contrast, PPARc
recognized a PPRE core sequence (Figure 4, lane 4) as well as

PPRE1 (Figure 4 lane 8).

Characterization of the serum compound involved in
CP1A1 induction

Hydrophobic entities present in FBS (Figure 2) induce CYP1A1

through a PPARa pathway (Figure 3). To determine their nature

we analyzed two sets of serum harboring different CYP1A1

induction capabilities. The results, presented in Figure 5A,

demonstrate that the serum usually used in this study (FBS)

induced CYP1A1, unlike the second serum characterized by a

naturally low FA content (FBSLess). We analyzed the lipid

composition (Table 1) and FA profile (Figure 6) of each serum.

The results show that FBS had higher lipid content and contained

four times more free FA than FBSLess (Table 1). In addition, FBS

contained a higher proportion of saturated FA (54% vs. 42%), and

a lower proportion of PUFA (13% vs. 23%) than did FBSLess, but

the same proportions of mono-unsaturated FA (33% vs. 34%)

(Figure 6). These data suggest a link between the free FA level and

the inducibility of CYP1A1. In further experiments using cells

treated with various free FA (palmitic acid, stearic acid, linoleic

acid, linolenic acid, arachidonic acid and eicosapentaenoic acid)

we did not observe any CYP1A1 induction (data not shown). As

PUFA levels were lower in FBS than in FBSLess, and as PUFA are

very sensitive to peroxidation, we performed HS-SPME-GC-MS

analysis of the two batches of serum to look for oxidative

derivatives (Figure 7A and B). We found that in contrast to

FBSLess (Figure 7B), FBS was rich in hexanal (approx. 28 mM), a

substance arising specifically from the peroxidation of linoleic acid

(Figure 7A). Among the different entities found and presented in

Figure 7, the only major substance detected derived from FA

peroxidation was hexanal. We therefore treated CaCo-2 cells with

hexanal. The results, presented in Figure 5, show that hexanal

induced CYP1A1 to an extent similar to that obtained using FBS

(7.2- and 10-fold respectively). This finding confirmed the role of

hexanal in CYP1A1 induction by serum. We realized a set of

experiments to confirm the role of hexanal in CYP1A1 induction

via PPARa. We treated (Figure 5A) CaCo-2 cells with 25 mM of

hexanal and we showed that CYP1A1 was induced. We also

studied the effect of different hexanal concentrations in CYP1A1

induction. The results presented in Figure 5B demonstrated that

the CYP1A1 inductibility was linked to the hexanal concentration

between 1 to 25 mM. Above 25 mM of hexanal, the CYP1A1

induction decrease strongly due to the toxicity of this aldehydic

compound.

Discussion

Although AhR was initially considered as mandatory for

CYP1A1 gene expression [24], our data demonstrate that serum

induces CYP1A1 expression and that this induction involved

PPARa. Fractionation experiments on FBS suggested that

hydrophobic entities were involved. These were probably not

proteins, since ammonium sulfate precipitation of proteins did not

affect CYP1A1 induction by FBS (data not shown). These findings

led us to hypothesize that serum induced CYP1A1 via a ligand

able to bind to a member of the steroid hormone nuclear receptor

family.

The CYP1A1 promoter harbors several regulatory elements

including two PPRE and one RARE. Our team had previously

shown that the predominant effect of retinoids (RAR ligands) on

CYP1A1 expression was an inhibition of AhR-mediated induction,

acting through interference between the SMRT corepressor and

Figure 6. Fatty acid profile of total lipid extract of FBS (black bars) and FBSless (white bars). The data are expressed as weight % of total
fatty acids and represent the mean 6 SEM of three different determinations. *indicates significant differences between the sera for a given fatty acid
(p,0.05).
doi:10.1371/journal.pone.0014629.g006

Table 1. Lipid composition of FBS and FBSLess (mM) sera.

Lipids FBS FBSLess

Triglycerides, mM 1.2660.02* 0.8660.03

Total cholesterol, mM 1.1160.03* 0.7260.01

Free fatty acids, mM 0.4760.02* 0.1260.01

Phospholipids, mM 0.7260.04* 0.2360.01

Total lipids, g/L 1.860.03* 1.0260.06

Measurements were made in triplicate. Data represent mean 6 SEM.
*indicates significant differences between the sera for a given lipid parameter
(Mann-Whitney U test, p,0.05).
doi:10.1371/journal.pone.0014629.t001
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AhR [10], [11]. This RARE sequence is thus irrelevant in the

context of the present study since FBS potentiates AhR-mediated

CYP1A1 induction [16].

CaCo-2 cells express a high level of PPARc, but TZD failed to

induce CYP1A1. By contrast, we demonstrated that PPARa
played a significant role in CYP1A1 up-regulation. The involve-

ment of PPRE sequences in the serum induction is shown in our

study (Figure 3). We note that the PPRE2 site located at position

–519/-531 is specific for the PPARa isotype and is not recognized

by PPARc (Figure 4). This is the first demonstration of a

differential specificity among PPREa. PPARc is able to bind to the

PPRE1 site located at position –931/-919 (Figure 4), but the

specific PPARc ligand TZD was unable to induce CYP1A1

(Figure 3A), as previously described for troglitazone [12].

Mutagenesis of each PPRE site or of the two sites suppressed the

FBS and WY induction but not the 3-MC-mediated CYP1A1

induction (Figure 3B). We observed a slight decrease of luciferase

activity after a 3-MC treatment in the two PPRE mutation groups,

but this decrease is not significant. Furthermore, we showed in

Figure 1B that the PPARa ligands are not able to activate the

XRE. We therefore suppose that the absence of PPARa binding

on the CYP1A1 promoter after mutation can induce a

conformational change of the promoter structure leading to a

decrease of the activity of AhR on XRE sequences.

Subjects exposed to AhR agonists and exhibiting high blood levels of

endogenous PPARa ligands would therefore be expected to present a

greater risk of developing intestinal or pulmonary cancers and/or other

diseases related to CYP1A1 overexpression. This is in agreement with

epidemiological data showing that a high-fat diet increases the risk of

colon cancer [25]. Dietary exposure to food-derived heterocyclic amine

carcinogens and polycyclic aromatic hydrocarbons has been proposed

as a specific risk factor [26], [27], [28].

Figure 7. HS-SPME-GC-MS analyses of the volatiles in FBS (A) and FBSLess (B) sera. Analyses were conducted with a 1 mL aliquot of each
serum. The black arrow indicates the presence of hexanal. List of the different substances found in the sera in order of retention time: for A, acetone,
2-butanone, 2-propanol, ethanol + CH2CL2, hexanal, 1-butanol, 1-penten-3-ol, pentanol, 1-hexanol or isomer, cyclohexanol, acetic acid, 1-hexanol,
2-ethyl; for B, hydrocarb, hydrocarb C8 # 1, hydrocarb C8 # 2, hydrocarb C8 acetone, 2,4-dimethyl-1-heptene, 2-butanone, 2-propanol, ethanol,
unknown, styrene, cyclohexanone, cyclohexanol, m-di-tert-butylbenzene, acetic acid, 1-hexanol, 2-ethyl.
doi:10.1371/journal.pone.0014629.g007

Fatty Acids Induce CYP1A1

PLoS ONE | www.plosone.org 7 January 2011 | Volume 6 | Issue 1 | e14629



Our results demonstrate that at least one of the serum inducing

compounds is hexanal. This substance is one of the primary

oxidative metabolites belonging to the saturated aldehyde family

and is the one most abundantly formed during peroxidation of

linoleic acid [29], [30], [31]. LA availability in humans is high. It is

supplied in the Western diet, with a consumption in the range 8-12

g/d in adults [32], [33], [34], and is commonly present in the

human body in blood, in the range 18–27% of total plasma fatty

acids [34], [35], and in tissues. LA can undergo oxidative stress,

leading in part to the generation of hydroxy radicals in a variety of

pathological states. More specifically, hexanal has been proposed

as a volatile cancer biomarker found in blood for lung cancer [36]

and more recently for liver cancer [37]. However, nothing has yet

been reported on the impact of hexanal on intestinal cell function.

Here we describe a new impact of hexanal on a human intestinal

cell line. People with high circulating hexanal blood levels, leading

to a higher CYP1A1 expression, may thus be at higher risk of

developing a colorectal cancer, as was demonstrated for genetic

polymorphisms increasing CYP1A1 expression or activity [28].

In conclusion, we have characterized the mechanism involved

in CYP1A1 induction in the human colon by serum and we show

that hexanal may be at least partly responsible for this induction.

PPARa transcription factor and two PPRE sites within the

CYP1A1 promoter are involved, and one PPRE, the PPRE2 site,

appears to be specific for the human PPARa.
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