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STABILITY OF PERIODIC WAVES OF
1D CUBIC NONLINEAR SCHRÖDINGER EQUATIONS

STEPHEN GUSTAFSON, STEFAN LE COZ, AND TAI-PENG TSAI

Abstract. We study the stability of the cnoidal, dnoidal and snoidal elliptic
functions as spatially-periodic standing wave solutions of the 1D cubic nonlin-
ear Schrödinger equations. First, we give global variational characterizations
of each of these periodic waves, which in particular provide alternate proofs
of their orbital stability with respect to same-period perturbations, restricted
to certain subspaces. Second, we prove the spectral stability of the cnoidal
waves (in a certain parameter range) and snoidal waves against same-period
perturbations, thus providing an alternate proof of this (known) fact, which
does not rely on complete integrability. Third, we give a rigorous version of
a formal asymptotic calculation of Rowlands to establish the instability of a
class of real-valued periodic waves in 1D, which includes the cnoidal waves of
the 1D cubic focusing nonlinear Schrödinger equation, against perturbations
with period a large multiple of their fundamental period. Finally, we develop
a numerical method to compute the minimizers of the energy with fixed mass
and momentum constraints. Numerical experiments support and complete our
analytical results.
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1. Introduction

We consider the cubic nonlinear Schrödinger equation

iψt + ψxx + b|ψ|2ψ = 0, ψ(0, x) = ψ0(x) (1.1)

in one space dimension, where ψ : R × R → C and b ∈ R \ {0}. Equation (1.1)
has well-known applications in optics, quantum mechanics, and water waves, and
serves as a model for nonlinear dispersive wave phenomena more generally [11, 31].
It is said to be focusing if b > 0 and defocusing if b < 0. Note that (1.1) is invariant
under

• spatial translation: ψ(t, x) 7→ ψ(t, x+ a) for a ∈ R
• phase multiplication: ψ(t, x) 7→ eiαψ(t, x) for α ∈ R.

We are particularly interested in the spatially periodic setting

ψ(t, ·) ∈ H1
loc ∩ PT , PT = {f ∈ L2

loc(R) : f(x+ T ) = f(x) ∀x ∈ R}.

The Cauchy problem (1.1) is globally well-posed in H1
loc ∩ PT [7]. We refer to [6]

for a detailled analysis of nonlinear Schrödinger equations with periodic boundary
conditions. Solutions to (1.1) conserve massM, energy E , and momentum P:

M(ψ) =
1

2

∫ T

0

|ψ|2dx, P(ψ) =
1

2
Im
∫ T

0

ψψ̄xdx,

E(ψ) =
1

2

∫ T

0

|ψx|2dx−
b

4

∫ T

0

|ψ|4dx.

By virtue of its complete integrability, (1.1) enjoys infinitely many higher (in terms
of the number of derivatives involved) conservation laws [27], but we do not use
them here, in order to remain in the energy space H1

loc, and with the aim of avoiding
techniques which rely on integrability.

The simplest non-trivial solutions of (1.1) are the standing waves, which have
the form

ψ(t, x) = e−iatu(x), a ∈ R
and so the profile function u(x) must satisfy the ordinary differential equation

uxx + b|u|2u+ au = 0. (1.2)

We are interested here in those standing waves e−iatu(x) whose profiles u(x) are
spatially periodic – which we refer to as periodic waves. One can refer to the book [3]



STABILITY OF PERIODIC WAVES OF 1D CUBIC NLS 3

for an overview of the role and properties of periodic waves in nonlinear dispersive
PDEs.

Non-constant, real-valued, periodic solutions of (1.2) are well-known to be given
by the Jacobi elliptic functions: dnoidal (dn), cnoidal (cn) (for b > 0) and snoidal
(sn) (for b < 0) – see Section 2 for details. To make the link with Schrödinger
equations set on the whole real line, one can see a periodic wave as a special
case of infinite train solitons [25, 26]. Another context in which periodic waves
appear is when considering the nonlinear Schrödinger equation on a Dumbbell
graph [28]. Our interest here is in the stability of these periodic waves against
periodic perturbations whose period is a multiple of that of the periodic wave.

Some recent progress has been made on this stability question. By Grillakis-
Shatah-Strauss [18, 19] type methods, orbital stability against energy (H1

loc)-norm
perturbations of the same period is known for dnoidal waves [2], and for snoidal
waves [13] under the additional constraint that perturbations are anti-symmetric
with respect to the half-period. In [13], cnoidal waves are shown to be orbitally
stable with respect to half-anti-periodic perturbations, provided some condition is
satisfied. This condition is verified analytically for small amplitude cnoidal waves
and numerically for larger amplitude. Remark here that the results in [13] are
obtained in a broader setting, as they are also considering non-trivially complex-
valued periodic waves. Integrable systems methods introduced in [5] and developed
in [15] – in particular conservation of a higher-order functional – are used to obtain
the orbital stability of the snoidal waves against H2

loc perturbations of period any
multiple of that of sn.

Our goal in this paper is to further investigate the properties of periodic waves.
We follow three lines of exploration. First, we give global variational characteri-
zation of the waves in the class of periodic or half-anti-periodic functions. As a
corollary, we obtain orbital stability results for periodic waves. Second, we prove
the spectral stability of cnoidal, dnoidal and snoidal waves within the class of func-
tions whose period is the fundamental period of the wave. Third, we prove that
cnoidal waves are linearly unstable if perturbations are periodic for a sufficiently
large multiple of the fundamental period of the cnoidal wave.

Our first main results concern global variational characterizations of the ellip-
tic function periodic waves as constrained-mass energy minimizers among (certain
subspaces of) periodic functions, stated as a series of Propositions in Section 3.
In particular, the following characterization of the cnoidal functions seems new.
Roughly stated (see Proposition 3.4 for a precise statement):

Theorem 1.1. Let b > 0. The unique (up to spatial translation and phase multi-
plication) global minimizer of the energy, with fixed mass, among half-anti-periodic
functions is a (appropriately rescaled) cnoidal function.

Due to the periodic setting, existence of a minimizer for the problems that we
are considering is easily obtained. The difficulty lies within the identification of this
minimizer: is it a plane wave, a (rescaled) Jacobi elliptic function, or something else?
To answer this question, we first need to be able to decide whether the minimizer
can be considered real-valued after a phase change. This is far from obvious in
the half-anti-periodic setting of Theorem 1.1, where we use a Fourier coefficients
rearrangement argument (Lemma 3.5) to obtain this information. To identify the
minimizers, we use a combination of spectral and Sturm-Liouville arguments.
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As a corollary of our global variational characterizations, we obtain orbital sta-
bility results for the periodic waves. In particular, Theorem 1.1 implies the orbital
stability of all cnoidal waves in the space of half-anti-periodic functions. Such orbital
stability results for periodic waves were already obtained in [2, 13] as consequences
of local constrained minimization properties. Our global variational characteriza-
tions provide alternate proofs of these results – see Corollary 3.9 and Corollary 4.7.
The orbital stability of cnoidal waves was proved only for small amplitude in [13],
and so we extend this result to all amplitude. Remark however once more that we
are in this paper considering only real-valued periodic wave profiles, as opposed to
[13] in which truly complex valued periodic waves were investigated.

Our second main result proves the linear (more precisely, spectral) stability of the
snoidal and cnoidal (with some restriction on the parameter range in the latter case)
waves against same-period perturbations, but without the restriction of half-period
antisymmetry:

Theorem 1.2. Snoidal waves and cnoidal waves (for a range of parameters) with
fundamental period T are spectrally stable against T -periodic perturbations.

See Theorem 4.1 for a more precise statement. For sn, this is already a conse-
quence of [5, 15], whereas for cn the result was obtained in [21]. The works [5, 15]
and [21] both exploit the integrable structure, so our result could be considered an
alternate proof which does not uses integrability, but instead relies mainly on an in-
variant subspace decomposition and an elementary Krein-signature-type argument.
See also the recent work [16] for related arguments.

The proof of Theorem 1.2 goes as follows. The linearized operator around a
periodic wave can be written as JL, where J is a skew symmetric matrix and L
is the self-adjoint linearization of the action of the wave (see Section 4 for details).
The operator L is made of two Lamé operators and we are able to calculate the
bottom of the spectrum for these operators. To obtain Theorem 1.2, we decompose
the space of periodic functions into invariant subspaces: half-periodic and half-
anti-periodic, even and odd. Then we analyse the linearized spectrum in each of
these subspaces. In the subspace of half-anti-periodic functions, we obtain spec-
tral stability as a consequence of the analysis of the spectrum of L (alternately,
as a consequence of the variational characterizations of Section 3). For the sub-
space of half-periodic functions, a more involved argument is required. We give
in Lemma 4.12 an abstract argument relating coercivity of the linearized action L
with the number of eigenvalues with negative Krein signature of JL (this is in fact
a simplified version of a more general argument [20]). Since we are able to find an
eigenvalue with negative Krein signature for JL, spectral stability for half-periodic
functions follows from this abstract argument.

Our third main result makes rigorous a formal asymptotic calculation of Row-
lands [30] which establishes:

Theorem 1.3. Cnoidal waves are unstable against perturbations whose period is a
sufficiently large multiple of its own.

This is stated more precisely in Theorem 5.3, and is a consequence of a more
general perturbation result, Proposition 5.4, which implies this instability for any
real periodic wave for which a certain quantity has the right sign. In particular,
the argument does not rely on any integrability (beyond the ability to calculate the
quantity in question in terms of elliptic integrals).
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Perturbation argument were also used by [14], [15], but our strategy here is
different. Instead of relying on abstract theory to obtain the a priori existence of
branches of eigenvalues, we directly construct the branch in which we are interested.
This is done by first calculating the exact terms of the formal expansion for the
eigenvalue and eigenvector at the two first orders, and then obtaining the rigorous
existence for the rest of the expansion using a contraction mapping argument. Note
that the branch that we are constructing was described in terms of Evans function
in [21].

Finally, we complete our analytical results with some numerical observations.
Our motivation is to complete the variational characterizations of periodic waves,
which was only partial for snoidal waves. We observe:

Observation 1.4. Let b < 0. For a given period, the unique (up to phase shift
and translation) global minimizer of the energy with fixed mass and 0 momentum
among half-anti-periodic functions is a (appropriately rescaled) snoidal function.

We have developed a numerical method to obtain the profile φ as minimizer on
two constraints, fixed mass and fixed (zero) momentum. We use a heat flow algo-
rithm, where at each time step the solution is renormalized to satisfy the constraints.
Mass renormalization is simply obtained by scaling. Momentum renormalization is
much trickier. We define an auxiliary evolution problem for the momentum that we
solve explicitly, and plug back the solution we obtain to get the desired renormal-
ized solutions. We first have tested our algorithm in the cases where our theoretical
results hold and we have a good agreement between the theoretical results and the
numerical experiments. Then, we have performed experiments on snoidal waves
which led to Observation 1.4.

The rest of this paper is divided as follows. In Section 2, we present the spaces
of periodic functions and briefly recall the main definitions and properties of Jacobi
elliptic functions and integrals. In Section 3, we characterize the Jacobi elliptic
functions as global constraint minimizers and give the corresponding orbital sta-
bility results. Section 4 is devoted to the proof of spectral stability for cnoidal
and snoidal waves, whereas in Section 5 we prove the linear instability of cnoidal
waves. Finally, we present our numerical method in Section 6 and the numerical
experiments in Section 7.

Acknowledgments. We are grateful to Bernard Deconinck and Dmitri Pelinovsky
for useful remarks on a preliminary version of this paper.

2. Preliminaries

This section is devoted to reviewing the classification of real-valued periodic
waves in terms of Jacobi elliptic functions.

2.1. Spaces of Periodic Functions. Let T > 0 be a period. Denote by τT the
translation operator

(τT f)(x) = f(x+ T ),

acting on L2
loc(R), and its eigenspaces

PT (µ) = {f ∈ L2
loc(R) : τT f = µf}

for µ ∈ C with |µ| = 1. Taking µ = 1 yields the space of T -periodic functions

PT = PT (1) = {f ∈ L2
loc(R) : τT f = f},
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while for µ = −1 we get the T -anti-periodic functions

AT = PT (−1) = {f ∈ L2
loc(R) : τT f = −f}.

For 2 ≤ k ∈ N, letting µ run through the kth roots of unity: ωk = 1, and ωj 6= 1
for 1 ≤ j < k, we have

PkT =

k−1⊕
j=0

PT (ωj),

where the decomposition of f ∈ PkT is given by

f =

k−1∑
j=0

fj , fj =
1

k

k−1∑
m=0

ω−mjτmT f.

Only the case k = 2 is needed here:

P2T = PT ⊕AT , f =
1

2
(f + τT f) +

1

2
(f − τT f). (2.1)

Since the reflection R : f(x) 7→ f(−x) commutes with τT on P2T , we may further
decompose into odd and even components in the usual way

f = f+ + f−, f± =
1

2
(f ±Rf),

to obtain

PT = P+
T ⊕P

−
T , AT = A+

T ⊕A
−
T , P±T (A±T ) = {f ∈ PT (AT ) | f(−x) = ±f(x)},

and so
P2T = PT ⊕AT = P+

T ⊕ P
−
T ⊕A

+
T ⊕A

−
T . (2.2)

Each of these subspaces is invariant under (1.1), since

ψ ∈ P±T (A±T ) =⇒ |ψ|2 ∈ P+
T =⇒ ψxx + b|ψ|2ψ ∈ P±T (A±T ).

When dealing with functions in PT , we will denote norms such as Lq(0, T ) by

‖u‖Lq = ‖u‖Lq(0,T ) =

(∫ T

0

|u|q
) 1
q

,

and the complex L2 inner product by

(f, g) =

∫ T

0

fḡ dx. (2.3)

2.2. Jacobi Elliptic Functions. Here we recall the definitions and main proper-
ties of the Jacobi elliptic functions. The reader might refer to treatises on elliptic
functions (e.g. [24]) or to the classical handbooks [1, 17] for more details.

Given k ∈ (0, 1), the incomplete elliptic integral of the first kind in trigonometric
form is

x = F (φ, k) :=

∫ φ

0

dθ√
1− k2 sin2(θ)

,

and the Jacobi elliptic functions are defined through the inverse of F (·, k):

sn(x, k) := sin(φ), cn(x, k) := cos(φ), dn(x, k) :=

√
1− k2 sin2(φ).

The relations
1 = sn2 + cn2 = k2 sn2 + dn2 (2.4)
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follow. For extreme value k = 0 we recover trigonometric functions,

sn(x, 0) = sin(x), cn(x, 0) = cos(x), dn(x, 0) = 1,

while for extreme value k = 1 we recover hyperbolic functions:

sn(x, 1) = tanh(x), cn(x, 1) = dn(x, 1) = sech(x).

The periods of the elliptic functions can be expressed in terms of the complete
elliptic integral of the first kind

K(k) := F
(π

2
, k
)
, K(k)→

{
π
2 k → 0
∞ k → 1

.

The functions sn and cn are 4K-periodic while dn is 2K-periodic. More precisely,

dn ∈ P+
2K , sn ∈ A−2K ⊂ P4K , cn ∈ A+

2K ⊂ P4K .

The derivatives (with respect to x) of elliptic functions can themselves be ex-
pressed in terms of elliptic functions. For fixed k ∈ (0, 1), we have

∂x sn = cn ·dn, ∂x cn = − sn ·dn, ∂x dn = −k2 cn · sn, (2.5)

from which one can easily verify that sn, cn and dn are solutions of

uxx + au+ b|u|2u = 0, (2.6)

with coefficients a, b ∈ R for k ∈ (0, 1) given by

a = 1 + k2, b = −2k2, for u = sn, (2.7)

a = 1− 2k2, b = 2k2, for u = cn, (2.8)

a = −(2− k2), b = 2, for u = dn . (2.9)

2.3. Elliptic Integrals. For k ∈ (0, 1), the incomplete elliptic integral of the second
kind in trigonometric form is defined by

E(φ, k) :=

∫ φ

0

√
1− k2 sin2(θ)dθ.

The complete elliptic integral of the second kind is defined as

E(k) := E
(π

2
, k
)
.

We have the relations (using dθ = dn(z, k)dz and x = F (φ, k))

E(φ, k) =

∫ x

0

dn2(z, k)dz

= x− k2

∫ x

0

sn2(z, k)dz = (1− k2)x+ k2

∫ x

0

cn2(z, k)dz, (2.10)

relating the elliptic functions to the elliptic integral of the second kind, and

E(k) = K(k)− k2

∫ K

0

sn2(z, k)dz = (1− k2)K(k) + k2

∫ K

0

cn2(z, k)dz, (2.11)
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relating the elliptic integrals of first and second kind. We can differentiate E and
K with respect to k and express the derivatives in terms of E and K:

∂kE(k) =
E(k)−K(k)

k
< 0,

∂kK(k) =
E(k)− (1− k2)K(k)

k − k3
=
k2
∫K

0
cn2(x, k)dx

k − k3
> 0.

Note in particular K is increasing, E is decreasing. Moreover,

K(0) = E(0) =
π

2
, K(1−) =∞, E(1) = 1.

2.4. Classification of Real Periodic Waves. Here we make precise the fact that
the elliptic functions provide the only (non-constant) real-valued, periodic solutions
of (2.6). Note that there is a two-parameter family of complex-valued, bounded,
solutions for every a, b ∈ R, b 6= 0 [12, 14].

Lemma 2.1 (focusing case). Fix a period T > 0, a ∈ R, b > 0 and u ∈ PT a
non-constant real solution of (2.6). By invariance under translation, and negation
(u 7→ −u), we may suppose u(0) = maxu > 0.

(a) If 0 ≤ minu < u(0), then a < 0, |a| < bu(0)2 < 2|a|, and u(x) = 1
α dn( xβ , k),

(b) If minu < 0, then max(0,−2a) < bu(0)2, and u(x) = 1
α cn( xβ , k),

for some α > 0, β > 0, and 0 < k < 1, uniquely determined by T , a, b and maxu.
They satisfy the a-independent relations bβ2 = 2α2 for (a) and bβ2 = 2k2α2 for
(b).

Note that here T may be any multiple of the fundamental period of u. An a-
independent relation is useful since a will be the unknown Lagrange multiplier for
our constrained minimization problems in Section 3.

Proof. The first integral is constant: there exists C0 ∈ R such that

u2
x + au2 +

b

2
u4 = C0.

A periodic solution has to oscillate in the energy well W (u) = au2 + b
2u

4 with
energy level C0. If 0 ≤ minu, then a < 0 and C0 < 0. If minu < 0, then C0 > 0.
Let u(x) = 1

αv( xβ ) with α = (maxu)−1. Then v satisfies

max v = v(0) = 1, v′′ + aβ2v +
bβ2

α2
v3 = 0.

(a) If 0 ≤ minu, then a < 0 and C0 < 0. Let 0 < y1 < y2 be the roots of
ay + b

2y
2 = C0 < 0. Then u(0)2 = y2 ∈ (−a/b,−2a/b).

Let β = α
√

2/b. Then bβ2

α2 = 2 and aβ2 ∈ (−2,−1), and there is a unique
k ∈ (0, 1) so that aβ2 = −2 + k2. Thus

max v = v(0) = 1, v′(0) = 0, v′′ + (−2 + k2)v + 2v3 = 0.

By uniqueness of the ODE, v(x) = dn(x, k) is the only solution. Hence u(x) =
1
α dn( xβ , k).

(b) If minu < 0, then C0 > 0. Let y1 < 0 < y2 be the roots of ay+ b
2y

2 = C0 > 0.
Then u(0)2 = y2 > max(0,−2a/b) no matter a < 0 or a ≥ 0. We claim we can
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choose unique β > 0 and k ∈ (0, 1) so that

aβ2 = 1− 2k2,
bβ2

α2
= 2k2.

The sum gives (a+ b
α2 )β2 = 1, thus β = (a+ b

α2 )−1/2 noting (a+ b
α2 ) > 0, and

k2 =
β2b

2α2
=

b

2(b+ aα2)
∈ (0, 1)

no matter a < 0 or a ≥ 0. Thus

max v = v(0) = 1, v′(0) = 0, v′′ + (1− 2k2)v + 2k2v3 = 0.

By uniqueness of the ODE, v(x) = cn(x, k) is the only solution. Hence u(x) =
1
α cn( xβ , k). �

Lemma 2.2 (defocusing case). Fix a period T > 0, a ∈ R, b < 0 and u ∈ PT a
non-constant, real solution of (2.6). By invariance under translation and negation,
suppose u(0) = maxu > 0. Then 0 < |b|u(0)2 < a, and u(x) = 1

α sn(K(k) + x
β , k),

for some α > 0, β > 0, and 0 < k < 1, uniquely determined by T , a, b and maxu.
They satisfy the a-independent relation bβ2 = −2k2α2.

Proof. The first integral is constant: there exists C0 ∈ R such that

u2
x + au2 +

b

2
u4 = C0.

A periodic solution has to oscillate in the energy well W (u) = au2 + b
2u

4 with
energy level C0. Hence a > 0 and 0 < C0 < maxW = a2

−2b . Let u(x) = 1
αv( xβ ) with

α = (maxu)−1. Then v satisfies

max v = v(0) = 1, v′′ + aβ2v +
bβ2

α2
v3 = 0.

Let 0 < y1 < y2 be the roots of ay + b
2y

2 = C0. Then u(0)2 = y1 ∈ (0,−a/b).
Let β = ( 2α2

2α2a+b )
1/2 and k = ( −b

2α2a+b )
1/2, noting 2α2a+ b > 0. Then aβ2 =

1 + k2, bβ
2

α2 = −2k2, and v satisfies

max v = v(0) = 1, v′(0) = 0, v′′ + (1 + k2)v − 2k2v3 = 0.

By uniqueness of the ODE, v(x) = sn(K(k) + x, k) is the only solution. Hence
u(x) = 1

α sn(K(k) + x
β , k). �

3. Variational Characterizations and Orbital Stability

Our goal in this section is to characterize the Jacobi elliptic functions as global
constrained energy minimizers. As a corollary, we recover some known results on
orbital stability, which is closely related to local variational information.
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3.1. TheMinimization Problems. Recall the basic conserved functionals for (1.1)
on H1

loc ∩ PT :

M(u) =
1

2

∫ T

0

|u|2dx, P(u) =
1

2
Im
∫ T

0

uūxdx,

E(u) =
1

2

∫ T

0

|ux|2dx−
b

4

∫ T

0

|u|4dx.

In this section, we consider L2(0, T ;C) as a real Hilbert space with scalar product
Re
∫ T

0
fḡdx. This way, the functionals E , M and P are C1 functionals. This also

ensures that the Lagrange multipliers are real. Note that we see L2(0, T ;C) as a
real Hilbert space only in the current section and in all the other sections it will be
seen as a complex Hilbert space with the scalar product defined in (2.3).

Fix parameters T > 0, a, b ∈ R, b 6= 0. Since the Jacobi elliptic functions
(indeed any standing wave profiles) are solutions of (2.6), they are critical points
of the action functional Sa defined by

Sa(u) = E(u)− aM(u),

where the values of a and b are given in (2.7)-(2.9) and the fundamental periods
are T = 2K for dn, T = 4K for sn, cn. Given m > 0, the basic variational problem
is to minimize the energy with fixed mass:

min
{
E(u) | M(u) = m,u ∈ H1

loc ∩ PT
}
, (3.1)

whose Euler-Lagrange equation

u′′ + b|u|2u+ au = 0, (3.2)

with a ∈ R arising as Lagrange multiplier, is indeed of the form (2.6). Since the
momentum is also conserved for (1.1), it is natural to consider the problem with a
further momentum constraint:

min
{
E(u) | M(u) = m,P(u) = 0, u ∈ H1

loc ∩ PT
}
. (3.3)

Remark 3.1. Note that if a minimizer u of (3.1) is such that P (u) = 0, then it is
real-valued (up to multiplication by a complex number of modulus 1). Indeed, it
verifies (3.2) for some a ∈ R. It is well known (see e.g. [13]) that the momentum
density Im(uxū) is therefore constant in x, and so it is identically 0 if P (u) = 0.
For u(x) 6= 0 we can write u as u = ρeiθ, and express the momentum density as
Im(uxū) = θxρ

2. Thus Im(uxū) = 0 implies θx = 0 and thus θ(x) is constant as
long as u(x) 6= 0. If u(x0) = 0 and eθ(x0−) 6= eθ(x0+), we must have ux(x0) = 0,
and hence u ≡ 0 by uniqueness of the ODE.

Since (1.1) preserves the subspaces in the decomposition (2.1), it is also natural
to consider variational problems restricted to anti-symmetric functions,

min
{
E(u) | M(u) = m,u ∈ H1

loc ∩AT/2
}
, (3.4)

min
{
E(u) | M(u) = m,P(u) = 0, u ∈ H1

loc ∩AT/2
}
, (3.5)

and in light of the decomposition (2.2), further restrictions to even or odd functions
may also be considered.

In general, the difficulty does not lie in proving the existence of a minimizer,
but rather in identifying this minimizer with an elliptic function, since we are min-
imizing among complex valued functions, and moreover restrictions to symmetry
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subspaces prevent us from using classical variational methods like symmetric rear-
rangements.

We will first consider the minimization problems (3.1) and (3.3) for periodic
functions in PT . Then we will consider the minimization problems (3.4) and (3.5)
for half-anti-periodic functions in AT/2. In both parts, we will treat separately the
focusing (b > 0) and defocusing (b < 0) nonlinearities. For each case, we will show
the existence of a unique (up to phase shift and translation) minimizer, and we will
identify it with either a plane wave or a Jacobi elliptic function.

3.2. Minimization Among Periodic Functions.

3.2.1. The Focusing Case in PT .

Proposition 3.2. Assume b > 0. The minimization problems (3.1) and (3.3)
satisfy the following properties.

(i) For all m > 0, (3.1) and (3.3) share the same minimizers. The minimal
energy is finite and negative.

(ii) For all 0 < m 6 π2

bT there exists a unique (up to phase shift) minimizer

of (3.1). It is the constant function umin ≡
√

2m
T .

(iii) For all π2

bT < m < ∞ there exists a unique (up to translations and phase

shift) minimizer of (3.1). It is the rescaled function dnα,β,k = 1
α dn

(
·
β , k

)
where the parameters α, β and k are uniquely determined. Its fundamental
period is T . The map from m ∈ ( π

2

bT ,∞) to k ∈ (0, 1) is one-to-one, onto
and increasing.

(iv) In particular, given k ∈ (0, 1), dn = dn(·, k), if b = 2, T = 2K(k), and
m = M(dn) = E(k), then the unique (up to translations and phase shift)
minimizer of (3.1) is dn.

Proof. Without loss of generality, we can restrict the minimization to real-valued
non-negative functions. Indeed, if u ∈ H1

loc ∩PT , then |u| ∈ H1
loc ∩PT and we have

‖∂x|u|‖L2 6 ‖∂xu‖L2 .

This readily implies that (3.1) and (3.3) share the same minimizers. Let us prove
that

−∞ < min
{
E(u) | M(u) = m,u ∈ H1

loc ∩ PT
}
< 0. (3.6)

The last inequality in (3.6) is obtained using the constant function ϕm,0 ≡
√

2m
T

as a test function:
E(ϕm,0) < 0, M(ϕm,0) = m.

To prove the first inequality in (3.6), we observe that by Gagliardo-Nirenberg in-
equality we have

‖u‖4L4 . ‖u‖3L2‖ux‖L2 + ‖u‖4L2 .

Consequently, for u ∈ H1
loc ∩ PT such thatM(u) = m, we have

E(u) & ‖ux‖L2

(
‖ux‖L2 −m3/2

)
−m2,

and E has to be bounded from below. The above shows (i).
Consider now a minimizing sequence (un) ⊂ H1

loc ∩ PT for (3.1). It is bounded
in H1

loc ∩ PT and therefore, up to a subsequence, it converges weakly in H1
loc ∩ PT

and strongly in L2
loc ∩ PT and L4

loc ∩ PT towards u∞ ∈ H1
loc ∩ PT . Therefore
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E(u∞) 6 E(un) andM(u∞) = m. This implies that ‖∂xu∞‖L2 = limn→∞‖∂xun‖L2

and therefore the convergence from un to u∞ is also strong in H1
loc ∩PT . Since u∞

is a minimizer of (3.1), there exists a Lagrange multiplier a ∈ R such that

−E ′(u∞) + aM′(u∞) = 0,

that is
∂xxu∞ + bu3

∞ + au∞ = 0.

Multiplying by u∞ and integrating, we find that

a =
‖∂xu∞‖2L2 − b‖u∞‖4L4

‖u∞‖2L2

.

Note that

‖∂xu∞‖2L2 − b‖u∞‖4L4 = 2E(u∞)− b

2
‖u∞‖4L4 < 0,

therefore
a < 0.

We already have u∞ ∈ R, and we may assume maxu = u(0) by translation. By
Lemma 2.1 (a), either u∞ is constant or there exist α, β ∈ (0,∞) and k ∈ (0, 1)

such that β = α
√

2/b and

u∞(x) = dnα,β,k(x) =
1

α
dn

(
x

β
, k

)
.

We now show that the minimizer u∞ is of the form dnα,β,k if m > π2

bT . Indeed,

assuming by contradiction that u∞ is a constant, we necessarily have u∞ ≡
√

2m
T .

The Lagrange multiplier can also be computed and we find a = −bu2
∞ = − 2bm

T .
Since u∞ is supposed to be a constrained minimizer for (3.1), the operator

−∂xx − a− 3bu2
∞ = −∂xx −

4bm

T

must have Morse index at most 1, i.e. at most 1 negative eigenvalue. The eigenval-
ues are given for n ∈ Z by the formula(

2πn

T

)2

− 4bm

T
.

Obviously n = 0 gives a negative eigenvalue. For n = 1, the eigenvalue is non-
negative if and only if

m 6
π2

bT
,

which gives the contradiction. Hence when m > π2

bT the minimizer u∞ must be of
the form dnα,β,k.

There is a positive integer n so that the fundamental period of u∞ = dnα,β,k
is 2K(k)β = Tn−1. As already mentioned, since u∞ is a minimizer for (3.1), the
operator

−∂xx − a− 3bu2
∞

can have at most one negative eigenvalue. The function ∂xu∞ is in its kernel and
has 2n zeros. By Sturm-Liouville theory (see e.g. [10, 29]) we have at least 2n− 1
eigenvalues below 0. Hence n = 1 and 2K(k)β = T .
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Using 2α2 = bβ2 (see Lemma 2.1), the mass verifies,

m =
1

2

∫ T

0

|dnα,β,k(x)|2dx =
β

α2

1

2

∫ 2K(k)

0

|dn(y, k)|2dy =
2

bβ
E(k)

where E(k) is given in Section 2.3. Using 2K(k)β = T ,

m =
4

bT
E(k)K(k). (3.7)

Note
∂

∂k
EK(k) =

E(k)2 − (1− k2)K(k)2

(1− k2)k
> 0,

where the positivity of the numerator is because it vanishes at k = 0 and
∂

∂k
(E2 − (1− k2)K2) =

2

k
(E −K)2, (0 < k < 1).

Thus EK(k) varies from π2

4 to ∞ when k varies from 0 to 1. Thus (3.7) defines
m as a strictly increasing function of k ∈ (0, 1) with range ( π

2

bT ,∞) and hence has
an inverse function. For fixed b,m, T , the value k ∈ (0, 1) is uniquely determined
by (3.7). We also have β = T

2K(k) and α = β
√
b/2. The above shows (iii).

The above calculation also shows that m > π2

bT if u∞ = dnα,β,k. Thus u∞ must
be a constant when 0 < m ≤ π2

bT . This shows (ii).
In the case we are given k ∈ (0, 1), T = 2K(k), b = 2 and m =M(dn) = E(k),

we want to show that u∞(x) = dn(x, k). In this casem > π2

bT since EK > π2

4 . Thus,
by Lemma 2.1 (a), u∞ = dnα,β,s for some α, β > 0 and s ∈ (0, 1), up to translation
and phase. By the same Sturm-Liouville theory argument, the fundamental period
of u∞ is T = 2K(s)β. The same calculation leading to (3.7) shows

m =
4

bT
E(s)K(s).

Thus E(k)K(k) = E(s)K(s). Using the monotonicity of EK(k) in k, we have
k = s. Thus α = β = 1 and u∞(x) = dn(x, k). This gives (iv) and finishes the
proof. �

3.2.2. The Defocusing Case in PT .

Proposition 3.3. Assume b < 0. For all 0 < m < ∞, the constrained minimiza-
tion problems (3.1) and (3.3) have the same unique (up to phase shift) minimizers,

which is the constant function umin ≡
√

2m
T .

Proof. This is a simple consequence of the fact that functions with constant modulus
are the optimizers of the injection L4(0, T ) ↪→ L2(0, T ). More precisely, for every
f ∈ L4(0, T ) we have by Hölder’s inequality,

‖f‖L2 6 T 1/4‖f‖L4 ,

with equality if and only if |f | is constant. Let ϕm,0 be the constant function

ϕm,0 ≡
√

2m
T . For any v ∈ H1

loc∩PT such thatM(v) = m and v 6≡ eiθϕm,0 (θ ∈ R)
we have

0 = ‖∂xϕm,0‖2L2 < ‖∂xv‖2L2 ,

‖ϕm,0‖4L4 = 4T−1M2(ϕm,0) = 4T−1M2(v) 6 ‖v‖4L4 .
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As a consequence, E(ϕm,0) < E(v) and this proves the proposition. �

3.3. Minimization Among Half-Anti-Periodic Functions.

3.3.1. The Focusing Case in AT/2.

Proposition 3.4. Assume b > 0. For all m > 0, the minimization problems (3.4)
and (3.5) in AT/2 satisfy the following properties.

(i) The minimizers for (3.4) and (3.5) are the same.
(ii) There exists a unique (up to translations and phase shift) minimizer of (3.4).

It is the rescaled function cnα,β,k = 1
α cn

(
·
β , k

)
where the parameters α,

β and k are uniquely determined. Its fundamental period is T . The map
from m ∈ (0,∞) to k ∈ (0, 1) is one-to-one, onto and increasing.

(iii) In particular, given k ∈ (0, 1), cn = cn(·, k), if b = 2k2, T = 4K(k), and
m = M(cn) = 2(E − (1 − k2)K)/k2, then the unique (up to translations
and phase shift) minimizer of (3.4) is cn.

Before proving Proposition 3.4, we make the following crucial observation.

Lemma 3.5. Let v ∈ H1
loc ∩AT/2. Then there exists ṽ ∈ H1

loc ∩AT/2 such that

ṽ(x) ∈ R, ‖ṽ‖L2 = ‖v‖L2 , ‖∂xṽ‖L2 = ‖∂xv‖L2 , ‖ṽ‖L4 > ‖v‖L4 .

Proof of Lemma 3.5. The proof relies on a combinatorial argument. Since v ∈
H1

loc∩AT/2, its Fourier series expansion contains only terms indexed by odd integers:

v(x) =
∑
j∈Z
j odd

vje
ij 2π
T x.

We define ṽ by its Fourier series expansion

ṽ(x) =
∑
j∈Z
j odd

ṽje
ij 2π
T x, ṽj :=

√
|vj |2 + |v−j |2

2
.

It is clear that ṽ(x) ∈ R for all x ∈ R, and by Plancherel formula,

‖ṽ‖L2 = ‖v‖L2 , ‖∂xṽ‖L2 = ‖∂xv‖L2 ,

so all we have to prove is that ‖ṽ‖L4 > ‖v‖L4 . We have

|v(x)|2 =
∑
j∈Z
j odd

|vj |2 +
∑
n∈2N
n>2

wne
in 2π

T x + w̄ne
−in 2π

T x,

where we have defined

wn =
∑

j>k,j+k=n
j,k odd

vj v̄−k + vkv̄−j .

Using the fact that for n ∈ N, n 6= 0, the term ein
2π
T x integrates to 0 due to

periodicity, ∫ T

0

ein
2π
T xdx = 0,
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we compute
1

T

∫ T

0

|v|4dx =

( ∑
j∈Z
j odd

|vj |2
)2

+ 2
∑
n∈2N
n>2

|wn|2.

The first part is just ( ∑
j∈Z
j odd

|vj |2
)2

=
1

T 2
‖v‖4L2 =

1

T 2
‖ṽ‖4L2 .

For the second part, we observe that

wn =
∑

j>k,j+k=n
j,k odd

(
vj
v̄−j

)
·
(
v−k
v̄k

)
, (3.8)

where the · denotes the complex vector scalar product. Therefore,

|wn| 6
∑

j>k,j+k=n
j,k odd

∣∣∣∣( vj
v̄−j

)∣∣∣∣ ∣∣∣∣(v−kv̄k
)∣∣∣∣ =

∑
j>k,j+k=n
j,k odd

√
2ṽ2
j

√
2ṽ2
k

= 2
∑

j>k,j+k=n
j,k odd

ṽj ṽk = w̃n,

where by w̃n we denote the quantity defined similarly as in (3.8) for (ṽj). As a
consequence,

‖v‖L4 6 ‖ṽ‖L4

and this finishes the proof of Lemma 3.5. �

Proof of Proposition 3.4. All functions are considered in AT/2. Consider a mini-
mizing sequence (un) for (3.5). By Lemma 3.5, the minimizing sequence can be
chosen such that un(x) ∈ R for all x ∈ R and this readily implies the equivalence
between (3.5) and (3.4), which is (i).

Using the same arguments as in the proof of Proposition 3.2, we infer that the
minimizing sequence converges strongly inH1

loc∩AT/2 to u∞ ∈ H1
loc∩AT/2 verifying

for some a ∈ R the Euler-Lagrange equation

∂xxu∞ + bu3
∞ + au∞ = 0.

Then, since u∞ is real and in AT/2, we may assume maxu = u(0) > 0 and, by
Lemma 2.1 (b), there exists a set of parameters α, β ∈ (0,∞), k ∈ (0, 1) such that

u∞(x) =
1

α
cn

(
x

β
, k

)
,

and the parameters α, β, k are determined by T , a, b and maxu, with 2k2α2 = bβ2.
There exists an odd, positive integer n so that the fundamental period of u∞ is

4K(k)β = T/n. Since u∞ is a minimizer for (3.4), the operator

−∂xx − a− 3bu2
∞

can have at most one negative eigenvalue in L2
loc ∩ AT/2. The function ∂xu∞ is in

its kernel and has 2n zeros in [0, T ). By Sturm-Liouville theory, there are at least
n − 1 eigenvalues (with eigenfunctions in AT/2) below 0. Hence, since n is odd,
n = 1 and 4K(k)β = T .
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The mass verifies, using 2k2α2 = bβ2 and (2.11),

m =
1

2

∫ T

0

| cnα,β,k(x)|2dx =
β

α2

1

2

∫ 4K(k)

0

| cn(y, k)|2dy =
4

βb
(E(k)−(1−k2)K(k)).

Using 4K(k)β = T ,

m = M(k) :=
16

bT
K(k)(E(k)− (1− k2)K(k)). (3.9)

Note all factors of M(k) are positive, ∂
∂kK(k) > 0 and

∂

∂k
(E − (1− k2)K) =

E −K
k

− E − (1− k2)K

k
+ 2kK = kK > 0.

Thus (3.9) defines m as a strictly increasing function of k ∈ (0, 1) with range (0,∞)
and hence has an inverse function. For fixed T, b,m, the value k ∈ (0, 1) is uniquely
determined by (3.9). We also have β = T

4K(k) and α2 = bβ2

2k2 . The above shows (ii).
In the case we are given k ∈ (0, 1), T = 4K(k), b = 2k2 and m =M(cn(·, k)), we

want to show that u∞(x) = cn(x, k). In this case, by Lemma 2.1 (b), u∞ = cnα,β,s
for some α, β > 0 and s ∈ (0, 1), up to translation and phase. By the same Sturm-
Liouville theory argument, the fundamental period of u∞ is T = 4K(s)β. The
same calculation leading to (3.9) shows

m = M(s).

Thus M(s) = M(k). By the monotonicity of M(k) in k, we have k = s. Thus
α = β = 1 and u∞(x) = cn(x, k). This shows (iii) and concludes the proof. �

3.3.2. The Defocusing Case in AT/2.

Proposition 3.6. Assume b < 0. There exists a unique (up to phase shift and

complex conjugate) minimizer for (3.4). It is the plane wave umin ≡
√

2m
T e

2iπx
T .

Proof. Denote the supposed minimizer by w(x) =
√

2m
T e±

2iπx
T . Let v ∈ H1

loc∩A2K

such thatM(v) = m and v 6≡ eiθw (θ ∈ R). As in the proof of Proposition 3.3, we
have

‖w‖4L4 = 4T−1M2(w) = 4T−1M2(v) 6 ‖v‖4L4 .

Since v ∈ A2K , v must have 0 mean value. Recall that in that case v verifies the
Poincaré-Wirtinger inequality

‖v‖L2 6
T

2π
‖v′‖L2 ,

and that the optimizers of the Poincaré-Wirtinger inequality are of the form Ce±
2iπ
T x,

C ∈ C. This implies that

‖∂xw‖2L2 =
8π2

T 2
M(w) =

8π2

T 2
M(v) < ‖∂xv‖2L2 .

As a consequence, E(w) < E(v) and this proves the lemma. �

As far as (3.5) is concerned, we make the following conjecture
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Conjecture 3.7. Assume b < 0. The unique (up to translations and phase shift)
minimizer of (3.5) is the rescaled function snα,β,k = 1

α sn
(
·
β , k

)
where the param-

eters α, β and k are uniquely determined.
In particular, given k ∈ (0, 1), sn = sn(·, k), if b = −2k2, T = 4K(k), and

m =M(sn), then the unique (up translations and to phase shift) minimizer of (3.5)
is sn.

This conjecture is supported by numerical evidence, see Observation 7.1. The
main difficulty in proving the conjecture is to show that the minimizer is real up to
a phase.

3.3.3. The Defocusing Case in A−T/2. In light of our uncertainty about whether sn

solves (3.5), let us settle for the simple observation that it is the energy minimizer
among odd, half-anti-periodic functions:

Proposition 3.8. Assume b < 0. The unique (up to phase shift) minimizer of the
problem

min
{
E(u) | M(u) = m,u ∈ H1

loc ∩A−T/2
}
, (3.10)

is the rescaled function snα,β,k = 1
α sn

(
·
β , k

)
where the parameters α, β and k are

uniquely determined. Its fundamental period is T . The map from m ∈ (0,∞) to
k ∈ (0, 1) is one-to-one, onto and increasing.

In particular, given k ∈ (0, 1), sn = sn(·, k), if b = −2k2, T = 4K(k), and
m =M(sn), then the unique (up to phase shift) minimizer of (3.10) is sn.

Proof. If u ∈ A−T/2, then 0 = u(0) = u(T/2), and since u is completely determined
by its values on [0, T/2], we may replace (3.10) by

min

{∫ T/2

0

(
|ux|2 −

b

2
|u|4
)
dx
∣∣ ∫ T/2

0

|u(x)|2dx = m, u ∈ H1
0 ([0, T ])

}
,

for which the map u 7→ |u| is admissible, showing that minimizers are non-negative
(up to phase), and in particular real-valued, hence a (rescaled) sn function by
Lemma 2.2. The remaining statements follow as in the proof of Proposition 3.4. In
particular, the mass verifies, using 2k2α2 = |b|β2, (2.11), and 4K(k)β = T ,

m =
1

2

∫ T

0

| snα,β,k(x)|2dx =
β

α2

1

2

∫ 4K(k)

0

| sn(y, k)|2dy

=
4

β|b|
(K(k)− E(k)) =

16

|b|T
K(k)(K(k)− E(k)),

which is a strictly increasing function of k ∈ (0, 1) with range (0,∞) and hence has
an inverse function. �

3.4. Orbital Stability. Recall that we say that a standing wave ψ(t, x) = e−iatu(x)
is orbitally stable for the flow of (1.1) in the function space X if for all ε > 0 there
exists δ > 0 such that the following holds: if ψ0 ∈ X verifies

‖ψ0 − u‖X 6 δ
then the solution ψ of (1.1) with initial data ψ(0, x) = ψ0 verifies for all t ∈ R the
estimate

inf
θ∈R,y∈R

‖ψ(t, ·)− eiθu(· − y)‖X < ε.
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As an immediate corollary of the variational characterizations above, we have the
following orbital stability statements:

Corollary 3.9. The standing wave ψ(t, x) = e−iatu(x) is a solution of (1.1), and
is orbitally stable in X in the following cases. For Jacobi elliptic functions: for any
k ∈ (0, 1),

a = 1 + k2, b = −2k2, u = sn(·, k), X = H1
loc ∩A−2K ;

a = 1− 2k2, b = 2k2, u = cn(·, k), X = H1
loc ∩A2K ;

a = −(2− k2), b = 2, u = dn(·, k), X = H1
loc ∩ P2K .

For constants and plane waves: (b 6= 0)

a = −2bm

T
, −∞ < b 6

π2

Tm
, u =

√
2m

T
, X = H1

loc ∩ PT ;

a =
4π2

T 2
− 2bm

T
, b < 0, u = e±

2iπx
T

√
2m

T
, X = H1

loc ∩AT/2.

The proof of this corollary uses the variational characterizations from Propo-
sitions 3.2, 3.3, 3.4, 3.6, and 3.8. Note that for all the minimization problems
considered we have the compactness of minimizing sequences. The proof follows
the standard line introduced by Cazenave and Lions [8], we omit the details here.

Remark 3.10. The orbital stability of sn [13] in H1
loc ∩ AT/2 was proved using

the Grillakis-Shatah-Strauss [18, 19] approach, which amounts to identifying the
periodic wave as a local constrained minimizer in this subspace. So the above
may be considered an alternate proof, using global variational information. In the
case of sn, without Conjecture 3.7, some additional spectral information in the
subspace A+

T/2 is needed to obtain orbital stability in H1
loc ∩AT/2 (rather than just

H1
loc ∩A

−
T/2) – see Corollary 4.7 in the next section for this.

Orbital stability of cn was obtained in [13] only for small amplitude cn. We
extend this result to all possible values of k ∈ (0, 1).

Remark 3.11. Using the complete integrability of (1.1), Bottman, Deconinck and
Nivala [5], and Gallay and Pelinovsky [15] showed that sn is in fact a minimizer of a
higher-order functional in H2

loc ∩PnT for any n ∈ N, and thus showed it is orbitally
stable in these spaces.

4. Spectral Stability

Given a standing wave ψ(t, x) = e−iatu(x) solution of (1.1), we consider the
linearization of (1.1) around this solution: if ψ(t, x) = e−iat(u(x) + h), then h
verifies

i∂th− Lh+N(h) = 0,

where L denotes the linear part and N the nonlinear part. Assuming u is real-
valued, we separate h into real and imaginary parts to get the equation

∂t

(
Re(h)

Im(h)

)
= JL

(
Re(h)

Im(h)

)
+

(
−Im(N(h))

Re(N(h))

)
,

where

L =

(
L+ 0
0 L−

)
, J =

(
0 1
−1 0

)
,

L+ = −∂xx − a− 3b u2,

L− = −∂xx − a− b u2.
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We call

JL =

(
0 L−
−L+ 0

)
(4.1)

the linearized operator of (1.1) about the standing wave e−iatu(x).
Now suppose u ∈ H1

loc ∩ PT is a (period T ) periodic wave, and consider its
linearized operator JL as an operator on the Hilbert space (PT )2, with domain
(H2

loc ∩ PT )2. The main structural properties of JL are:
• since L± are self-adjoint operators on PT , L is self-adjoint on (PT )2, while
J is skew-adjoint and unitary

L∗ = L, J∗ = −J = J−1, (4.2)

• JL commutes with complex conjugation,

JL f = JLf̄ , (4.3)

• JL is antisymmetric under conjugation by the matrix

C =

(
1 0
0 −1

)
(which corresponds to the operation of complex conjugation before com-
plexification),

JLC = −CJL. (4.4)
At the linear level, the stability of the periodic wave is determined by the location

of the spectrum σ(JL), which in this periodic setting consists of isolated eigenvalues
of finite multiplicity [29]. We first make the standard observation that as a result
of (4.3) and (4.4), the spectrum of JL is invariant under reflection about the real
and imaginary axes:

λ ∈ σ(JL) =⇒ ±λ, ±λ̄ ∈ σ(JL).

Indeed, if JLf = λf , then

(4.3) =⇒ JLf̄ = λ̄f̄ , (4.4) =⇒ JLCf = −λCf,
(4.3) and (4.4) =⇒ JLCf̄ = −λ̄Cf̄ .

We are interested in whether the entire spectrum of JL lies on the imaginary
axis, denoted σ(JL|PT ) ⊂ iR, in which case we say the periodic wave u is spectrally
stable in PT . Moreover, if S ⊂ PT is an invariant subspace – more precisely,
JL : (H2

loc ∩ S)2 → (S)2 – then we will say that the periodic wave u is spectrally
stable in S if the entire (S)2 spectrum of JL lies on the imaginary axis, denoted
σ(JL|S) ⊂ iR. In particular, for k ∈ (0, 1) and K = K(k), since sn2, cn2, dn2

∈ P+
2K , the corresponding linearized operators respect the decomposition (2.2), and

we may consider σ(JL|S) for S = P±2K , A
±
2K ⊂ P4K , with

σ (JL|P4K
) = σ (JL|P2K

) ∪ σ (JL|A2K
)

= σ
(
JL|P+

2K

)
∪ σ

(
JL|P−2K

)
∪ σ

(
JL|A+

2K

)
∪ σ

(
JL|A−2K

)
.

(4.5)

Of course, spectral stability (which is purely linear) is a weaker notion than
orbital stability (which is nonlinear). Indeed, the latter implies the former – see
Proposition 4.10 and the remarks preceding it.

The main result of this section is the following.

Theorem 4.1. Spectral stability in PT , T = 4K(k), holds for:
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• u = sn, k ∈ (0, 1),
• u = cn and k ∈ (0, kc), where kc is the unique k ∈ (0, 1) so that K(k) =

2E(k), kc ≈ 0.908.

Remark 4.2. The function f(k) = K(k)− 2E(k) is strictly increasing in k ∈ (0, 1),
(since K(k) is increasing while E(k) is decreasing in k), with f(0) = −π2 and
f(1) =∞.

Remark 4.3. Using Evans function techniques, it was proved in [21] that σ(JLcn) ⊂
iR also for k ∈ [kc, 1). This fact is also supported by numerical evidence (see
Section 7).

Remark 4.4. In the case of sn, the H2
loc ∩ PnT orbital stability obtained in [5, 15]

(using integrability) immediately implies spectral stability in PnT , and in particular
in PT . So our result for sn could be considered an alternate, elementary proof, not
relying on the integrability.

Remark 4.5. The spectral stability of dn in P2K (its own fundamental period) is an
immediate consequence of its orbital stability in H1

loc ∩ P2K , see Proposition 4.10.

4.1. Spectra of L+ and L−. We assume now that we are given k ∈ (0, 1) and we
describe the spectrum of L+ and L− in P4K when φ is cn, dn or sn. When φ = sn,
we denote L+ by Lsn

+ , and we use similar notations for L− and cn,dn. Due to the
algebraic relationships between cn, dn and sn, we have

Lsn
+ = −∂xx − (1 + k2) + 6k2 sn2,

Lcn
+ = −∂xx − (1− 2k2)− 6k2 cn2 = Lsn

+ − 3k2,

Ldn
+ = −∂xx + (2− k2)− 6 dn2 = Lsn

+ − 3.

Similarly for L−, we obtain

Lsn
− = −∂xx − (1 + k2) + 2k2 sn2,

Lcn
− = −∂xx − (1− 2k2)− 2k2 cn2 = Lsn

− + k2,

Ldn
− = −∂xx + (2− k2)− 2 dn2 = Lsn

− + 1.

As a consequence, Lsn
± , Lcn

± , and Ldn
± share the same eigenvectors. Moreover, these

operators enter in the framework of Schrödinger operators with periodic potentials
and much can be said about their spectrum (see e.g. [10, 29]). Recall in particular
that given a Schrödinger operator L = −∂xx+V with periodic potential V of period
T , the eigenvalues λn of L on PT satisfy

λ0 < λ1 6 λ2 < λ3 6 λ4 < · · · ,

with corresponding eigenfunctions ψn such that ψ0 has no zeros, ψ2m+1 and ψ2m+2

have exactly 2m + 2 zeros in [0, T ) ([10, p. 39]). From the equations satisfied by
cn, dn, sn, we directly infer that

Lsn
− dn = − dn, Lsn

− cn = −k2 cn, Lsn
− sn = 0.

Taking the derivative with respect to x of the equations satisfied by cn, dn, sn, we
obtain

Lsn
+ ∂x sn = 0, Lsn

+ ∂x cn = 3k2∂x cn, Lsn
+ ∂x dn = 3∂x dn .
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Looking for eigenfunctions in the form χ = 1−A sn2 for A ∈ R, we find two other
eigenfunctions:

Lsn
+ χ− = e−χ−, Lsn

+ χ+ = e+χ+,

where

χ± = 1−
(
k2 + 1±

√
k4 − k2 + 1

)
sn2,

±e± = ±
(
k2 + 1± 2

√
k4 − k2 + 1

)
> 0.

In the interval [0, 4K), χ− has no zero, snx and cnx have two zeros each, while
dnx and χ+ have 4 zeros each. By Sturm-Liouville theory, they are the first 5
eigenvectors of L+ for each of sn, cn, and dn, and all other eigenfunctions have
strictly greater eigenvalues. Similarly, dn > 0 has no zeros, while cn and sn have
two each, so these are the first 3 eigenfunctions of L− for each of sn, cn, and dn,
and all other eigenfunctions have strictly greater eigenvalues.

The spectra of Lsn
± , Lcn

± , and Ldn
± are represented in Figure 4.1, where the eigen-

functions are also classified with respect to the subspaces of decomposition (2.2).

-

-

-

-

-

-

Lsn
−

Lcn
−

Ldn
−

Lsn
+

Lcn
+

Ldn
+

J
J
J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J
































































































dn cn sn χ− snx cnx dnx χ+

P+
2K A+

2K A−2K P+
2K A+

2K A−2K P−2K P+
2K

−1 −k2 0 e− 0 3k2 3 e+

k2−1 0 k2 e−−3k2 −3k2 0 3−3k2 e+−3k2

0 1−k2 1 e−−3 −3 3k2−3 0 e+−3

o o • o • o o o

o • o o o • o o

• o o o o o • o

Figure 4.1. Eigenvalues for L− and L+ in P4K .

We may now recover the result of [13] that sn is orbitally stable in H1
loc ∩ A2K ,

using the following simple consequences of the spectral information above:

Lemma 4.6. There exists δ > 0 such that the following coercivity properties hold.
(1) Lsn

+ |A−2K > δ,
(2) Lsn

− |A−2K∩{sn}⊥ > δ,
(3) Lsn

+ |A+
2K∩{(sn)x}⊥ > δ,

(4) Lsn
− |A+

2K∩{(sn)x}⊥ > δ.

Proof. The first three are immediate from figure 4.1 (note the first two also fol-
low from the minimization property Proposition 3.8), while we see that in A+

2K ,
Lsn

+ |{(sn)x}⊥ > e+, so since sn2(x) 6 1,

Lsn
− |{(sn)x}⊥ =

(
Lsn

+ − 4k2 sn2
)
|{(sn)x}⊥ > e+ − 4k2 > 0

where the last inequality is easily verified. �

Corollary 4.7. For all k ∈ (0, 1), the standing wave ψ(t, x) = e−i(1+k2)t sn(x, k)
is orbitally stable in H1

loc ∩A2K .



22 S. GUSTAFSON, S. LE COZ, AND T.-P. TSAI

Proof. Lemma 4.6 shows that sn is a non-degenerate (up to phase and translation)
local minimizer of the energy with fixed mass and momentum. So the classical
Cazenave-Lions [8] argument yields the orbital stability. �

Finally, we also record here the following computations concerning Lcn
± , used in

analyzing the generalized kernel of JLcn in the next subsection:

Lemma 4.8. Define Ê(x, k) = E(φ, k)|sinφ=sn(x,k). Let φ1 and ξ1 be given by the
following expressions.

φ1 =

(
Ê(x, k)− E

Kx
)

cnx−k2 cn3 +Kk2−E
K cn

2(2k2 − 1)EK + 2(1− k2)
,

ξ1 =

(
Ê(x, k)− E

Kx
)

cn + cnx

−2(1− k2) + 2E
K

.

The denominators are positive and we have

Lcn
+ φ1 = cn, Lcn

− ξ1 = cnx .

Note Ê and ξ1 are odd while φ1 is even. In particular (φ1, cnx) = 0 = (ξ1, cn).
Moreover, Lcn

+ ( 1
2 cn−(1− 2k2)φ1) = cnxx.

Proof. Recall that the elliptic integral of the second kind Ê(x, k) is not periodic.
In fact, it is asymptotically linear in x and verifies

Ê(x+ 2K, k) = Ê(x, k) + 2E(k).

By (2.10), ∂xÊ(x, k) = dn2(x, k). Denote L± = Lcn
± in this proof. Using (2.4)

and (2.5), we have

L+ cn = −4k2 cn3,

L+(x cnx) = 4k2 cn3−2(2k2 − 1) cn,

L+ cn3 = 6k2 cn5−8(2k2 − 1) cn3−6(1− k2) cn,

L+(Ê(x, k) cnx) = 6k4 cn5−4k2(3k2 − 2) cn3 +2(1− 4k2 + 3k4) cn .

Define

φ̃1 =

(
Ê(x, k)− E(k)

K(k)
x

)
cnx−k2 cn3 +

K(k)k2 − E(k)

K(k)
cn .

Then φ̃1 is periodic (of period 4K) and verifies

L+φ̃1 =

(
2(2k2 − 1)

E(k)

K(k)
+ 2(1− k2)

)
cn .

The factor is positive if 2k2 ≥ 1. If 2k2 < 1, it is greater than 2(2k2−1)+2(1−k2) =
2k2. Define,

φ1 =

(
2(2k2 − 1)

E(k)

K(k)
+ 2(1− k2)

)−1

φ̃1.

Then
L+φ1 = cn .
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As for L−, we have

L−(cnx) = 4k2 cn2 cnx,

L−(x cn) = −2 cnx,

L−(Ê(x, k) cn) = −2(1− k2) cnx−4k2 cn2 cnx .

Define

ξ̃1 =

(
Ê(x, k)− E(k)

K(k)
x

)
cn + cnx .

Then ξ̃1 is periodic (of period 4K) and verifies

L−ξ̃1 =

(
−2(1− k2) +

2E(k)

K(k)

)
cnx .

The factor is positive by (2.11). Defining

ξ1 =

(
−2(1− k2) +

2E(k)

K(k)

)−1

ξ̃1

we get L−ξ1 = cnx. The last statement of the lemma follows from (2.8). �

4.2. Orthogonality Properties. The following lemma records some standard
properties of eigenvalues and eigenfunctions of the linearized operator JL, which
follow only from the structural properties (4.2) and (4.4):

Lemma 4.9. The following properties hold.

(1) (symplectic orthogonality of eigenfunctions) Let f = (f1, f2)T and g =
(g1, g2)T be two eigenvectors of JL corresponding to eigenvalues λ, µ ∈ C.
Then (4.2) implies

λ+ µ̄ 6= 0 =⇒ (f, Jg) = (f,Lg) = 0,

while (4.4) implies

λ− µ̄ 6= 0 =⇒ (Cf, Jg) = (Cf,Lg) = 0,

so that

λ± µ̄ 6= 0 =⇒ (f1, g2) = (f2, g1) = 0.

(2) (unstable eigenvalues have zero energy) If JLf = λf , λ /∈ iR, then (4.2)
implies

(f,Lf) = 0.

Proof. We first prove (1). We have

λ (f, Jg) = (λf, Jg) = (JLf, Jg) = (Lf, g) = (f,Lg) = − (f, µJg) = −µ̄ (f, Jg) ,

so (λ+ µ̄) (f, Jg) = 0 which gives the first statement. The second statement follows
from the same argument with f replaced by Cf , while the third statement is a
consequence of (f, Jg) = (Cf, Jg) = 0.

Item (2) is a special case of the first statement of (1), with g = f . �
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4.3. Spectral Stability of sn and cn. Our goal in this section is to establish
Theorem 4.1, i.e. to prove the spectral stability of sn in P4K for all k ∈ (0, 1), and
the spectral stability of cn in P4K for all k ∈ (0, kc).

We first recall the standard fact that

orbital stability =⇒ spectral stability.

Indeed, an eigenvalue λ = α + iβ of JL with α > 0 produces a solution of the
linearized equation whose magnitude grows at the exponential rate eαt, and this
linear growing mode (together with its orthogonality properties from Lemma 4.9)
can be used to contradict orbital stability. Rather than go through the nonlinear
dynamics, however, we will give a simple direct proof of spectral stability in the
symmetry subspaces where we have the orbital stability – that is, in P2K for dn,
and in A2K for cn and sn – using just the spectral consequences for L± implied by
the (local) minimization properties of these elliptic functions:

Proposition 4.10. For 0 < k < 1, K = K(k), dn is spectrally stable in P2K while
cn and sn are spectrally stable in A2K . Precisely, we have

σ(JLdn|P2K
) ⊂ iR, σ(JLcn|A2K

) ⊂ iR, σ(JLsn|A2K
) ⊂ iR.

Proof. Begin with dn in P2K . From Figure 4.1, we see Ldn
− |dn⊥ > 0, and thus

(Ldn
− )±1/2 exist on dn⊥. It follows from the minimization property Proposition 3.2

that on dn⊥, Ldn
+ > 0 (otherwise there is a perturbation of dn lowering the energy

while preserving the mass). Suppose JLdnf = λf , λ 6∈ iR. Then Ldn
− L

dn
+ f1 =

−λ2f1. Since (dn, 0)T is an eigenvector of JL for the eigenvalue 0, Lemma 4.9
implies f1 ⊥ dn. Therefore, we have

(Ldn
− )1/2Ldn

+ (Ldn
− )1/2

(
(Ldn
− )−1/2f1

)
= −λ2

(
(Ldn
− )−1/2f1

)
and on dn⊥,

L+ > 0 =⇒ L
1/2
− L+L

1/2
− > 0 =⇒ λ2 6 0

contradicting λ /∈ iR.
Next, consider cn in A2K . Again from Figure 4.1, we see Lcn

− |cn⊥ > 0, while
the minimization property Proposition 3.4 implies that Lcn

+ > 0 on cn⊥, and so the
spectral stability follows just as for dn above.

Finally, consider sn in A2K . By Lemma 4.6, Lsn
+ > 0 on {(sn)x}⊥, while Lsn

− > 0

on {(sn)x}⊥, and so the spectral stability follows from the same argument as above,
with the roles of L+ and L− reversed. �

Moreover, both sn and cn are spectrally stable in P−2K :

Lemma 4.11. For 0 < k < 1, K = K(k),

σ(JLcn|P−2K ) ⊂ iR, σ(JLsn|P−2K ) ⊂ iR.

Proof. This is an immediate consequence of the positivity of Lsn and Lcn on P−2K
(see Figure 4.1), and Lemma 4.9. �

So in light of (4.5), to prove Theorem 4.1, it remains only to show σ(JL|P+
2K

) ⊂
iR for each of cn and sn.

This will follow from a simplified version of a general result for infinite dimen-
sional Hamiltonian systems (see [20, 22, 23]) relating coercivity of the linearized
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energy with the number of eigenvalues with negative Krein signature of the lin-
earized operator JL of the form (4.1):

Lemma 4.12 (coercivity lemma). Consider JL on S × S for some invariant sub-
space S ⊂ PT , and suppose it has an eigenvalue whose eigenfunction ξ = (ξ1, ξ2)T

has negative (linearized) energy:

JLξ = µξ, (ξ,Lξ) < 0.

Then the following results hold.
(1) If L+ has a one-dimensional negative subspace (in S):

L+f = −λf, λ > 0, L+|f⊥ > 0 (4.6)

Then L+|ξ⊥2 > 0.
(2) If L− has a one-dimensional negative subspace (in S):

L−g = −νg, ν > 0, L−|g⊥ > 0 (4.7)

Then L−|ξ⊥1 > 0.
(3) If both (4.6) and (4.7) hold, then σ(JL|S×S) ⊂ iR.

Proof. First note that by Lemma 4.9 (2), 0 6= µ ∈ iR, and writing µ = iγ, 0 6= γ ∈
R, we have L−ξ2 = iγξ1, L+ξ1 = −iγξ2.

Moreover,

(ξ1, L+ξ1) = −γ (ξ1, iξ2) = γ (iξ1, ξ2) = (L−ξ2, ξ2) ,

so by assumption (ξ1, L+ξ1) = (ξ2, L−ξ2) < 0.
We prove (1). For any h ⊥ ξ2, decompose

h = αf + h+, ξ1 = βf + ξ+, h+ ⊥ f, ξ+ ⊥ f,

where we may assume α ≥ 0 and β ≥ 0. We have

0 = iγ (h, ξ2) = (h,−iγξ2) = (h, L+ξ1) = −λαβ + (h+, L+ξ+) .

Thus, using L+|f⊥ > 0, L1/2
+ = (L+|f⊥)1/2 is well defined on f⊥ and

(αβλ)2 = (h+, L+ξ+)
2

=
(
L

1/2
+ h+, L

1/2
+ ξ+

)2

≤ (h+, L+h+) (ξ+, L+ξ+)

= ((h, L+h) + α2λ)((ξ1, L+ξ1) + β2λ)

with both factors on the right> 0. Since (ξ1, L+ξ1) < 0, we must have (h, L+h) > 0.
Statement (2) follows in exactly the same way, with the roles of L+ and L−

reversed, the roles of ξ1 and ξ2 reversed, and with g and ν replacing f and λ.
Finally, for (3), suppose JLη = ζη. If ζ /∈ iR, then by Lemma 4.9 (1), (ξ1, η2) =

(ξ2, η1) = 0, and so by parts (1) and (2),

(η1, L+η1) > 0, (η2, L+η2) > 0, =⇒ (η,Lη) > 0,

contradicting Lemma 4.9 (2). Thus ζ ∈ iR. �

Proof of Theorem 4.1. Begin with sn in P+
2K . From Figure 4.1 it is clear that in

P+
2K , condition (4.6) holds for Lsn

+ and (4.7) holds for Lsn
− . Explicit computation

yields
Lsn

+ (dn2 +k2 cn2) = −(1− k2)2, Lsn
− 1 = −(dn2 +k2 cn2),
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which implies

JLsn

(
dn2 +k2 cn2

i(1− k2)

)
= i(1− k2)

(
dn2 +k2 cn2

i(1− k2)

)
.

Moreover,〈
Lsn

(
dn2 +k2 cn2

i(1− k2)

)
,

(
dn2 +k2 cn2

i(1− k2)

)〉
=
〈
Lsn

+ (dn2 +k2 cn2),dn2 +k2 cn2
〉

+ (1− k2)
〈
Lsn
− 1, 1

〉
= −((1− k2)2 + (1− k2))

〈
1, (dn2 +k2 cn2)

〉
= −((1− k2)2 + (1− k2))(4E(k)− 2(1− k2)K(k)) < 0,

by (2.11). Hence all the conditions of Lemma 4.12 are verified for sn in P+
2K , and

so we conclude σ(JLsn|P+
2K

) ⊂ iR, as required.
Next we turn to cn. Again from Figure 4.1 it is clear that in P+

2K , condition (4.6)
holds for Lcn

+ and (4.7) holds for Lcn
− . Explicit computation yields

Lcn
+ (−dn2 +k2 sn2) = 1, Lcn

− 1 = −dn2 +k2 sn2,

which implies

JLcn

(
−dn2 +k2 sn2

i

)
= i

(
−dn2 +k2 sn2

i

)
.

Moreover, when k < kc, we have〈
Lcn

(
−dn2 +k2 sn2

i

)
,

(
−dn2 +k2 sn2

i

)〉
= 2

〈
Lsn
− 1, 1

〉
= 4K(k)− 8E(k) < 0.

Hence the conditions of Lemma 4.12 are verified for cn in P+
2K when k < kc, yielding

σ(JLcn|P+
2K

) ⊂ iR, as required. �

5. Linear Instability

Theorem 4.1 (and Proposition 4.10) give the spectral stability of the periodic
waves dn, sn, and cn (at least for k < kc) against perturbations which are periodic
with their fundamental period. It is also natural to ask if this stability is maintained
against perturbations whose period is a multiple of the fundamental period. In light
of Bloch-Floquet theory, this question is also relevant for stability against localized
perturbations in L2(R).

5.1. Theoretical Analysis. It is a simple observation that dn immediately be-
comes unstable against perturbations with twice its fundamental period:

Proposition 5.1. Both σ(JLdn|A+
2K

) and σ(JLdn|A−2K ) contain a pair of non-zero
real eigenvalues. In particular dn is linearly unstable against perturbations in P4K .

Proof. In each of A+
2K and A−2K , Ldn

− > 0 while Ldn
+ has a negative eigenvalue:

Ldn
+ f = −λf , λ > 0. So the self-adjoint operator (Ldn

− )1/2Ldn
+ (Ldn

− )1/2 has a nega-
tive direction,(

(Ldn
− )−1/2f, ((Ldn

− )1/2Ldn
+ (Ldn

− )1/2)(Ldn
− )−1/2f

)
= −λ(f, f) < 0,
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hence a negative eigenvalue (Ldn
− )1/2Ldn

+ (Ldn
− )1/2g = −µ2g, µ > 0. Setting h :=

(Ldn
− )−1/2g, h ∈ A+

2K (A−2K), we see

Ldn
+ Ldn

− h = −µ2h =⇒ JLdn

(
Ldn
− h

±µh

)
= ±µ

(
Ldn
− h

±µh

)
.

Hence µ,−µ ∈ R are eigenvalues of JL in A+
2K (A−2K). �

Remark 5.2. The proof shows dn is unstable in P2nK for every even n since h ∈
P2nK . In fact, dn is unstable in any P2nK , n ≥ 2. Indeed, we always have L− dn =
0, thus by Sturm-Liouville Theory (see e.g. [10, Theorem 3.1.2]), 0 is always the
first simple eigenvalue of L− in P2nK . Moreover, L+ dnx = 0, and dnx has 2n zeros
in P2nK . Hence there are at least 2n−2 negative eigenvalues for L+ in P2nK . With
the above argument, this proves linear instability in P2nK for any n ≥ 2.

For sn, the H2(R) orbital stability result of [5, 15] implies spectral stability
against perturbations which are periodic with any multiple of the fundamental
period.

Using formal perturbation theory, [30] showed that cn becomes unstable against
perturbations which are periodic with period a sufficiently large multiple of the
fundamental period. Our main goal in this section is to make this rigorous:

Theorem 5.3. For 0 < k < 1, there exists n1 = n1(k) ∈ N such that cn is linearly
unstable in P4nK for n ≥ n1, i.e., the spectrum of JLcn as an operator on P4nK

contains an eigenvalue with positive real part.

We will in fact prove a slightly more general result, which is the existence of a
branch strictly contained in the first quadrant for the spectrum of JLcn considered
as an operator on L2(R). Theorem 5.3 will be a consequence of a more general
perturbation result applying to all real periodic waves (see Proposition 5.4), and in
particular not relying on any integrable structure.

We start with some preliminaries. Let

JL =

(
0 L−
−L+ 0

)
with

L− = −∂xx − a− bu2, L+ = −∂xx − a− 3bu2

where u a periodic solution to

uxx + au+ b|u|2 u = 0. (5.1)

We assume that u(x) ∈ R and let T denote a period of u2. The spectrum of JL
as an operator on L2(R) can be analyzed using Bloch-Floquet decomposition. For
θ ∈ [0, 2π/T ), define

JLθ =

(
0 Lθ−
−Lθ+ 0

)
where Lθ± is the operator obtained when formally replacing ∂x by ∂x + iθ =

e−iθx∂x
(
eiθx·

)
in the expression of L±. If we let (Mθf)(x) = eiθxf(x), then

Lθ± = M−θL±M
θ. Then we have

σ
(
JL|L2(R)

)
=

⋃
θ∈[0, 2πT ]

σ
(
JLθ|PT

)
. (5.2)

In what follows, all operators are considered on PT unless otherwise mentioned.
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Let us consider the case θ = π
T . Denote

D = ∂x + i
π

T
.

Since u is a real valued periodic solution to (5.1), by Lemmas 2.1 and 2.2, u is a
rescaled cn, dn or sn. In any case, the following holds:

ϕ = e−i
π
T xu, ψ = Dϕ = e−i

π
T xux ∈ H1

loc ∩ PT \ {0}

are such that ker(L
π
T
− ) = 〈ϕ〉, ker(L

π
T
+ ) = 〈ψ〉.

(5.3)

Note that for any f, g ∈ H1
loc ∩ PT , we can integrate by parts with D:∫ T

0

Dfḡ dx = −
∫ T

0

fDg dx.

Remark that

(ϕ,ψ) =

∫ T

0

ϕψ̄ dx =

∫ T

0

uux dx = 0.

Therefore there exist ϕ1, ψ1 such that

L
π
T
−ψ1 = ψ, L

π
T
+ϕ1 = ϕ, ϕ1 ⊥ ψ, ψ1 ⊥ ϕ.

The kernel of the operator JL π
T is generated by

(
ψ
0

)
,
(

0
ϕ

)
. On top of that, the

generalized kernel of JL π
T contains (at least)

(
0
ψ1

)
,
(
ϕ1

0

)
.

Our goal is to analyze the spectrum of the operator JL π
T −ε when |ε| is small.

In particular, we want to locate the eigenvalues generated by perturbation of the
generalized kernel of JL π

T . For the sake of simplicity in notation, when θ = π
T , we

use a tilde to replace the exponent π
T . In particular, we write

JL π
T = JL̃, L

π
T
± = L̃±.

Proposition 5.4. Assume the condition (5.16) stated below. There exist λ1 ∈ C
with Re(λ1) > 0, Im(λ1) > 0; b0 ∈ C; and ε0 > 0, such that for all 0 6 ε < ε0 there
exist λ2(ε) ∈ C, b1(ε) ∈ C, v2(ε), w2(ε) ∈ H2

loc ∩ PT ,
|b1(ε)|+ |λ2(ε)|+ ‖v2(ε)‖H2

loc∩PT
+ ‖w2(ε)‖H2

loc∩PT
. 1

v2(ε) ⊥ ψ, w2(ε) ⊥ ϕ, (5.4)

verifying the following property. Set

v0 = b0ψ, v1 = b1(ε)ψ − 2ib0L̃
−1
+ Dψ − λ1ϕ1, (5.5)

w0 = ϕ, w1 = (b0λ1 − 2i)ψ1. (5.6)

Here, L̃−1
+ is taken from ψ⊥ to ψ⊥. Define

λ = ελ1 + ε2λ2(ε),
v = v0 + εv1(ε) + ε2v2(ε),
w = w0 + εw1 + ε2w2(ε).

Then

JL π
T −ε

(
v

w

)
= λ

(
v

w

)
.

Note that the orthogonality conditions in (5.4) are reasonable: The eigenvector
is normalized by Pϕw = w0 = ϕ, and hence w2 ⊥ ϕ. To impose v2 ⊥ ψ, we allow
b1(ε)ψ in v1 to be ε-dependent to absorb Pψ(v − v0).



STABILITY OF PERIODIC WAVES OF 1D CUBIC NLS 29

Proof of Proposition 5.4. Let us write the expansion of the operators in ε. We have

L
π
T −ε
± = L

π
T
± + 2iεD + ε2,

Therefore

JL π
T −ε = JL π

T + ε

(
0 2iD
−2iD 0

)
+ ε2

(
0 1
−1 0

)
We expand in ε the equation

(
JL π

T −ε − λI
) (

v
w

)
= 0 and show that it can be

satisfied at each order of ε.
At order O(1), we have

JL̃
(
v0

w0

)
= 0,

which is satisfied because
(
v0
w0

)
∈ ker(JL̃) by definition.

At order O(ε), we have

JL̃
(
v1

w1

)
+

(
−λ1 2iD
−2iD −λ1

)(
v0

w0

)
= 0,

which can be rewritten, using the expression of v0, w0, and Dϕ = ψ, as

L̃−w1 = (b0λ1 − 2i)ψ, (5.7)

L̃+v1 = −2ib0Dψ − λ1ϕ. (5.8)

It is clear that the functions v1(ε) and w1 defined in (5.5)-(5.6) satisfy (5.7)-(5.8).
At order O(ε2), we consider the equation as a whole, involving also the higher

orders of ε. We have

JL̃
(
v2

w2

)
+

(
−λ1 2iD
−2iD −λ1

)(
v1

w1

)
+

(
−λ2 1
−1 −λ2

)(
v0

w0

)
+ ε

((
−λ1 2iD
−2iD −λ1

)(
v2

w2

)
+

(
−λ2 1
−1 −λ2

)(
v1

w1

))
+ ε2

(
−λ2 1
−1 −λ2

)(
v2

w2

)
= 0,

in other words

L̃−w2 = W2 + εW3 + ε2W4 (5.9)

L̃+v2 = V2 + εV3 + ε2V4 (5.10)

where
W2 = λ1v1 − 2iDw1 + λ2v0 − w0, V2 = −2iDv1 − λ1w1 − v0 − λ2w0,
W3 = λ1v2 − 2iDw2 + λ2v1 − w1, V3 = −2iDv2 − λ1w2 − v1 − λ2w1,
W4 = λ2v2 − w2, V4 = −v2 − λ2w2.

(5.11)

Note that V2 and W2 depend on b0, λ1 and b1, λ2, whereas V3, V4 and W3,W4 also
depend on v2 and w2. Our strategy to solve the system (5.9)-(5.10) is divided into
two steps. We first ensure that it can be solved at the main order by ensuring that
the compatibility conditions

(W2, ϕ) = (V2, ψ) = 0 (5.12)

are satisfied. This is achieved by making a suitable choice of b0, λ1. Then we solve
for b1, λ2, v2, w2 by using a Lyapunov-Schmidt argument.
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We rewrite the compatibility conditions (5.12) in the following form, using the
expressions for v0, w0, v1 and w1, and the properties of ϕ and ψ:

(ϕ1, ϕ)λ2
1 + b02i ((Dψ,ϕ1)− (ψ1, ψ))λ1 + ((ϕ,ϕ)− 4 (ψ1, ψ)) = 0

b0 (ψ1, ψ)λ2
1 + 2i ((ϕ1, Dψ)− (ψ1, ψ))λ1 + b0

(
(ψ,ψ)− 4

(
L̃−1

+ Dψ,Dψ
))

= 0

These equations do not depend on b1 or λ2 although W2 and V2 do. For a moment,
we write these equations as

A1λ
2
1 + b0Bλ1 + C1 = 0, (5.13)

b0A2λ
2
1 + Bλ1 + b0C2 = 0, (5.14)

where
A1 := (ϕ1, ϕ) ∈ R,
A2 := (ψ1, ψ) ∈ R,
B := 2i ((Dψ,ϕ1)− (ψ1, ψ)) ∈ iR,
C1 := (ϕ,ϕ)− 4 (ψ1, ψ) ∈ R,

C2 := (ψ,ψ)− 4
(
L̃−1

+ Dψ,Dψ
)
∈ R.

Multiplying (5.13) by C2 +A2λ
2
1, (5.14) by Bλ1, and subtracting gives

A1A2λ
4
1 + (A1C2 +A2C1 −B2)λ2

1 + C1C2 = 0, (5.15)

a quadratic equation in λ2
1 with real coefficients. If A1A2 6= 0, the roots of (5.15)

are given by

λ2
1 =
−(A1C2 +A2C1 −B2)±

√
(A1C2 +A2C1 −B2)2 − 4A1A2C1C2

2A1A2

We now assume the discriminant of this quadratic is negative:

(A1C2 +A2C1 −B2)2 − 4A1A2C1C2 < 0 (5.16)

which implies that A1A2 6= 0, and moreover guarantees the existence of a root λ1

of (5.15) strictly contained in the first quadrant: Reλ1 > 0 and Imλ1 > 0 (the
other roots being −λ1, ±λ̄1). It follows from (5.16) that B 6= 0, and so we may
solve (5.13) and set

b0 := − (A1λ
2
1 + C1)

Bλ1
,

so that both (5.13) and (5.14) are satisfied.
We now solve for b1, λ2, v2, w2 using a Lyapunov-Schmidt argument. The first

step is to solve, given (b1, λ2), projected versions of (5.9)-(5.10),

L̃−w2 = W2 + Pϕ⊥
[
εW3 + ε2W4

]
L̃+v2 = V2 + Pψ⊥

[
εV3 + ε2V4

] (5.17)

to obtain v2 = v2(b1, λ2) ∈ ψ⊥, w2 = w2(b1, λ2) ∈ ϕ⊥:

Lemma 5.5. Given any b1 ∈ C, λ2 ∈ C with |b1| + |λ2| 6 M , there is a unique
solution

(v2, w2) = (v2(b1, λ2), w2(b1, λ2)) ∈ (H2
loc ∩ PT ∩ ψ⊥)× (H2

loc ∩ PT ∩ ϕ⊥)

of (5.17), with ‖v2‖H2 + ‖w2‖H2 6 C(M).
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Proof. By the expressions (5.11), we may rewrite system (5.17) as a linear system
of v2 and w2,

L̃ε
(
v2

w2

)
=

(
Sv
Sw

)
+ ε

(
Rv
Rw

)
,

where

L̃ε =

(
L̃+ + Pψ⊥2iεD + ε2 (ελ1 + ε2λ2)Pψ⊥

−(ελ1 + ε2λ2)Pϕ⊥ L̃− + Pϕ⊥2iεD + ε2

)
,

Sv = Pψ⊥(−2iD[b1ψ − 2ib0L̃
−1
+ Dψ − λ1ϕ1]− λ1(b0λ1 − 2i)ψ1 − λ2ϕ)

Sw = Pϕ⊥(λ1[b1ψ − 2ib0L̃
−1
+ Dψ − λ1ϕ1]− 2iD(b0λ1 − 2i)ψ1 + λ2b0ψ)

Rv = Pψ⊥(λ2(2i− b0λ1)ψ1 − [−2ib0L̃
−1
+ Dψ − λ1ϕ1])

Rw = Pϕ⊥(λ2[b1ψ − 2ib0L̃
−1
+ Dψ − λ1ϕ1] + (2i− b0λ1)ψ1).

(5.18)

Note that Sv, Sw, Rv and Rw do not contain v2, w2 or ε. Recalling the definition

L̃ =

(
L̃+ 0

0 L̃−

)
,

it follows from (5.3) that

L̃−1 : (PT ∩ ψ⊥)× (PT ∩ ϕ⊥)→ (PT ∩H2
loc ∩ ψ⊥)× (PT ∩H2

loc ∩ ϕ⊥)

is bounded, and hence so is L̃−1
ε , uniformly in ε for ε sufficiently small, with

‖L̃−1
ε − L̃−1‖(L2×L2→H2×H2) . ε.

Thus (
v2

w2

)
= L̃−1

ε

((
Sv
Sw

)
+ ε

(
Rv
Rw

))
=

(
L̃−1

+ Sv
L̃−1
− Sw

)
+OH2×H2(ε) (5.19)

gives (v2(b1, λ2), w2(b1, λ2)) as desired. �

The second step is to plug (v2(b1, λ2), w2(b1, λ2)) back into V3, V4, W3, W4, and
solve, for (b1, λ2), the remaining compatibility conditions

(V3 + εV4, ψ) = (W3 + εW4, ϕ) = 0 (5.20)

which, together with (5.17), complete the solution of the eigenvalue problem. Us-
ing (5.19) and (5.11), we may write (5.20) as the system

0 = (−2iD[L̃−1
+ Sv +O(ε)]− λ1[L̃−1

− Sw +O(ε)]− v1 − λ2w1 + εV4, ψ)

0 = (λ1[L̃−1
+ Sv +O(ε)]− 2iD[L̃−1

− Sw +O(ε)] + λ2v1 − w1 + εW4, ϕ)

and then by the expressions (5.5)-(5.6) and (5.18), we may further rewrite as

Φ(b1, λ2, ε) = (M +O(ε))

(
b1
λ2

)
+ F +O(ε) = 0 (5.21)



32 S. GUSTAFSON, S. LE COZ, AND T.-P. TSAI

where Φ is a rational vector function of b1, λ2 and ε; F is a fixed (independent of
(b1, λ2)) vector with |F | . 1; and M = ∂Φ

∂(b1,λ2) |ε=0 is the matrix

M =

(
(−4DL̃−1

+ Dψ − λ2
1ψ1 − ψ,ψ) (2iDϕ1 − 2(λ1b0 − i)ψ1, ψ)

(−2iλ1L̃
−1
+ Dψ − 2iλ1Dψ1, ϕ) (−λ1ϕ1 − 2ib0Dψ1 − 2ib0L̃

−1
+ Dψ − λ1ϕ1, ϕ)

)
=

(
4(L̃−1

+ Dψ,Dψ)− λ2
1(ψ1, ψ)− (ψ,ψ) −2i(ϕ1, Dψ)− 2(λ1b0 − i)(ψ1, ψ)

−2iλ1(Dψ,ϕ1) + 2iλ1(ψ1, ψ) −2λ1(ϕ1, ϕ) + 2ib0(ψ1, ψ)− 2ib0(Dψ,ϕ1)

)
=

(
−C2 −A2λ

2
1 −B − 2λ1b0A2

−λ1B −b0B − 2λ1A1

)
=

(
B
b0
λ1 −B − 2λ1b0A2

−λ1B −b0B − 2λ1A1

)
.

where in the last step we used (5.14). The determinant of M is, using (5.14) and
(5.13) to eliminate b0,

detM = −2λ1B

(
B +

λ1

b0
A1 + λ1b0A2

)
= −2λ1B

(
B − A2λ

2
1 + C2

B
A1 −

A1λ
2
1 + C1

B
A2

)
= −2λ1

(
B2 − 2A1A2λ

2
1 − C2A1 − C1A2

)
.

Since A1, A2, C1, C2, B
2 are real, and λ1A1A2 6= 0, we have detM 6= 0, otherwise

λ2
1 ∈ R.
Thus (b1, λ2) may be solved from (5.21) for ε sufficiently small by the implicit

function theorem, providing the required solution to (5.20), and so completing the
proof of Proposition 5.4. �

Proof of Theorem 5.3. We need only verify the assumptions of Proposition 5.4
for the case of u(x) = cn(x; k), T = 2K(k). Since u = cn ∈ A2K , we have
u2 = cn2 ∈ PT . Moreover, (5.3) holds (see Figure 4.1). It remains to verify the
condition (5.16). The values of the coefficients for the equations of b0 and λ1 are
given by the following formulas, obtained by using the equation verified by cn and
the explicit expressions given by Lemma 4.8. Due to the complicated nature of the
expressions, the dependence of E and K on k will be left implicit.

A1 = (ϕ1, ϕ) = (φ1, u) =
k2K(2E −K) + (E −K)2

2k2(E(1− 2k2)−K(1− k2))
,

A2 = (ψ1, ψ) = (ξ1, ux) =
k2K(2E −K) + (E −K)2

2k2(E − (1− k2)K)
,

B = 2i ((ϕ1, Dψ)− (ψ1, ψ)) = 2i ((φ1, uxx)−A2)

= −i 2EK(k − 1)(k + 1)(K − E)

(E(1− 2k2)−K(1− k2))(E − (1− k2)K)
,

C1 = (ϕ,ϕ)− 4 (ψ1, ψ) = (u, u)− 4A2 =
2K2(k − 1)(k + 1)

E − (1− k2)K
,

C2 = (ψ,ψ)− 4
〈
L̃−1

+ Dψ,Dψ
〉

= (ux, ux)− 4
〈
L−1

+ uxx, uxx
〉

=
2K2(k − 1)(k + 1)

E(1− 2k2)−K(1− k2)
.
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Therefore,

(A1C2 +A2C1 −B2)2 − 4A1A2C1C2

= − 16K4E2(1− k)3(1 + k)3(K − E)2

k2(E − (1− k2)K)2(E(1− 2k2)− (1− k2)K)2
< 0,

Thus Proposition (5.4) applies, providing an unstable eigenvalue of J(Lcn)θ for
θ = π

2K − ε, and all 0 < ε 6 ε0. It follows in particular that cn is unstable against
perturbations with period 4nK, where n is the smallest even integer > π

Kε0
. This

concludes the proof of Theorem 5.3. �

5.2. Numerical Spectra. We have tested numerically the spectra of the different
operators involved. To this aim, we used a fourth order centered finite difference
discretization of the second derivative operator. Unless otherwise specified, we have
used 210 grid points. The spectra are then obtained using the built in function of our
scientific computing software (Scilab). Whenever the spectra can be theoretically
described, the theoretical description and our numerical computations are in good
agreement.

We start by the presentation of the spectra of JLpq, for pq = cn,dn, sn on P4K .

Observation 5.6. On P4K , the spectrum of JLpq is such that
• if pq = sn then σ(JLsn) ⊂ iR for all k ∈ (0, 1),
• if pq = cn, then σ(JLcn) ⊂ iR for all k ∈ (0, 1), including when k > kc,
• if pq = dn, then JLdn admits two double eigenvalues ±λ with λ > 0 and
the rest of the spectrum verifies (σ(JLdn) \ {±λ}) ⊂ iR for all k ∈ (0, 1).

The numerical observations for cn and dn at k = 0.95 are represented in Figure 5.1.

Figure 5.1. σ(JLcn) (left) and σ(JLdn) (right) on P4K for k = 0.95

We then compare the results of Theorem 5.3 with the numerical results. In
Figure 5.2, we have drawn the numerical spectrum of JLcn as an operator on L2(R).
To this aim, we have used the Bloch decomposition of the spectrum of JLcn given
in (5.2): we computed the spectrum of J(Lcn)θ for θ in a discretization of (0, π

2K ]
and we have interpolated between the values obtained to get the curve in plain
(blue) line. In order to keep the computation time reasonable, we have dropped
the number of space points from 210 to 28. We then have drawn in dashed (red)
the straight lines passing through the origin and the points whose coordinates are
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given in the complex plane by ±λ1,±λ̄1, λ1 given in the proof of Proposition 5.4.
The picture shows that the dashed (red) line are tangent to the plain (blue) curve,
thus confirming λ1 as the first order in the expansion for the eigenvalue emerging
from 0 performed in Proposition 5.4.

Figure 5.2. σ(JLcn) on L2(R) for k = 0.9 (plain (blue) curve),
first order asymptotic around 0 (dashed (red) lines)

Numerically, eigenvalues on the number 8 curve in Figure 5.2 are simple, and
move from the origin toward the intersection points of the number 8 curve with the
imaginary axis, when θ is decreased from π/(2K) to 0+.

These eigenvalues are simple because we did the Block decomposition (5.2) in
P2K with θ ∈ [0, 2π/T ) = [0, π/K), and cn is only in P2K(−1), not in P2K . Thus
it is in the kernel of Lθ+ only for θ = π/(2K). The bifurcation occurs only near
θ = π/(2K), not at θ = 0.

In contrast, Rowlands [30] did the Block decomposition in P4K with θ ∈ [0, π/(2K)).
We have cn ∈ P4K , and cn is in the kernel of Lθ+ only for θ = 0. The bifurcation
occurs only near θ = 0.

These two approaches are essentially the same, and our approach does not give
a new instability branch.

6. Numerics

We describe here the numerical experiments performed to understand better the
nature of the Jacobi elliptic functions as constrained minimizers of some functionals.
To this aim, we use a normalized gradient flow approach related to the minimization
problem (3.3).

6.1. Gradient Flow With Discrete Normalization. It is relatively natural
when dealing with constrained minimization problems like (3.3)-(3.4) to use the
following construction. Define an increasing sequence of time 0 = t0 < · · · < tn
and take an initial data u0. Between each time step, let u(t, x) evolve along the
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gradient flow{
ut = −E ′(u) = uxx + b|u|2u,

u(tn, x) = un(x),
x ∈ R, tn < t < tn+1, n > 0.

At each time step tn, the function is renormalized so as to have the desired mass
and momentum. The renormalization for the mass is obtained by a straightforward
scaling:

un+1(x) := u(tn+1, x)

√
m

M(u(tn+1, x))
. (6.1)

When there is no momentum, like in the minimization problems (3.1), (3.4), and
only real-valued functions are considered, such approach to compute the minimizers
was developed by Bao and Du [4].

However, dealing with complex valued solutions and with an additional momen-
tum constraint as in problems (3.3), (3.5) turns out to make the problem more
challenging and to our knowledge little is known about the strategies that one can
use to deal with this situation (see [9] for an approach on a related problem).

To construct un in such a way that P(un) = p, a simple scaling is not possible for
at least two reasons. First of all, if p = 0, a scaling would obviously lead to failure
of our strategy. Second, even if p 6= 0, as we are already using a scaling to get the
correct mass, making a different scaling to obtain the momentum constraint will
result into a modification of the mass. To overcome these difficulties, we propose
the following approach.

Recall that, as noted in [4], the renormalizing step (6.1) is equivalent to solving
exactly the following ordinary differential equation

ut = µnu, tn < t < tn+1, n > 0, µn =
1

tn+1 − tn
ln

( √
2m

‖u(tn)‖L2

)
. (6.2)

Inspired by this remark, we consider the following problem, which we see as the
equivalent of (6.2) for the momentum renormalization.

ut = i$nux, x ∈ R, tn < t < tn+1, n > 0, (6.3)

where we want to choose the values of $n in such a way that P(u(tn+1)) = p. To
this aim, we need to solve (6.3). Note that (6.3) is a partial differential equation,
whereas (6.2) was only an ordinary differential equation. We make the following
formal computations, which can be justified if the functions involved are regular
enough. As we work with periodic functions, we consider the Fourier series repre-
sentation of u, that is

u(t, x) =

∞∑
j=−∞

cj(t)e
i 2πT jx

with the Fourier coefficients

cj(t) =
1

T

∫ T/2

−T/2
u(t, x)e−i

2π
T jxdx.

Then (6.3) becomes

∂tcj = −2π

T
j$ncj , j ∈ Z, tn < t < tn+1, n > 0.
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For each j ∈ Z and for any tn < t < tn+1 the solution is

cj(t) = exp

(
−2π

T
j$n(t− tn)

)
cj(tn),

and therefore the solution of (6.3) is

u(t, x) =

∞∑
j=−∞

exp

(
−2π

T
j$n(t− tn)

)
cj(tn)ei

2π
T jx.

Using this Fourier series expansion of u, we have

P(u(tn+1)) = −
∞∑

j=−∞
πj exp

(
−4π

T
j$n(tn+1 − tn)

)
|cj(tn)|2.

We determine implicitly the value of $n, by requiring that $n is such that

P(u(tn+1)) = p.

In practice, it might not be so easy to compute $n and therefore we shall use the
following approximation. We replace the exponential by its first order Maclaurin
polynomial. We get

P(u(tn+1)) = −
∞∑

j=−∞
πj

(
1− 4π

T
j$n(tn+1 − tn)

)
|cj(tn)|2 +O($2

n(tn+1 − tn)2).

Therefore, an approximation for $n is given by $̃n, which is defined implicitly by

p = −
∞∑

j=−∞
πj

(
1− 4π

T
j$̃n(tn+1 − tn)

)
|cj(tn)|2.

Solving for $̃n, we obtain

$̃n =

(
p+

∞∑
j=−∞

πj|cj(tn)|2
)(

(tn+1 − tn)
4π2

T

∞∑
j=−∞

j2|cj(tn)|2
)−1

.

We can further simplify the expression of $̃n by remarking that

P(u(tn)) = −
∞∑

j=−∞
πj|cj(tn)|2,

∫ T/2

−T/2
|∂xu(tn)|2dx =

4π2

T

∞∑
j=−∞

j2|cj(tn)|2.

This gives

$̃n =
p− P(u(tn))

(tn+1 − tn)‖∂xu(tn)‖2L2

.

This is the value we will use in practice.

6.2. Discretization. Let us now further discretize our problem. We first present
a semi-implicit time discretization, given by the following scheme.

ũn+1 − un
δt

= ∂xxũn+1 + b|un|2ũn+1, ũn+1 ∈ PT ,

ûn+1 =

∞∑
j=−∞

cj(ũn+1)

(
1− 2π

T
δt$̃nj

)
ei

2π
T jx,

un+1 = ûn+1

√
m

M(ûn+1)
,
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where $̃n is given by

$̃n =
p− P(un)

δt‖∂xun‖2L2

,

and (cj(ũn+1)) are the Fourier coefficients of ũn+1. Note that the system is linear.

Remark 6.1. If p = 0, at the end of each step, un+1 has the desired mass and
momentum. If p 6= 0, then un+1 only has the desired mass and it is unclear if the
algorithm will still give convergence toward the desired mass-momentum constraint
minimizer. We plan to investigate this question in further works.

Finally, we present the fully discretized problem. We discretize the space interval[
−T2 ,

T
2

]
by setting

x0 = −T
2
, xl = x0 + lδx, δx =

T

L
, L ∈ 2N.

We denote by uln the numerical approximation of u(tn, x
l). Using the (backward

Euler) semi-implicit scheme for time discretization and second-order centered finite
difference for spatial derivatives, we obtain the following scheme.

ũln+1 − uln
δt

=
ũl−1
n+1 − 2ũln+1 + ũl+1

n+1

δx2
+ b|uln|2ũln+1, u0

n+1 = uLn+1, (6.4)

ûln+1 =

L/2∑
j=−L/2

cj(ũn+1)

(
1− 2π

T
δt$̃nj

)
ei

2π
L jlδx, (6.5)

ũln+1 = ûln+1

√
m

M(ûn+1)
, (6.6)

where cj(ũn+1) = 1
L+1

∑L
l=0 ũ

l
n+1e

i 2πL jlδx.

As the system (6.4) is linear, we can solve it using a Thomas algorithm for
tridiagonal matrix modified to take into account the periodic boundary conditions.
The discrete Fourier transform and its inverse are computed using the built in Fast
Fourier Transform algorithm.

We have not gone further in the analysis of the scheme presented above. As
shown in the next section, the outcome of the numerical experiments are in good
agreement with the theoretical results. We plan to further analyze and generalize
our approach in future works.

7. Numerical Solutions of Minimization Problems

Before presenting the numerical experiments, we introduce some notation for
particular plane waves. Define

ϕµ,ρ =

√
2µ

T
e−i

ρ
µx, the plane wave withM(ϕµ,ρ) = µ and P(ϕµ,ρ) = ρ.

In the numerical experiments, we have chosen to fix k = 0.9. The period will be
either T = 2K(k) or T = 4K(k). We use 210 grid points for the interval [−T2 ,

T
2 ].

The time step will be set to 1. We decided to run the algorithm until a maximal
difference of 10−3 between the absolute values of the moduli of ulj and the expected
minimizer has been reached.
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We made the tests with the following initial data:

(a)u0(x) = 5, (b)u0(x) = exp(2iπx/T ), (c)u0(x) = 1 + cos(2iπx/T ) + i. (7.1)

Depending on the expected profile, we may have shifted uj so that a minimum or
a maximum of its modulus is at the boundary. Since the problem is translation
invariant, this causes no loss of generality.

Since the initial data u0 in (7.1) do not match the required mass/momentum,
u1 are very different from u0. Thus (7.1) is a random choice, and this shows up
in the rapid drop from t0 to t1 in Figure 7.1. The idea is to show that the choice
of initial data is not important for the algorithm and that no matter from where
the algorithm is starting, it converges to the supposed minimizer (unless the initial
data has some symmetry preserved by the algorithm).

7.1. Minimization Among Periodic Functions. Minimization among periodic
functions is completely covered by the theoretical results Propositions 3.2 and 3.3.
We have performed different tests using the scheme described in (6.4)-(6.6) and we
have found that the numerical results are in good agreement with the theoretical
ones.

7.1.1. The Focusing Case. In all the experiments performed in this case, we have
tested the scheme with and without the momentum renormalization step (6.6) and
we have obtained the same result each time. This confirms that in the periodic
case the momentum constraint plays no role (see (i) in Proposition 3.2, and Propo-
sition 3.3). In what follows, we present only the results obtained using the full
scheme with renormalization of mass and momentum.

We fix T = 2K(k) and b = 2. We first perform an experiment to verify the agree-
ment with case (ii) in Proposition 3.2. Let m = π2

8K < π2

bT . With each initial data
in (7.1), we observe convergence towards the constant solution, hereby confirming
case (ii) of Proposition 3.2. The results are presented in Figure 7.1 for initial data
(c) of (7.1). The requested precision is achieved after 12 time steps.

Figure 7.1. For m = π2

8K < π2

bT , focusing, periodic case

The second experiment that we perform is aimed at testing case (iv) of Propo-
sition 3.2. Let m = M(dn) = E(k). Once again we observe a good agreement
between the theoretical prediction and the numerical experiment. The results are
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Figure 7.2. For m =M(dn) = E(k), focusing, periodic case

presented in Figure 7.2 for initial data (c) of (7.1). The requested precision is
achieved after 14 time steps.

All the other experiments that we have performed show a good agreement with
the theoretical results in the focusing case for minimization among periodic func-
tions. To avoid repetition, we give no further details here.

7.1.2. The Defocusing Case. We now present the experiment in the defocusing case.
We have used b = −2k2 and T = 4K. We have tested the algorithm with and
without the momentum renormalization step (6.6), obtaining the same results. The
results are presented in Figure 7.3 for initial data (c) of (7.1) and mass constraint
m =M(sn) = 2(K−E)

k2 . The requested precision is achieved after 6 time steps.

Figure 7.3. For m =M(sn) = 2(K−E)
k2 , defocusing, periodic case

7.2. Minimization Among Half-Anti-Periodic Functions. We will in that
case add an additional step in the algorithm in which we keep only the anti-periodic
part of the function. This way it will not matter wether or not our initial data has
the right anti-periodicity, since anti-periodicity will be forced at each iteration of
the algorithm.



40 S. GUSTAFSON, S. LE COZ, AND T.-P. TSAI

7.2.1. The Focusing Case. We compare in this section the numerical results with
Proposition 3.4. We have used b = 2k2 and T = 4K. The tests performed show
a good agreement between the numerics and the theoretical result. We present in
Figure 7.4 the result for initial data (c) of (7.1) and mass constraint m =M(cn) =
2(E − (1− k2)K)/k2

Figure 7.4. For m = M(cn) = 2(E − (1 − k2)K)/k2, focusing,
anti-periodic case

7.2.2. The Defocusing Case. We finally turn out to the defocusing case, still im-
posing anti-periodicity. We have used b = −2k2 and T = 4K.

We have tested the algorithm without the momentum renormalization step (6.6)
and confirmed the theoretical result Proposition 3.6, which states that a plane wave
is the minimizer. We present the result in Figure 7.5 for initial data (c) of (7.1)
and mass constraint m = M(sn) = 2(K−E)

k2 . Note a plateau in the two graphs of
Figure 7.5. This is due to the fact that the sequence remains for some time close
to sn (which is the expected minimizer if we impose in addition the momentum
constraint), before eventually converging to the plane wave minimizer.

Figure 7.5. For m =M(sn) = 2(E(k)−K)/k2, defocusing, anti-
periodic case without momentum constraint

Finally, we run the full algorithm with mass and momentum renormalization for
mass constraint m =M(sn) = 2(K−E)

k2 and 0 momentum constraint. No theoretical
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result is available in this case. We made the following observation, which confirms
Conjecture 3.7.

Observation 7.1. The function sn is a minimizer for problem (3.5) with m =
M(sn).

We present in Figure 7.6 the result of the experiment with full algorithm for
initial data (c) of (7.1) and mass constraint m =M(sn) = 2(K−E)

k2 .

Figure 7.6. For m =M(sn) = 2(E(k)−K)/k2, defocusing, anti-
periodic case with momentum constraint
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