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 
Abstract — In this paper, a novel methodology for high-level 

modeling of bus communication in embedded systems is 
introduced. It allows dynamic evaluation of their signal integrity 
characteristics at the virtual prototyping step (i.e. before physical 
realization). The method is based on the association of functional 
and non-functional modules. Functional modules represent the 
ideal behavior of the system, while non-functional modules use 
neural networks to model signal integrity effects. This approach 
was implemented in SystemC-AMS, using the timed data flow 
model of computation. The method is illustrated by an USB 3.0 
application, where modular and parameterizable models are 
introduced. The method achieved good accuracy (<5 %) while 
allowing significant simulation speedup (up to ×2000), compared 
to SPICE-based reference models. This methodology can be used 
to perform early signal integrity analysis in the virtual 
prototyping of bus communication in embedded systems. 
 

Index Terms— bus communication, embedded systems, high 
level, non-functional, modeling, neural network, signal integrity, 
simulation, SystemC-AMS, system level, timed data flow, virtual 
prototyping. 
 

I. INTRODUCTION 
HE ongoing advances of technology have profoundly 
transformed the potential of electronic chips in the last 

decades. By following Moore’s Law, integration capabilities 
now allow the design of billion-transistor circuits. Also, 
heterogeneous association of digital and analog components, 
hardware and software functions on the same chip, has been a 
major evolution in the past few years, with the rise of 
system-on-chips. These developments gave engineers the 
opportunity to create always more complex applications.  

Design methodology of these systems is a key issue for the 
electronics industry [1]. A way to address this matter and keep 
up with integration improvements is to increase the design 
abstraction level from the circuit to the system level [2]. Thus, 
design flow typically starts by the creation of a high-level 
model (or virtual prototype) of the system in languages, such as 
SystemC, that can handle this abstraction level. IP reuse is 
another crucial element to optimize the development of virtual 
prototypes, so models of basic blocks for such platforms 
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(processors, memories, interconnects, peripherals …) are often 
gathered in component libraries. This “top-down” approach can 
be found in a number of design tools such as Mentor Graphics’ 
Vista, Synopsys’s CoMET-METeor, or Open Virtual 
Platforms. The use of high-level simulation models allows fast 
virtual prototyping of complex applications (for instance 
multiprocessor architecture running embedded software and 
interacting with specialized co-processors). However, the lack 
of knowledge of the hardware platform makes it difficult to add 
technological parameters such as power consumption or Signal 
Integrity (SI) in the simulation process. As a result, in most 
cases, the simulation of such platforms is ideal. 

Indeed, some crucial issues (such as coupling between 
analog and digital functions, crosstalk noise in on-chip 
interconnects [3-4], or unexpected hazards caused by low-level 
effects [5-6]) are often only addressed at the low-level 
simulation step, even sometimes at the prototyping step, as part 
of a “bottom-up” design methodology. In that case, the 
hardware platform is usually well known, so models can 
include detailed technological parameters. However, the low 
abstraction level of the models is a real handicap to efficiently 
simulate complex applications running on large systems, such 
as the ones described in the previous paragraph. 

In the literature, signal integrity effects for high-speed 
interconnects or transmission lines are modeled using different 
techniques, as presented in [7]. Among those different methods, 
we can list RLC and Partial Element Equivalent Circuit (PEEC) 
models [8-9], piecewise linear models [10], methods based on 
Finite Difference Time Domain (FDTD) [11], 
Traveling-wave-based Waveform Approximation (TWA) [12], 
or models derived from empirical methods [13-14]. All these 
models are at the circuit level. They aim at representing the 
signal integrity performances of a single component (a chip, a 
transmission line). Although simulation speed can be an issue 
in some cases [15-16], these models cannot be used in a global 
system-level simulation, to analyze for instance the 
software/hardware interactions in a heterogeneous system. 

Our goal is to enrich the characteristics of high-level virtual 
prototyping tools by adding to the ideal functional models a 
performance model. Such tools would help system designers to 
detect SI issues at an early stage of the design process. 

In [17-18], we introduced a meet-in-the-middle modeling 
approach [19] to evaluate the signal integrity characteristics of 
field bus-based systems at the virtual prototyping step. This 
methodology combines high-level SystemC [20] functional 
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models of the nodes, with circuit-level SystemC-AMS [21] 
models of the I/O and the bus lines. This method allowed global 
system simulation, while also accurately illustrating low level 
effects, such as crosstalk between bus lines or the influence of a 
chip’s activity on its power rails’ voltage. However, its 
simulation speed still suffered from the low abstraction level of 
I/O models, and the method’s lack of flexibility made it 
unsuitable for a virtual prototyping library. 

In this paper, a novel modeling approach is proposed, which 
raises the abstraction of models (such as I/O and transmission 
lines) to the system level, in order to achieve efficient 
simulation performances. The method also allows modularity 
and parameterization of the models, which would make it 
suitable for use in a virtual prototyping tool. For in this context, 
a system designer usually selects basic components to model its 
application then configures these modules’ parameters. To do 
so, neural networks are used to incorporate signal integrity 
effects in a system level model of a component. 

The paper is structured in five parts. Section II presents the 
modeling methodology based on the association of functional 
and non-functional modules. Section III focuses on the design 
of neural-network-based non-functional models and is 
illustrated by an I²C platform use case. Section IV presents an 
application based on an USB 3.0 transceiver, and shows how 
the method could be used in a virtual prototyping library 
context. Finally, section V concludes the article. 

II. MODELING METHODOLOGY 
In this section, the virtual prototyping method to simulate a 

system’s SI performances along with its functionality is 
presented. All the models presented in the next sections were 
developed in SystemC and its analog extensions 
SystemC-AMS. These sets of open-source C++ libraries offer a 
unified system-level modeling environment to design and 
simulate heterogeneous applications, from the processors 
embedded software to the analog components of a system. It 
allows modeling at higher levels of abstraction, to improve 
simulation performance (speed) and efficiency. SystemC 
operates with a discrete-event simulation kernel, whereas 
SystemC-AMS features three Models of Computation (MoC). 
These three kernels allow AMS behavioral modeling at 
different levels of abstraction, from the more abstract, 
discrete-time sampled TDF (Timed Data Flow) MoC to the 
continuous-time and conservative ELN (Electrical Linear 
Networks) MoC, which is slower than TDF. We chose TDF for 
our models in order to achieve maximum simulation speed. 

With this methodology, a generic bus communication system 
as shown in Fig.1 will be modeled with two kinds of blocks: 
functional modules, which represent the operating behavior of 
the system, and non-functional modules, which manage the SI 
performances (Fig.2). 

A. Functional modules 
Functional modules represent the ideal behavior of the 

system. For example, in the system shown in Fig.1, both nodes’ 
functionalities (such as embedded software), I/O controller and 
even bus protocol functions (such as I²C wired-and mechanism)  

 
Fig.1. Generic bus system functional model. 
 

 
Fig.2. Generic bus system with separation of both functional and 
non-functional models. 
 
are modeled with these modules. Depending on the nature of 
the components (software/hardware, digital/analog), C/C++, 
SystemC and SystemC-AMS languages can be used. 
Functional models can be independently simulated to visualize 
the ideal behavior of the bus communication system. 

B. Non-functional modules 
Non-functional modules are used to represent, at a high-level 

of abstraction, the system’s SI behavior, which is usually highly 
non-linear. To achieve this, non-functional modules are based 
on neural networks. As we know, neural networks [22] have 
been used in a variety of applications [23], because of two 
important properties: the ability to learn from input data with or 
without a teacher and the ability to model non-linear functions 
[24]. Neural networks thus allow to model non-linear SI effects, 
even with a limited knowledge of the devices. Indeed, at an 
early design stage, technological features or equivalent circuits 
may not be available [25]. Based on the application complexity, 
one neural network can be used for the whole system or one 
dedicated neural network can be used for each component. 
Thus, the model can be built as a modular platform. Parameters, 
such as transceiver configuration or temperature, can also be 
added to the neural network design, to improve the efficiency 
and/or flexibility of the non-functional model. 

Once neural networks for SI are built, they provide equations 
that represent the relation between input and output signals. 
The TDF MoC of SystemC-AMS can efficiently implement 
these equations. Combined with functional modules, 
non-functional modules show the SI performances of the 
system (crosstalk between adjacent bus lines, I/O influence on 
signal quality, IR drop …). Meanwhile, since these modules 
can be parameterized, they can help designers optimize their 
systems (for instance, by trying different transceiver 
configurations) at the virtual prototyping step. 

Since the core of our work is the high-level modeling of SI 
effects, in the rest of the paper, we mainly focus on the building 
process of non-functional modules. 
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Fig.4. Three-layer neural network with delays and recurrent branch (NARX 
architecture). 
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Fig.3. Non-functional module design methodology. 

III. NON-FUNCTIONAL MODULE DESIGN 
Three stages were required to build non-functional modules, 

(see Fig.3): first, input/target pairs (such as input voltage/output 
voltage) were acquired from the devices by measurement or 
simulation. Then, a neural network architecture was chosen, 
then trained with the input/target pairs, in order to model the 
system’s non-linear behavior due to SI effects. Finally, the 
neural network was implemented as a SystemC-AMS TDF 
module, and was instantiated in the modeling platform. This 
process is detailed in the rest of this section. 

A. Acquisition of input/target signal pairs 
In the first stage, (time varying) inputs were given as stimuli 

to a component (e.g. a transmission line) or a system. These 
inputs were swept these inputs over their entire operating 
ranges [26]. (Time varying) outputs were then monitored and 
stored as targets. These values could be obtained by 
measurement or simulation.  

Input/target signal pairs can be set according to the 
investigated SI effects. For instance, the most critical SI 
problem in a two-line bus device could be the crosstalk between 
adjacent lines A and B. Such a phenomenon typically happens 
when, for example, a signal transition on line A disturbs the 
behavior of line B. Hence, input/target signals pairs in this case 
should focus more on signal transitions than on steady logic 
levels. However, the combination of several effects can also be 
investigated if required. 

B. Neural network training 
In the second stage, neural networks were trained to 

approximate the relations between inputs and targets. Learning 
rules of neural networks fall into three major categories 
(supervised learning, unsupervised learning and reinforcement 
learning), each of them corresponding to a particular abstract 
learning task [23], [27]. Supervised learning was used to train 
the networks. The training was performed with the neural 
network toolbox of MATLAB [28], which offers a variety of 
functions based on different architectures of neural networks. 

First, a network architecture that was suitable for the studied 
problem had to be chosen. Then, parameters of the chosen 
network were set, such as the number of layers of the network, 
the number of neurons in the hidden layer, the transfer function 
of each layer. 

Unfortunately, there are no predefined rules to help find the 
best configuration. Depending on the system to be modeled, 
these configuration parameters should be fixed empirically.  

 
Nevertheless, some guidelines are provided in the literature. 

For example, in [23], [25], authors indicate that a three-layer 
network (input layer, hidden layer and output layer) with a 
sigmoid transfer function (tansig) in the hidden layer (1), and a 
linear function (purelin) in the output layer (2), can be trained 
to efficiently approximate most functions. So this setup was 
used for our neural networks. 

 
(ݔ)݃݅ݏ݊ܽݐ = ଶ

ଵା ௘షమೣ − 1 (1) 
(ݔ)݈݊݅݁ݎݑ݌  =  (2) ݔ

 
Fig.4 shows an example of a three-layer network, featuring 

one input u, one output y, one neuron in the hidden layer, one 
neuron in the output layer, a recurrent branch between output 
and hidden layers, and delay functions added for the input and 
the recurrent branch. IWi,j or LWi,j represent the weight of the 
connection between neuron i and j, bi is the bias of neuron i. 

The number of neurons in the hidden layer can be chosen 
according to heuristics, which are typically used as a starting 
point for a search towards the optimum number. The heuristic N 
> 3 × Ni [29] was used, with N the number of neurons in the 
hidden layer and Ni the number of inputs. Furthermore, the 
number of training iterations (epoch), and, if needed, the 
number of delay for an input or a recurrent branch have to be 
set. Delay functions should be present if there is a significant 
delay between input/target pairs, or if there is a memory effect 
in the modeled system, such as a capacitance. Large values of N 
and epoch are needed when the system is complex. However, 
these large values may lead to over-fitting, so a trade-off may 
be necessary. All of these parameters were fixed by means of 
empirical testing or trial and error.  

The learning rule used in our method was scaled conjugate 
gradient back propagation (transcg) [30], a type of supervised 
learning that requires less memory. To train the neural network 
(Fig.5), a subset of the input/target signal pairs obtained during 
the previous step is used. First the network is fed with the 
training input data, and its outputs are compared with the 
training target data (which represent the desired behavior). 
Following this comparison, the network’s weights and biases 
are updated and the process is iterated epoch times. Then, 
another subset of the input/target signal is used to validate the 
quality of the training: the error between the validation target 
data and the network response to the validation input data 
should be under a predetermined satisfaction threshold. 
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Fig 5. Neural network training 

 
The training process can be time-consuming (from several 

minutes to several hours). However, it is not necessarily 
aberrant when one thinks of the time required to design a model 
in other languages. At the end of this stage, an equation is 
obtained, which gives an approximation of the relation between 
the inputs and outputs of the system. 

C. Model Integration 
In the third stage, the neural networks previously generated 

were implemented into a SystemC-AMS TDF model and were 
then associated with functional modules. TDF is derived from 
the well-known Synchronous Data Flow (SDF) model. Unlike 
the untimed SDF, TDF is a discrete-time modeling style. In a 
TDF module, a system is described by mathematical functions, 
(e.g. a transfer function). Therefore, neural networks equations 
can be easily implemented. SystemC-AMS offers two versions 
of TDF: conventional TDF [21], in which data are sampled with 
a fixed time step, and dynamic TDF [31], in which the time step 
can be dynamically changed. Compared to a conventional TDF 
module, a dynamic TDF module samples and computes less 
data, thus achieving a potential simulation speedup [32]. This 
feature will be illustrated in the next subsection.  

Finally, the SystemC-AMS non-functional model(s) could 
be connected to the functional module(s) (also written in 
SystemC/SystemC-AMS) to represent the SI characteristics of 
the system. 

D. Use case: simulation of an I²C platform 
A use case is now presented to demonstrate the validity of 

the methodology, the association of functional and 
non-functional modules, and also the contribution of dynamic 
TDF to the simulation performance. To do so, a two-node I²C 
application [33] was used, as shown in Fig.6. It was previously 
modeled in [18] with SystemC-AMS, but using the ELN MoC 
(i.e. RLC equivalent circuits). It provided a comparison basis 
for the TDF/neural-network-based approach. 

The application featured a master node (an 8051 
microcontroller with a bus controller), and a slave node (an I²C 
memory device). It was modeled with two functional modules 
(the microcontroller and the RAM device), and one 
non-functional module, which incorporated the SI 
characteristics of both nodes’ I/O interfaces and the I²C bus 
lines (Fig.7). This non-functional module was implemented in 
conventional TDF, and also in dynamic TDF. 

 

 
Fig.6. I²C use case. 
 

 
Fig 7. I²C modelling platform. 

 

The SystemC functional modules simulated the execution of 
the 8051 embedded code, which performed read and write 
requests to access the I²C memory slave device. The I²C bus 
controller translated these requests to I²C frames, which were 
then sent to the bus. For an ideal simulation, a SystemC model 
of the bus lines could be added to the platform, to implement 
the wired-and mechanism featured in the I²C protocol. This 
ideal model would help a designer validate the functionality of 
the application, but it would not be able to detect any SI effect. 

To build the non-functional module, the three-stage process 
presented above was followed. The first two stages were 
already introduced in [32]. Input/target pairs were obtained by 
simulation of an equivalent circuit with Ngspice (Fig.8). This 
circuit included three blocks: the node’s I/O device (featuring a 
switch and resistor to model the open-drain transistor required 
by the I²C protocol), an equivalent model of the bus lines (SDA 
and SCL) [34] and two load resistances. The inputs were the 
logic levels VIN-SDA and VIN-SCL. The targets were the output 
voltages VOUT-SDA and VOUT-SCL. Around 200000 input/target 
pairs were obtained, and then used to train the neural network 
during the second stage. Note that the input/target pairs can also 
be collected by measurements. 

In the second stage, a Non-linear Auto Regressive model 
with eXogenous (NARX) network was chosen [35]. This 
recurrent dynamic neural network takes into account the 
memory effect in the bus RLC equivalent circuit. Its structure is 
shown in Fig.4. To configure the network, the number of delay 
for the input (DI), the number of delay for the recurrent branch 
(DR), the number of neurons in the hidden layer (N) and the 
number of iterations (epoch) were set.  
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Fig.8. I²C bus simplified equivalent circuit. 
 
Table I shows the selected configuration, which achieved 
suitable performance. At the end of the training process, 
equations (3) and (4) were obtained to approximate the relation 
between the inputs and outputs of the system, with j the hidden 
layer neuron number, I the input layer, O the output layer, and d 
the delay. 
 

a୨ = tansig ቆ
∑ (u(t − d) × IW୍,୨) ୈ౅

ୢୀଵ

+ ∑ (y(t − d) × LW୓,୨) + b୨ୈ౎
ୢୀଵ

ቇ (3) 

 
ݕ = ∑൫݈݊݅݁ݎݑ݌ ( ௝ܽ ௝,ைܹܮ ×  )ே

௝ୀଵ ൯ + ܾை (4) 
 
In the last stage, the neural network equations were 

implemented in SystemC-AMS, using both conventional and 
dynamic TDF. The time step for conventional TDF was set to 
1_ns. For dynamic TDF, it was set to 3 ns when both SDA’s 
and SCL’s logic levels were stable and 1 ns when SDA and/or 
SCL were switching levels. The dynamic TDF configuration 
allowed a reduction of about 70 % of the amount of 
unnecessary computation, which sped up the simulation. 
Unnecessary computation typically occurred when the bus 
lines’ logic levels were stable and no SI effect was induced.  

Simulation results of this neural-network-based 
SystemC-AMS TDF modeling platform were compared with a 
reference model, the SystemC-AMS ELN platform introduced 
in [18]. Note that this platform was experimentally validated. 
Fig 9.a is a simulation of an all-functional model, which only 
shows the system ideal digital behavior. No SI effect can be 
detected. Fig.9.b and 9.c present the simulation of the SDA and 
SCL bus lines with the reference model and the SystemC-AMS 
TDF platforms. SI effects due to the line characteristics or 
crosstalk are clearly visible. We can also see that the TDF 
platforms accurately match the reference model’s behavior. 

Table II shows that the RAE (Relative Absolute Error) 
between the TDF models and the reference is inferior to 3.1 %. 
As for the simulation speed, the dynamic TDF model is 
noticeably faster than the reference. The overhead compared to 
an all-functional model platform is important, but the TDF 
non-functional modules provide a designer with more 
information to accurately analyze their application. Also, the 
simulation duration is still very reasonable (5-15 seconds). 

 
Fig.9. I²C platform simulation: (a) SCL and SDA lines, functional models only. 
(b) SCL line simulation with reference model, conventional and dynamic TDF. 
(c) SDA line simulation with reference model, conventional and dynamic TDF. 
 

IV. USB 3.0 APPLICATION 
The interest of the methodology now being showed on a 

simple case, a validation with a more complex application is 
proposed in this section. It also demonstrates that component 
models can be parameterized and combined in a modular way. 
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VIN-SCL

VOUT-SCLR

RP

C CSCL CSCL RL

RL

I/O
INTERFACES
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TABLE II 
SIMULATION PERFORMANCES FOR I²C PLATFORM 

 Line RAE1 (%) CPU Time2  

All-functional model N/A N/A 0.046 s 

Reference model [18] N/A N/A 16.386 s 

Conventional TDF model 
SCL 2,91 

13.190 s 
SDA 1,70 

Dynamic TDF model 
SCL 3,10 

5.246 s 
SDA 2,70 

1 Relative Absolute Error 
2 On Intel Core i5-660, 3.33 GHz, RAM 2 Gbits 
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Fig.10. Illustration of the USB 3.0 application. 
 

Fig.11. Influence of the 1st post-tap parameter. 
 

A. Platform presentation and reference model 
The method was applied to model the SI performances of an 

USB 3.0 transceiver application. In this section, the 
methodology is adapted to suit the requirements of a virtual 
prototyping library, that is models modularity, flexibility and 
simulation speed. To do so, platforms were built with one 
functional and one non-functional module per component (in 
the former I²C use case, the SI effects of the whole platform 
were modeled in a unique module). 

The application is presented in Fig.10. The system featured 
two Altera Stratix IV FPGA [36], a transmitter (TX) and a 
receiver (RX), which exchanged data via an USB 3.0 link. 
Communication was performed by a High Speed Serial 
Interface (HSSI) module, which can be implemented in the 
FPGA device.  

To improve communication, and reduce signal degradations 
due typically to reflection processes and unadapted 
transmission lines [37], HSSI modules can be parameterized, 
for instance to perform amplitude pre-emphasis in the emitter, 
or DFE equalization in the receiver. Fig.11 shows the influence 
of one of the pre-emphasis parameters (1st post-tap) on the 
emitted signal. Here, the input is weakly modified in amplitude 
to anticipate the signal modifications due to all SI effects.  

To find a suitable configuration for the HSSI modules, Altera 
provides encrypted HSPICE models of both TX and RX 
modules. These models were used, in association with a 
S-parameter model of an USB 3.0 SuperSpeed cable, as a 
reference model for this application. Although this reference 
model is available and ready-to-use, its major drawback is its 
simulation speed: it takes approximately 45 minutes to simulate 
the transmission of 200 bits, at a 1 Gbps rate. Since there are 
8192 possible configurations for the sole TX module, the use of 
these models is not convenient. It is also unrealistic to use them 
in a system-level simulation of a global system. 

 

 
Fig. 12.  Non-functional models of the USB 3.0 application. 
 

 
Fig.13. FTDNN network architecture. 

B. Non-functional modues design 
This application was modeled in a virtual prototyping library 

context, meaning that each component was designed as a 
separate block (in this case, a block features a functional model 
and a non-functional model). This introduces the modularity 
capabilities of our approach. 

Fig.12 presents the non-functional models of the USB 3.0 
application, based on the methodology. Since the focus of this 
paper is on the modeling of SI effects, the functional part of the 
platform (i.e. the tasks implemented in both FPGA) is not 
presented. The non-functional part of the model included three 
modules: TX, RX and cable. TX and RX took into account the 
influence of the FPGA package (PKG). Moreover, TX was 
parameterized by the LEVEL input, which set the transceiver’s 
pre-emphasis level (the 1st post tap parameter). The same 
feature could have also been implemented in the RX module to 
take into account the DFE equalization and its configuration. 

Each non-functional module was based on a specific neural 
network. The same architecture was used for all networks: 
Focused Time-Delay Neural Network (FTDNN) [38] (Fig.13). 
Indeed, FTDNN is less complex than NARX network. As a 
result, it requires less memory and time for training. However, 
it is possible to combine various architectures. 

The FTDNN networks also had three layers: input, hidden, 
and output, but did not include a recurrent branch. Parameters 
to be set were the number of delay for input (D1), the number of 
neurons in the hidden layer (N) and the number of iterations 
(epoch). Table III presents the chosen configuration for each 
module. At the end of the training process, equations (5) and (6) 
were obtained. 

 
௝ܽ = ∑൫݃݅ݏ݊ܽݐ ݐ)ݑ) − ݀) × (ூ,௝ܹܫ + ܾ௝஽಺

ௗୀଵ ൯ (5) 
ݕ = ∑൫݈݊݅݁ݎݑ݌ ( ௝ܽ ௝,ைேܹܮ × 

௝ୀଵ ൯ + ܾை (6) 
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TABLE III 
CONFIGURATION OF FTDNN NETWORK 

Component DI N epoch Training 
duration 

TX 100 10 2000 29 min 

Cable 200 10 4000 1 h 05 min 

RX 50 10 2000 25 min 
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Fig.14. Transient behavior of OUT signal (HSPICE and SystemC-AMS 
simulation comparison). 

 
Finally, these two equations were implemented in a 

dedicated SystemC-AMS TDF module for each component. 

C. Simulation results 
Simulation of the SystemC-AMS platform was compared to 

the HSPICE reference model. For this example, the input signal 
was a pseudo random bit sequence generated at the rate of 1 
Gbps. Simulations were performed with different 1st post-tap 
levels (0, 10 and 20) 

Fig.14 compares the SystemC-AMS simulation results with 
the reference model for a 1st post-tap level of 20. The 
association of the three non-functional modules achieved 
excellent accuracy. RAE between these modules and the 
reference model was around 3.6_% (cf. Table IV, case 1). 

The SystemC-AMS platform also achieved a significant 
speedup (×567). Indeed, during the time required by the 
methodology to simulate the 8192 transmitter configurations, 
one could simulate less than 15 configurations with the 
HSPICE models. This speedup allows an efficient system 
simulation, combining functional and non-functional models. 
Note that if a unique block to model the three components had 
been used, as in section 3.D, speedup and REA would be 
improved (see Table IV, case 2). However, the well appreciable 
modularity would be lost. 

With this approach, one could then imagine a virtual 
prototyping library, where each component would be 
represented by an ideal functional model, and a non-functional 
performance model, that could help validate the SI behavior of 
the system or detect potential problems. For instance, if one 
wanted to model a system that transmits data at a 10 Gbps rate 
(i.e. beyond the USB 3.0 requirements), an all-functional ideal 
simulation (cf. Fig.15.a) would not reveal any particular 
problem, whereas a non-functional simulation (Fig.15.b) would 
clearly show the incoherent signal behavior due to the 
inappropriate transmission rate. 

 
Fig.15. Simulation of a 10 Gbps rate data transmission. (a) All-functional 
simulation: no SI problem detected. (b) Functional and non-functional 
simulation. SI effects are detected. 
 

The output signal eye diagram was also built (cf. Fig.16). 
Table V shows the eye height and width comparison between 
the SystemC-AMS models and the HSPICE reference. The eye 
opening characteristics were similar. Some of the differences 
between both diagrams were a consequence of the neural 
network approximation technique: data computed by the neural 
network concentrated around a few values, whereas the 
HSPICE simulation results were much more dispersive [38]. 

Indeed, the training of a neural network aims at finding the 
best parameters of a mathematical approximation function, in 
order to minimize errors. Therefore, it can’t model all the 
situations but only some specific ones (the maximum, 
minimum, or interval boundaries) which are of interest to the 
designers.  

V. CONCLUSION 
In this paper, a novel methodology to model signal integrity 

at a high-level of abstraction for virtual prototyping of complex 
systems was introduced. Systems are modeled as a combination 
of functional modules, which give an ideal behavior of the 
application, and non-functional modules, which give the SI 
performances. These non-functional blocks are based on neural 
networks and are implemented in SystemC-AMS, using the 
TDF model of computation. The methodology achieves very 
good accuracy, while allowing significant simulation speedup, 
especially compared to SPICE-based models 
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TABLE IV 
SIMULATION PERFORMANCES FOR USB APPLICATION 

Model RAE (%) CPU Time Speedup 

HSPICE N/A 2808.35 s N/A 
SystemC-AMS 

(case 1) 3.6 4.96 s ×567 

SystemC-AMS 
(case 2) 1.5 1.47 s ×1910 
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Fig.16. OUT node eye diagram (a) HSPICE simulation (b) SystemC-AMS 
simulation. 

 

For future works, additional blocks could be added. In the 
case of the USB application, DFE equalization or 
post-processing blocks could be implemented into the 
modeling platform, to perform for instance frequency domain 
conversion or stat eye analysis. 

Virtual prototyping plays a major role in the design of 
electronic systems, since it allows fast simulation of the 
application behavior, with the help of a library of component 
models. Thanks to its modularity and parameterizability, the 
presented methodology could be used to enhance virtual 
prototyping tools, by adding early SI analysis capabilities. This 
would help designers in their tasks and improve their 
time-to-market. 
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