
HAL Id: hal-01330855
https://hal.science/hal-01330855v1

Submitted on 13 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Level Virtual Prototyping of Signal Integrity in
Bus Communication

Ruomin Wang, Julien Denoulet, Sylvain Feruglio, Farouk Vallette, Patrick
Garda

To cite this version:
Ruomin Wang, Julien Denoulet, Sylvain Feruglio, Farouk Vallette, Patrick Garda. High-Level Vir-
tual Prototyping of Signal Integrity in Bus Communication. IEEE Transactions on Components,
Packaging and Manufacturing Technology, 2016, 6 (6), pp.864-872. �10.1109/TCPMT.2016.2558288�.
�hal-01330855�

https://hal.science/hal-01330855v1
https://hal.archives-ouvertes.fr

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract — In this paper, a novel methodology for high-level

modeling of bus communication in embedded systems is
introduced. It allows dynamic evaluation of their signal integrity
characteristics at the virtual prototyping step (i.e. before physical
realization). The method is based on the association of functional
and non-functional modules. Functional modules represent the
ideal behavior of the system, while non-functional modules use
neural networks to model signal integrity effects. This approach
was implemented in SystemC-AMS, using the timed data flow
model of computation. The method is illustrated by an USB 3.0
application, where modular and parameterizable models are
introduced. The method achieved good accuracy (<5 %) while
allowing significant simulation speedup (up to ×2000), compared
to SPICE-based reference models. This methodology can be used
to perform early signal integrity analysis in the virtual
prototyping of bus communication in embedded systems.

Index Terms— bus communication, embedded systems, high
level, non-functional, modeling, neural network, signal integrity,
simulation, SystemC-AMS, system level, timed data flow, virtual
prototyping.

I. INTRODUCTION
HE ongoing advances of technology have profoundly
transformed the potential of electronic chips in the last

decades. By following Moore’s Law, integration capabilities
now allow the design of billion-transistor circuits. Also,
heterogeneous association of digital and analog components,
hardware and software functions on the same chip, has been a
major evolution in the past few years, with the rise of
system-on-chips. These developments gave engineers the
opportunity to create always more complex applications.

Design methodology of these systems is a key issue for the
electronics industry [1]. A way to address this matter and keep
up with integration improvements is to increase the design
abstraction level from the circuit to the system level [2]. Thus,
design flow typically starts by the creation of a high-level
model (or virtual prototype) of the system in languages, such as
SystemC, that can handle this abstraction level. IP reuse is
another crucial element to optimize the development of virtual
prototypes, so models of basic blocks for such platforms

Manuscript received October 9th, 2015.
Authors are with Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR

7606, Laboratoire d’Informatique de Paris 6 (LIP6), F-75005, Paris, France
(e-mail: firstname.lastname@upmc.fr).

(processors, memories, interconnects, peripherals …) are often
gathered in component libraries. This “top-down” approach can
be found in a number of design tools such as Mentor Graphics’
Vista, Synopsys’s CoMET-METeor, or Open Virtual
Platforms. The use of high-level simulation models allows fast
virtual prototyping of complex applications (for instance
multiprocessor architecture running embedded software and
interacting with specialized co-processors). However, the lack
of knowledge of the hardware platform makes it difficult to add
technological parameters such as power consumption or Signal
Integrity (SI) in the simulation process. As a result, in most
cases, the simulation of such platforms is ideal.

Indeed, some crucial issues (such as coupling between
analog and digital functions, crosstalk noise in on-chip
interconnects [3-4], or unexpected hazards caused by low-level
effects [5-6]) are often only addressed at the low-level
simulation step, even sometimes at the prototyping step, as part
of a “bottom-up” design methodology. In that case, the
hardware platform is usually well known, so models can
include detailed technological parameters. However, the low
abstraction level of the models is a real handicap to efficiently
simulate complex applications running on large systems, such
as the ones described in the previous paragraph.

In the literature, signal integrity effects for high-speed
interconnects or transmission lines are modeled using different
techniques, as presented in [7]. Among those different methods,
we can list RLC and Partial Element Equivalent Circuit (PEEC)
models [8-9], piecewise linear models [10], methods based on
Finite Difference Time Domain (FDTD) [11],
Traveling-wave-based Waveform Approximation (TWA) [12],
or models derived from empirical methods [13-14]. All these
models are at the circuit level. They aim at representing the
signal integrity performances of a single component (a chip, a
transmission line). Although simulation speed can be an issue
in some cases [15-16], these models cannot be used in a global
system-level simulation, to analyze for instance the
software/hardware interactions in a heterogeneous system.

Our goal is to enrich the characteristics of high-level virtual
prototyping tools by adding to the ideal functional models a
performance model. Such tools would help system designers to
detect SI issues at an early stage of the design process.

In [17-18], we introduced a meet-in-the-middle modeling
approach [19] to evaluate the signal integrity characteristics of
field bus-based systems at the virtual prototyping step. This
methodology combines high-level SystemC [20] functional

High Level Virtual Prototyping of Signal
Integrity in Buses Communication

Ruomin Wang, Julien Denoulet, Sylvain Feruglio, Member, IEEE, Farouk Vallette, and Patrick Garda,
Senior Member, IEEE

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

models of the nodes, with circuit-level SystemC-AMS [21]
models of the I/O and the bus lines. This method allowed global
system simulation, while also accurately illustrating low level
effects, such as crosstalk between bus lines or the influence of a
chip’s activity on its power rails’ voltage. However, its
simulation speed still suffered from the low abstraction level of
I/O models, and the method’s lack of flexibility made it
unsuitable for a virtual prototyping library.

In this paper, a novel modeling approach is proposed, which
raises the abstraction of models (such as I/O and transmission
lines) to the system level, in order to achieve efficient
simulation performances. The method also allows modularity
and parameterization of the models, which would make it
suitable for use in a virtual prototyping tool. For in this context,
a system designer usually selects basic components to model its
application then configures these modules’ parameters. To do
so, neural networks are used to incorporate signal integrity
effects in a system level model of a component.

The paper is structured in five parts. Section II presents the
modeling methodology based on the association of functional
and non-functional modules. Section III focuses on the design
of neural-network-based non-functional models and is
illustrated by an I²C platform use case. Section IV presents an
application based on an USB 3.0 transceiver, and shows how
the method could be used in a virtual prototyping library
context. Finally, section V concludes the article.

II. MODELING METHODOLOGY
In this section, the virtual prototyping method to simulate a

system’s SI performances along with its functionality is
presented. All the models presented in the next sections were
developed in SystemC and its analog extensions
SystemC-AMS. These sets of open-source C++ libraries offer a
unified system-level modeling environment to design and
simulate heterogeneous applications, from the processors
embedded software to the analog components of a system. It
allows modeling at higher levels of abstraction, to improve
simulation performance (speed) and efficiency. SystemC
operates with a discrete-event simulation kernel, whereas
SystemC-AMS features three Models of Computation (MoC).
These three kernels allow AMS behavioral modeling at
different levels of abstraction, from the more abstract,
discrete-time sampled TDF (Timed Data Flow) MoC to the
continuous-time and conservative ELN (Electrical Linear
Networks) MoC, which is slower than TDF. We chose TDF for
our models in order to achieve maximum simulation speed.

With this methodology, a generic bus communication system
as shown in Fig.1 will be modeled with two kinds of blocks:
functional modules, which represent the operating behavior of
the system, and non-functional modules, which manage the SI
performances (Fig.2).

A. Functional modules
Functional modules represent the ideal behavior of the

system. For example, in the system shown in Fig.1, both nodes’
functionalities (such as embedded software), I/O controller and
even bus protocol functions (such as I²C wired-and mechanism)

Fig.1. Generic bus system functional model.

Fig.2. Generic bus system with separation of both functional and
non-functional models.

are modeled with these modules. Depending on the nature of
the components (software/hardware, digital/analog), C/C++,
SystemC and SystemC-AMS languages can be used.
Functional models can be independently simulated to visualize
the ideal behavior of the bus communication system.

B. Non-functional modules
Non-functional modules are used to represent, at a high-level

of abstraction, the system’s SI behavior, which is usually highly
non-linear. To achieve this, non-functional modules are based
on neural networks. As we know, neural networks [22] have
been used in a variety of applications [23], because of two
important properties: the ability to learn from input data with or
without a teacher and the ability to model non-linear functions
[24]. Neural networks thus allow to model non-linear SI effects,
even with a limited knowledge of the devices. Indeed, at an
early design stage, technological features or equivalent circuits
may not be available [25]. Based on the application complexity,
one neural network can be used for the whole system or one
dedicated neural network can be used for each component.
Thus, the model can be built as a modular platform. Parameters,
such as transceiver configuration or temperature, can also be
added to the neural network design, to improve the efficiency
and/or flexibility of the non-functional model.

Once neural networks for SI are built, they provide equations
that represent the relation between input and output signals.
The TDF MoC of SystemC-AMS can efficiently implement
these equations. Combined with functional modules,
non-functional modules show the SI performances of the
system (crosstalk between adjacent bus lines, I/O influence on
signal quality, IR drop …). Meanwhile, since these modules
can be parameterized, they can help designers optimize their
systems (for instance, by trying different transceiver
configurations) at the virtual prototyping step.

Since the core of our work is the high-level modeling of SI
effects, in the rest of the paper, we mainly focus on the building
process of non-functional modules.

Node
1

Node
2

Bus Lines

Node
1

Node
2

Bus Non-Functional Model

Functional

Non-Functional
I/O

Model
I/O

Model

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Fig.4. Three-layer neural network with delays and recurrent branch (NARX
architecture).

Input Layer Hidden Layer Output Layer

b1 b2

+
D
E
L
A
Y

D
E
L
A
Y

1

tansigIWI,1 + purelin

1

u y

LW2,1

LW1,2

Fig.3. Non-functional module design methodology.

III. NON-FUNCTIONAL MODULE DESIGN
Three stages were required to build non-functional modules,

(see Fig.3): first, input/target pairs (such as input voltage/output
voltage) were acquired from the devices by measurement or
simulation. Then, a neural network architecture was chosen,
then trained with the input/target pairs, in order to model the
system’s non-linear behavior due to SI effects. Finally, the
neural network was implemented as a SystemC-AMS TDF
module, and was instantiated in the modeling platform. This
process is detailed in the rest of this section.

A. Acquisition of input/target signal pairs
In the first stage, (time varying) inputs were given as stimuli

to a component (e.g. a transmission line) or a system. These
inputs were swept these inputs over their entire operating
ranges [26]. (Time varying) outputs were then monitored and
stored as targets. These values could be obtained by
measurement or simulation.

Input/target signal pairs can be set according to the
investigated SI effects. For instance, the most critical SI
problem in a two-line bus device could be the crosstalk between
adjacent lines A and B. Such a phenomenon typically happens
when, for example, a signal transition on line A disturbs the
behavior of line B. Hence, input/target signals pairs in this case
should focus more on signal transitions than on steady logic
levels. However, the combination of several effects can also be
investigated if required.

B. Neural network training
In the second stage, neural networks were trained to

approximate the relations between inputs and targets. Learning
rules of neural networks fall into three major categories
(supervised learning, unsupervised learning and reinforcement
learning), each of them corresponding to a particular abstract
learning task [23], [27]. Supervised learning was used to train
the networks. The training was performed with the neural
network toolbox of MATLAB [28], which offers a variety of
functions based on different architectures of neural networks.

First, a network architecture that was suitable for the studied
problem had to be chosen. Then, parameters of the chosen
network were set, such as the number of layers of the network,
the number of neurons in the hidden layer, the transfer function
of each layer.

Unfortunately, there are no predefined rules to help find the
best configuration. Depending on the system to be modeled,
these configuration parameters should be fixed empirically.

Nevertheless, some guidelines are provided in the literature.

For example, in [23], [25], authors indicate that a three-layer
network (input layer, hidden layer and output layer) with a
sigmoid transfer function (tansig) in the hidden layer (1), and a
linear function (purelin) in the output layer (2), can be trained
to efficiently approximate most functions. So this setup was
used for our neural networks.

(ݔ)݃݅ݏ݊ܽݐ = ଶ

ଵା షమೣ − 1 (1)
(ݔ)݈݊݅݁ݎݑ = (2) ݔ

Fig.4 shows an example of a three-layer network, featuring

one input u, one output y, one neuron in the hidden layer, one
neuron in the output layer, a recurrent branch between output
and hidden layers, and delay functions added for the input and
the recurrent branch. IWi,j or LWi,j represent the weight of the
connection between neuron i and j, bi is the bias of neuron i.

The number of neurons in the hidden layer can be chosen
according to heuristics, which are typically used as a starting
point for a search towards the optimum number. The heuristic N
> 3 × Ni [29] was used, with N the number of neurons in the
hidden layer and Ni the number of inputs. Furthermore, the
number of training iterations (epoch), and, if needed, the
number of delay for an input or a recurrent branch have to be
set. Delay functions should be present if there is a significant
delay between input/target pairs, or if there is a memory effect
in the modeled system, such as a capacitance. Large values of N
and epoch are needed when the system is complex. However,
these large values may lead to over-fitting, so a trade-off may
be necessary. All of these parameters were fixed by means of
empirical testing or trial and error.

The learning rule used in our method was scaled conjugate
gradient back propagation (transcg) [30], a type of supervised
learning that requires less memory. To train the neural network
(Fig.5), a subset of the input/target signal pairs obtained during
the previous step is used. First the network is fed with the
training input data, and its outputs are compared with the
training target data (which represent the desired behavior).
Following this comparison, the network’s weights and biases
are updated and the process is iterated epoch times. Then,
another subset of the input/target signal is used to validate the
quality of the training: the error between the validation target
data and the network response to the validation input data
should be under a predetermined satisfaction threshold.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Fig 5. Neural network training

The training process can be time-consuming (from several

minutes to several hours). However, it is not necessarily
aberrant when one thinks of the time required to design a model
in other languages. At the end of this stage, an equation is
obtained, which gives an approximation of the relation between
the inputs and outputs of the system.

C. Model Integration
In the third stage, the neural networks previously generated

were implemented into a SystemC-AMS TDF model and were
then associated with functional modules. TDF is derived from
the well-known Synchronous Data Flow (SDF) model. Unlike
the untimed SDF, TDF is a discrete-time modeling style. In a
TDF module, a system is described by mathematical functions,
(e.g. a transfer function). Therefore, neural networks equations
can be easily implemented. SystemC-AMS offers two versions
of TDF: conventional TDF [21], in which data are sampled with
a fixed time step, and dynamic TDF [31], in which the time step
can be dynamically changed. Compared to a conventional TDF
module, a dynamic TDF module samples and computes less
data, thus achieving a potential simulation speedup [32]. This
feature will be illustrated in the next subsection.

Finally, the SystemC-AMS non-functional model(s) could
be connected to the functional module(s) (also written in
SystemC/SystemC-AMS) to represent the SI characteristics of
the system.

D. Use case: simulation of an I²C platform
A use case is now presented to demonstrate the validity of

the methodology, the association of functional and
non-functional modules, and also the contribution of dynamic
TDF to the simulation performance. To do so, a two-node I²C
application [33] was used, as shown in Fig.6. It was previously
modeled in [18] with SystemC-AMS, but using the ELN MoC
(i.e. RLC equivalent circuits). It provided a comparison basis
for the TDF/neural-network-based approach.

The application featured a master node (an 8051
microcontroller with a bus controller), and a slave node (an I²C
memory device). It was modeled with two functional modules
(the microcontroller and the RAM device), and one
non-functional module, which incorporated the SI
characteristics of both nodes’ I/O interfaces and the I²C bus
lines (Fig.7). This non-functional module was implemented in
conventional TDF, and also in dynamic TDF.

Fig.6. I²C use case.

Fig 7. I²C modelling platform.

The SystemC functional modules simulated the execution of
the 8051 embedded code, which performed read and write
requests to access the I²C memory slave device. The I²C bus
controller translated these requests to I²C frames, which were
then sent to the bus. For an ideal simulation, a SystemC model
of the bus lines could be added to the platform, to implement
the wired-and mechanism featured in the I²C protocol. This
ideal model would help a designer validate the functionality of
the application, but it would not be able to detect any SI effect.

To build the non-functional module, the three-stage process
presented above was followed. The first two stages were
already introduced in [32]. Input/target pairs were obtained by
simulation of an equivalent circuit with Ngspice (Fig.8). This
circuit included three blocks: the node’s I/O device (featuring a
switch and resistor to model the open-drain transistor required
by the I²C protocol), an equivalent model of the bus lines (SDA
and SCL) [34] and two load resistances. The inputs were the
logic levels VIN-SDA and VIN-SCL. The targets were the output
voltages VOUT-SDA and VOUT-SCL. Around 200000 input/target
pairs were obtained, and then used to train the neural network
during the second stage. Note that the input/target pairs can also
be collected by measurements.

In the second stage, a Non-linear Auto Regressive model
with eXogenous (NARX) network was chosen [35]. This
recurrent dynamic neural network takes into account the
memory effect in the bus RLC equivalent circuit. Its structure is
shown in Fig.4. To configure the network, the number of delay
for the input (DI), the number of delay for the recurrent branch
(DR), the number of neurons in the hidden layer (N) and the
number of iterations (epoch) were set.

Neural
Network

Training input data Output ∑

Training target data

Weight
Adjustment

Error

8051 µC
+

I²C Bus Ctrl

I²C
RAM

Device

SCL
SDA

Vcc

R R

8051 µC
+

I²C Bus Ctrl

I²C
RAM

Device

Functional Module 1 Functional Module 2

Non-functional Module

I²C Bus

Node I/O
Interface

Node I/O
Interface

TABLE I
CONFIGURATION OF NARX NETWORK

DI DR N epoch Training
duration

2 4 10 4500 4h

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Fig.8. I²C bus simplified equivalent circuit.

Table I shows the selected configuration, which achieved
suitable performance. At the end of the training process,
equations (3) and (4) were obtained to approximate the relation
between the inputs and outputs of the system, with j the hidden
layer neuron number, I the input layer, O the output layer, and d
the delay.

a୨ = tansig ቆ
∑ (u(t − d) × IW୍,୨) ୈ

ୢୀଵ

+ ∑ (y(t − d) × LW,୨) + b୨ୈ
ୢୀଵ

ቇ (3)

ݕ = ∑൫݈݊݅݁ݎݑ (ܽ ,ைܹܮ ×)ே

ୀଵ ൯ + ܾை (4)

In the last stage, the neural network equations were

implemented in SystemC-AMS, using both conventional and
dynamic TDF. The time step for conventional TDF was set to
1_ns. For dynamic TDF, it was set to 3 ns when both SDA’s
and SCL’s logic levels were stable and 1 ns when SDA and/or
SCL were switching levels. The dynamic TDF configuration
allowed a reduction of about 70 % of the amount of
unnecessary computation, which sped up the simulation.
Unnecessary computation typically occurred when the bus
lines’ logic levels were stable and no SI effect was induced.

Simulation results of this neural-network-based
SystemC-AMS TDF modeling platform were compared with a
reference model, the SystemC-AMS ELN platform introduced
in [18]. Note that this platform was experimentally validated.
Fig 9.a is a simulation of an all-functional model, which only
shows the system ideal digital behavior. No SI effect can be
detected. Fig.9.b and 9.c present the simulation of the SDA and
SCL bus lines with the reference model and the SystemC-AMS
TDF platforms. SI effects due to the line characteristics or
crosstalk are clearly visible. We can also see that the TDF
platforms accurately match the reference model’s behavior.

Table II shows that the RAE (Relative Absolute Error)
between the TDF models and the reference is inferior to 3.1 %.
As for the simulation speed, the dynamic TDF model is
noticeably faster than the reference. The overhead compared to
an all-functional model platform is important, but the TDF
non-functional modules provide a designer with more
information to accurately analyze their application. Also, the
simulation duration is still very reasonable (5-15 seconds).

Fig.9. I²C platform simulation: (a) SCL and SDA lines, functional models only.
(b) SCL line simulation with reference model, conventional and dynamic TDF.
(c) SDA line simulation with reference model, conventional and dynamic TDF.

IV. USB 3.0 APPLICATION
The interest of the methodology now being showed on a

simple case, a validation with a more complex application is
proposed in this section. It also demonstrates that component
models can be parameterized and combined in a modular way.

RSDA LSDA
VIN-SDA

VOUT-SDAR

RP

C CSDA

CCOUP

CSDA

CCOUP

RSCL LSCL
VIN-SCL

VOUT-SCLR

RP

C CSCL CSCL RL

RL

I/O
INTERFACES

BUS
LINES

LOAD
RESISTANCES

TABLE II
SIMULATION PERFORMANCES FOR I²C PLATFORM

 Line RAE1 (%) CPU Time2

All-functional model N/A N/A 0.046 s

Reference model [18] N/A N/A 16.386 s

Conventional TDF model
SCL 2,91

13.190 s
SDA 1,70

Dynamic TDF model
SCL 3,10

5.246 s
SDA 2,70

1 Relative Absolute Error
2 On Intel Core i5-660, 3.33 GHz, RAM 2 Gbits

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Fig.10. Illustration of the USB 3.0 application.

Fig.11. Influence of the 1st post-tap parameter.

A. Platform presentation and reference model
The method was applied to model the SI performances of an

USB 3.0 transceiver application. In this section, the
methodology is adapted to suit the requirements of a virtual
prototyping library, that is models modularity, flexibility and
simulation speed. To do so, platforms were built with one
functional and one non-functional module per component (in
the former I²C use case, the SI effects of the whole platform
were modeled in a unique module).

The application is presented in Fig.10. The system featured
two Altera Stratix IV FPGA [36], a transmitter (TX) and a
receiver (RX), which exchanged data via an USB 3.0 link.
Communication was performed by a High Speed Serial
Interface (HSSI) module, which can be implemented in the
FPGA device.

To improve communication, and reduce signal degradations
due typically to reflection processes and unadapted
transmission lines [37], HSSI modules can be parameterized,
for instance to perform amplitude pre-emphasis in the emitter,
or DFE equalization in the receiver. Fig.11 shows the influence
of one of the pre-emphasis parameters (1st post-tap) on the
emitted signal. Here, the input is weakly modified in amplitude
to anticipate the signal modifications due to all SI effects.

To find a suitable configuration for the HSSI modules, Altera
provides encrypted HSPICE models of both TX and RX
modules. These models were used, in association with a
S-parameter model of an USB 3.0 SuperSpeed cable, as a
reference model for this application. Although this reference
model is available and ready-to-use, its major drawback is its
simulation speed: it takes approximately 45 minutes to simulate
the transmission of 200 bits, at a 1 Gbps rate. Since there are
8192 possible configurations for the sole TX module, the use of
these models is not convenient. It is also unrealistic to use them
in a system-level simulation of a global system.

Fig. 12. Non-functional models of the USB 3.0 application.

Fig.13. FTDNN network architecture.

B. Non-functional modues design
This application was modeled in a virtual prototyping library

context, meaning that each component was designed as a
separate block (in this case, a block features a functional model
and a non-functional model). This introduces the modularity
capabilities of our approach.

Fig.12 presents the non-functional models of the USB 3.0
application, based on the methodology. Since the focus of this
paper is on the modeling of SI effects, the functional part of the
platform (i.e. the tasks implemented in both FPGA) is not
presented. The non-functional part of the model included three
modules: TX, RX and cable. TX and RX took into account the
influence of the FPGA package (PKG). Moreover, TX was
parameterized by the LEVEL input, which set the transceiver’s
pre-emphasis level (the 1st post tap parameter). The same
feature could have also been implemented in the RX module to
take into account the DFE equalization and its configuration.

Each non-functional module was based on a specific neural
network. The same architecture was used for all networks:
Focused Time-Delay Neural Network (FTDNN) [38] (Fig.13).
Indeed, FTDNN is less complex than NARX network. As a
result, it requires less memory and time for training. However,
it is possible to combine various architectures.

The FTDNN networks also had three layers: input, hidden,
and output, but did not include a recurrent branch. Parameters
to be set were the number of delay for input (D1), the number of
neurons in the hidden layer (N) and the number of iterations
(epoch). Table III presents the chosen configuration for each
module. At the end of the training process, equations (5) and (6)
were obtained.

ܽ = ∑൫݃݅ݏ݊ܽݐ ݐ)ݑ) − ݀) × (ூ,ܹܫ + ܾ

ௗୀଵ ൯ (5)
ݕ = ∑൫݈݊݅݁ݎݑ (ܽ ,ைேܹܮ ×

ୀଵ ൯ + ܾை (6)

USB 3.0 Cable
ALTERA

Stratix IV
FPGA

T
X
M
O
D
U
L
E

ALTERA
Stratix IV

FPGA

R
X
M
O
D
U
L
E

TX SuperSpeed
LINK

P
K
G

SSTX+

SSTX-

SSRX+

SSRX-

P
K
G

RXIN OUT

TX MODULE RX MODULECABLE

LEVEL

Input Layer Hidden Layer Output Layer

b1 b2

+
D
E
L
A
Y

1

IWI,1 tansig + purelin

1

u yLW1,2

TABLE III
CONFIGURATION OF FTDNN NETWORK

Component DI N epoch Training
duration

TX 100 10 2000 29 min

Cable 200 10 4000 1 h 05 min

RX 50 10 2000 25 min

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig.14. Transient behavior of OUT signal (HSPICE and SystemC-AMS
simulation comparison).

Finally, these two equations were implemented in a

dedicated SystemC-AMS TDF module for each component.

C. Simulation results
Simulation of the SystemC-AMS platform was compared to

the HSPICE reference model. For this example, the input signal
was a pseudo random bit sequence generated at the rate of 1
Gbps. Simulations were performed with different 1st post-tap
levels (0, 10 and 20)

Fig.14 compares the SystemC-AMS simulation results with
the reference model for a 1st post-tap level of 20. The
association of the three non-functional modules achieved
excellent accuracy. RAE between these modules and the
reference model was around 3.6_% (cf. Table IV, case 1).

The SystemC-AMS platform also achieved a significant
speedup (×567). Indeed, during the time required by the
methodology to simulate the 8192 transmitter configurations,
one could simulate less than 15 configurations with the
HSPICE models. This speedup allows an efficient system
simulation, combining functional and non-functional models.
Note that if a unique block to model the three components had
been used, as in section 3.D, speedup and REA would be
improved (see Table IV, case 2). However, the well appreciable
modularity would be lost.

With this approach, one could then imagine a virtual
prototyping library, where each component would be
represented by an ideal functional model, and a non-functional
performance model, that could help validate the SI behavior of
the system or detect potential problems. For instance, if one
wanted to model a system that transmits data at a 10 Gbps rate
(i.e. beyond the USB 3.0 requirements), an all-functional ideal
simulation (cf. Fig.15.a) would not reveal any particular
problem, whereas a non-functional simulation (Fig.15.b) would
clearly show the incoherent signal behavior due to the
inappropriate transmission rate.

Fig.15. Simulation of a 10 Gbps rate data transmission. (a) All-functional
simulation: no SI problem detected. (b) Functional and non-functional
simulation. SI effects are detected.

The output signal eye diagram was also built (cf. Fig.16).
Table V shows the eye height and width comparison between
the SystemC-AMS models and the HSPICE reference. The eye
opening characteristics were similar. Some of the differences
between both diagrams were a consequence of the neural
network approximation technique: data computed by the neural
network concentrated around a few values, whereas the
HSPICE simulation results were much more dispersive [38].

Indeed, the training of a neural network aims at finding the
best parameters of a mathematical approximation function, in
order to minimize errors. Therefore, it can’t model all the
situations but only some specific ones (the maximum,
minimum, or interval boundaries) which are of interest to the
designers.

V. CONCLUSION
In this paper, a novel methodology to model signal integrity

at a high-level of abstraction for virtual prototyping of complex
systems was introduced. Systems are modeled as a combination
of functional modules, which give an ideal behavior of the
application, and non-functional modules, which give the SI
performances. These non-functional blocks are based on neural
networks and are implemented in SystemC-AMS, using the
TDF model of computation. The methodology achieves very
good accuracy, while allowing significant simulation speedup,
especially compared to SPICE-based models

25 30 35 40 45 50
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (ns)

V
ol

ta
ge

 (V
)

Neural networks
HSPICE

(a)

(b)

TABLE IV
SIMULATION PERFORMANCES FOR USB APPLICATION

Model RAE (%) CPU Time Speedup

HSPICE N/A 2808.35 s N/A
SystemC-AMS

(case 1) 3.6 4.96 s ×567

SystemC-AMS
(case 2) 1.5 1.47 s ×1910

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Fig.16. OUT node eye diagram (a) HSPICE simulation (b) SystemC-AMS
simulation.

For future works, additional blocks could be added. In the
case of the USB application, DFE equalization or
post-processing blocks could be implemented into the
modeling platform, to perform for instance frequency domain
conversion or stat eye analysis.

Virtual prototyping plays a major role in the design of
electronic systems, since it allows fast simulation of the
application behavior, with the help of a library of component
models. Thanks to its modularity and parameterizability, the
presented methodology could be used to enhance virtual
prototyping tools, by adding early SI analysis capabilities. This
would help designers in their tasks and improve their
time-to-market.

REFERENCES
[1] M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, K.

Suzuki, A. Sangiovanni-Vincentelli, “A case study in computer-aided
co-design of embedded controllers”, in Design Automation for Embedded
Systems, vol. 1, no. 1, pp. 51-67, Jan. 1996, Kluwer Academic Publishers.
DOI : 10.1007/BF00134683.

[2] J. Liu, X. Liu, E. Lee, “Modeling Distributed Hybrid Systems in Ptolemy
II”, in proc. of the American Control Conference (ACC), pp. 4984-4985,
June 2001, Arlington, VA, USA. DOI:10.1109/ACC.2001.945773.

[3] K. Agarwal, D. Sylvester, D. Blaauw, “Modeling and analysis of
crosstalk noise in coupled RLC interconnects”, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no.
5, pp. 892-901, May 2006. ISSN: 0278-0070. DOI:
10.1109/TCAD.2005.855961.

[4] P. V. Hunagund, A. B. Kalpana, “Crosstalk Noise Modeling for RC and
RLC interconnects in Deep Submicron VLSI Circuits”, in Journal of
Computing, vol. 2, no. 4, pp. 60-65, April 2010. ISSN 2151-9617

[5] J. Loeckx, G. Gielen, “Generic and Accurate Whitebox Behavioral Model
for Fast Simulation of Analog Effects in Nanometer CMOS Digital Logic
Circuits”, in IEEE Transactions on Electromagnetic Compatibility, vol.
51, no. 2, pp. 351-357, May 2009. ISSN: 0018-9375. DOI:
10.1109/TEMC.2009.2014072.

[6] Y. M. Lee, Y. Cao, T. H. Chen, J. M. Wang, C. C. P. Chen, “HiPRIME:
hierarchical and passivity preserved interconnect macromodeling engine
for RLKC power delivery”, in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 6, pp. 797-806,
May 2005. ISSN: 0278-0070. DOI: 10.1109/TCAD.2005.847938.

[7] R. Achar, M. S. Nakhla, “Simulation of high-speed interconnects.” In
Proc. of the IEEE, vol. 89, no. 5, pp. 693-728, May 2001. ISSN:
0018-9219. DOI: 10.1109/5.929650.

[8] N. Marques, M. Kamon, L. M. Silveira J. White, “Generating compact,
guaranteed passive reduced-order models of 3-D RLC interconnects”, in
IEEE Transactions on Advanced Packaging, vol. 27, no. 4, pp. 569-580,
Nov. 2004. ISSN: 1521-3323. DOI: 10.1109/TADVP.2004.831867.

[9] H. Kim, Y. Eo, “High-Frequency-Measurement-Based Circuit Modeling
and Power/Ground Integrity Evaluation of Integrated Circuit Packages”,
in IEEE Transactions on Advanced Packaging, vol. 31, no. 4, pp.
910-918, Nov. 2008. ISSN: 1521-3323. DOI:
10.1109/TADVP.2008.2005472.

[10] J. Chen, L. He, “Piecewise linear model for transmission line with
capacitive loading and ramp input”, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no.
6, pp. 928-937, June 2005. ISSN: 0278-0070. DOI:
10.1109/TCAD.2005.847895.

[11] T. K. Wang, S. T. Chen, C. W. Tsai, S. M. Wu, J. L. Drewniak, T. L. Wu,
“Modeling Noise Coupling Between Package and PCB Power/Ground
Planes With an Efficient 2-D FDTD/Lumped Element Method”, in IEEE
Transactions on Advanced Packaging, vol. 30, no. 4, pp. 864-871, Nov.
2007. ISSN: 1521-3323. DOI: 10.1109/TADVP.2007.901764.

[12] Y. Eo, S. Shin, W. R. Eisenstadt, J. Shim, “Generalized
traveling-wave-based waveform approximation technique for the
efficient signal integrity verification of multicoupled transmission line
system”, in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 12, pp. 1489-1497, Dec. 2002. ISSN:
0278-0070. DOI: 10.1109/TCAD.2002.804381.

[13] I. S. Stievano, L. Rigazio, I. A. Maio, F. G. Canavero, “Behavioral
Modeling of IC Core Power-Delivery Networks From Measured Data”, in
IEEE Transactions on Components, Packaging and Manufacturing
Technology, vol. 1, no. 3, pp. 367-373, Mar. 2011. ISSN: 2156-3950.
DOI: 10.1109/TCPMT.2010.2099970.

[14] T. R. Cunha, H. M. Teixeira, J. C. Pedro, I. S. Stievano, L. Rigazio, F. G.
Canavero, R. Izzi, F. Vitale, A. Girardi, “Validation by Measurements of
an IC Modeling Approach for SiP Applications”, in IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 1, no. 8, pp.
1214-1225, Aug. 2011. ISSN: 2156-3950, DOI:
10.1109/TCPMT.2011.2158313.

[15] W. Dghais, H. M. Teixeira, T. R. Cunha, J. C. Pedro, “Novel Extraction of
a Table-Based I–Q Behavioral Model for High-Speed Digital
Buffers/Drivers”, in IEEE Transactions on Components, Packaging and
Manufacturing Technology, vol. 3, no. 3, pp. 500-507, March 2013. DOI:
10.1109/TCPMT.2012.2234212.

[16] K. Y. Yang, C. B. Chang, T. Y. Wu, W. S. Wang, Y. H. Lin, R. B. Wu,
“Modeling and Fast Eye Diagram Estimation of Ringing Effects on
Branch Line Structures”, in IEEE Transactions on Components,
Packaging and Manufacturing Technology, vol. 4, no. 4, pp. 641-647,
April 2014. DOI: 10.1109/TCPMT.2013.2297320.

[17] M. Alassir, J. Denoulet, O. Romain, A. Suissa, P. Garda, “Modelling
field bus communications in mixed-signal embedded systems”; in
EURASIP Journal of Embedded Systems, vol. 2008, pp. 1-11, Jan. 2008 .
DOI: 10.1155/2008/134798.

[18] M. Alassir, J. Denoulet, O. Romain, P. Garda, “Signal integrity-aware
virtual prototyping of field bus-based embedded systems”, in IEEE
Transactions on Components, Packaging and Manufacturing Technology,
vol. 3, no. 12, pp. 2081-2091, Dec. 2013. DOI:
10.1109/TCPMT.2013.2262151.

[19] A. Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning About the
Trends and Challenges of System Level Design”, in Proc. of the IEEE,
vol. 95, no. 3, pp. 467-506, March 2007. DOI:
10.1109/JPROC.2006.890107.

0 0.2 0.4 0.6 0.8 1.0 1.2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (ns)

V
ol

ta
ge

 (V
)

0 0.2 0.4 0.6 0.8 1.0 1.2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (ns)

V
ol

ta
ge

 (V
)

(a)

(b)

TABLE V
EYE DIAGRAM COMPARISON WITH HSPICE SIMULATION

Model Eye height
difference (%)

Eye width
difference (%)

SystemC-AMS 2.1 1.0

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

[20] IEEE Standard SystemC® Language, Reference Manual, 2005
http://standards.ieee.org/getieee/1666/download/1666-2005.pdf.

[21] M. Barnasconi, “SystemC AMS extensions: Solving the Need for Speed”,
DAC Knowledge center, May 2010;
http://www.accellera.org/community/articles/amsspeed/community/artic
les/amsspeed/SystemC_AMS_Solving_the_Need_for_Speed_May_2010
.pdf.

[22] Q. Zhang, K. Gupta, “Neural Networks for RF and Microwave Design”,
Norwood, MA: Artech House, 2000. ISBN: 1580531008.

[23] M. Hagan, H. Demuth, M. Beale, “Neural Network Design”, PWS
Publishing Company, 1996. ISBN: 0971732108.

[24] V. Devabhaktuni, M. Yagoub, Y. Fang, J. Xu, Q. Zhang, “Neural
networks for microwave modeling: model development issues and
nonlinear modeling techniques”, in Int. Journal of RF and Microwave
Computer-Aided Engineering, vol. 11, no. 1, pp. 4–21, Jan. 2001. DOI:
10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I.

[25] S. Haykin, “Neural Networks: A Comprehensive Foundation”, Pearson
Education, 1998. ISBN: 0132733501.

[26] L. Ljung, “System identification: theory for the user”, Prentice Hall PTR,
1987. ISBN: 9780136566953.

[27] D. White, D. Sofge, “Handbook of Intelligent Control”, New York: Van
Nostrand Reinhold, 1992. ISBN: 0442308574.

[28] “Simulink-Dynamic System Simulation for MATLAB”, Mathworks,
1996.

[29] D. Hush, “Classification with neural networks: a performance analysis”,
in IEEE International Conference on Systems Engineering, pp. 277–280,
Aug. 1989. DOI: 10.1109/ICSYSE.1989.48672.

[30] M. F. Moller, “A scaled conjugate gradient algorithm for fast supervised
learning”, Neural Networks, vol. 6, no. 4, pp. 525-533, Nov. 1993. DOI:
10.1016/S0893-6080(05)80056-5.

[31] M. Barnasconi, K. Einwich, C. Grimm, A. Vachoux, T. Maehne,
“Advancing the SystemC Analog/Mixed-Signal (AMS) Extensions:
Introducing Dynamic Timed Data Flow”, Open SystemC Initiative, Sept.
2011,
http://accellera.org/images/resources/articles/amsdynamictdf/Whitepaper
_SystemC_AMS_Dynamic_TDF_September_2011.pdf.

[32] R. Wang, J. Denoulet, S. Feruglio, F. Vallette, P. Garda, “High level
modeling of signal integrity in field bus communication with
SystemC-AMS”, in Int. Conf. on Electron., Circuits and Syst.(ICECS),
pp. 889–892, Dec. 2012. DOI: 10.1109/ICECS.2012.6463519.

[33] “I2C-bus specification and user manual.” NXP Semiconductors.
http://www.nxp.com/documents/user manual/UM10204.pdf.

[34] G. Vasilescu, “Electronic Noise and Interfering Signals: Principles and
Applications”, Chap. 12, Springer-Verlag, 2005. ISBN 3-540-40741-3.

[35] S. Chen, S. Billings, P. Grant, “Non-linear system identification using
neural networks”, in Int. Journal of Contr., vol. 51, no. 6, pp. 1191-1214,
1990. DOI: 10.1080/00207179008934126.

[36] “Stratix IV Device Handbook”, vol. 2, Altera Corporation, 2012.
 https://www.altera.com/en_US/pdfs/literature/hb/stratix-iv/stx4_5v2.pdf

[37] “Understanding the Pre-Emphasis and Linear Equalization Features in
Stratix IV GX Devices”, Altera Corp., 2010.
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/lite
rature/an/an602.pdf.

[38] K. J. Lang, A. H. Waibel, G. E. Hinton, “A time-delay neural network
architecture for isolated word recognition”, Neural Networks, vol. 3, no.
1, pp. 23-43, June 1989. DOI: 10.1016/0893-6080(90)90044-L.

[39] R. Wang, J. Denoulet, S. Feruglio, F. Vallette, P. Garda, “Modeling of
signal integrity in bus communications with timed data flow
SystemC-AMS”, in Forum on Specification Design Languages (FDL),
pp. 1–6, Sept. 2013. ISSN: 1636-9874.

Ruomin Wang received the M.Sc. and
Ph.D. degrees in electrical engineering from
Pierre and Marie Curie University, Paris,
France, in 2010 and 2014, respectively. His
research interests include signal integrity,
heterogeneous systems modeling, neural
networks and microelectromechanical
systems and additive manufacturing.

Julien Denoulet is an assistant professor at
Pierre and Marie Curie University in Paris,
France. He received an engineering degree
from ESIEE in 2000, the MS degree in
2001, and the Ph.D degree in 2004 from
University of Paris-Sud, Orsay, France,
working on massively parallel architectures
for image processing. He is now a member

of the System on Chip department at LIP6 laboratory, in Pierre
& Marie University, Paris, France. His current activities
include modeling of heterogeneous systems and innovative
architectures for System-on-chip.

Sylvain Feruglio (M’06) received the B.Sc.
and M.Sc. degrees in electrical engineering
and the master’s degree in electronics, option
instrumentation, and systems from the
Université Pierre et Marie Curie (UPMC) -
Paris 6 (France), in 1999 and 2001,
respectively, and the Ph.D. degree in noise

computation in integrated active pixel image sensors from
LISIF, UPMC, in 2005. He then joined IMEP-LAHC, Institut
National Polytechnique de Grenoble (France), working on the
study and the characterization of new CMOS and SOI
technologies. Since 2007, he has been with LIP6 in the System
on Chip department. His research interests include integrated
sensors and electronics, noise analysis and signal integrity,
mainly applied to image sensors and biomedical engineering.

Farouk Vallette received the MS degree in
1990, and the Ph.D degree in 1993, from
University Pierre and Marie Curie, France.
Since 1996, he has been assistant professor
at Pierre and Marie Curie University in Paris.
After being part of the LISIF from 1996 to
2005, he has been member of the LIP6 in the
System on Chip department since 2007. He

worked especially on design and optimization technics using
sensitivities computation.

Patrick Garda (SM’07) received the B.S.
in Mathematics, M.Sc. in Computer
Science and Ph.D. in Electrical
Engineering degrees from Paris 11
University, Orsay, France, in 1978, 1980
and 1984 respectively. Between 1976 and
1985, he was with the ENS Cachan, France,
first as student, then as Teaching Assistant.

In 1985, he joined the IEF Laboratory, Orsay, France, as a
CNRS Research Scientist, conducting research on artificial
retinas, analog implementations of neural networks and parallel
architectures. In 1995, he joined Pierre & Marie University,
Paris, France, as Professor, conducting research on intelligent
sensors and embedded architectures. He is currently member of
the Electronic Systems group in the LIP6 Laboratory,
Vice-Director of the ICT, mathematics, physics, and
nanotechnologies department at the French Ministry of
National Education, Higher Education and Research. His
current research interests include the energy autonomy of
connected devices and biomedical applications.

